化工进展 ›› 2019, Vol. 38 ›› Issue (04): 2003-2010.DOI: 10.16085/j.issn.1000-6613.2018-1459
收稿日期:
2018-07-16
修回日期:
2018-09-06
出版日期:
2019-04-05
发布日期:
2019-04-05
通讯作者:
袁林江
作者简介:
王茹(1989—),女,博士,讲师,研究方向为废水生物处理技术。E-mail:<email>R.Wang@xauat.edu.cn</email>。|袁林江,教授,博士生导师,研究方向为废水生物处理理论与技术。E-mail:<email>yuanlinjiang@xauat.edu.cn</email>。
基金资助:
Ru WANG1,2(),Zhiguo ZHAO1,2,Ping ZHENG3,Linjiang YUAN1,2()
Received:
2018-07-16
Revised:
2018-09-06
Online:
2019-04-05
Published:
2019-04-05
Contact:
Linjiang YUAN
摘要:
生物脱氮是一类经济有效的废水脱氮技术。反硝化作为废水生物脱氮的重要环节,常常需要额外添加有机物(乙酸钠、甲醇等)作为电子供体。基于有机物的反硝化具有高活性、易操作等优点,但存在运营成本高、产生大量活性污泥和温室气体、易引发二次污染等问题。寻求新型反硝化电子供体是解决上述难题的有效手段。铁型反硝化技术是以零价铁或二价铁替代有机物作为反硝化过程电子供体的新型废水脱氮技术。该技术具有环境友好、经济高效、产物多效等优点,可有效破解我国低C/N废水脱氮难题。本文从现象提出、化学反应原理、生物反应机理3个角度简述了铁型反硝化的发展起源及反应原理;从技术效能、技术参数、技术强化3个层次介绍了目前铁型反硝化技术的研究进展;从环保性、经济性、产物多效性3个方面分析了铁型反硝化技术的优势。本文涵盖了铁型反硝化的历史起源、现今状况和未来发展等三方面内容,以期推进铁型反硝化技术的实验室研发工作,推动铁型反硝化技术在水处理领域的应用。
中图分类号:
王茹, 赵治国, 郑平, 袁林江. 铁型反硝化:一种新型废水生物脱氮技术[J]. 化工进展, 2019, 38(04): 2003-2010.
Ru WANG, Zhiguo ZHAO, Ping ZHENG, Linjiang YUAN. Iron-dependent denitrification, a novel technology to remove nitrogen from wastewaters[J]. Chemical Industry and Engineering Progress, 2019, 38(04): 2003-2010.
1 | 中华人民共和国生态环保部 . 2015年环境统计年报[R]. 北京, 2017. |
Ministry of Ecological and Environmental Protection of the People's Republic of China . Annual Report of Environment Statistics 2015[R]. Beijing, 2017. | |
2 | KHIN T , ANNACHHATRE A P .Novel microbial nitrogen removal processes[J]. Biotechnol Adv., 2004,22(7): 519-532. |
3 | JETTEN M SM , LOGEMANN S , MUYZER G . Novel principles in the microbial conversion of nitrogen compounds[J]. Antonie van Leeuwenhoek,1997,71: 75−93. |
4 | 郑平, 冯孝善 . 废物生物处理[M]. 北京: 高等教育出版社, 2006: 379−383. |
ZHENG P , FENG X S . Biological treatment of waste[M]. Beijing: Press of Higher Education, 2006: 379-383. | |
5 | 郑平, 徐向阳, 胡宝兰 . 新型生物脱氮理论与技术[M]. 北京: 科学出版社, 2004: 55−65. |
ZHENG P , XU X Y , HU B L . New biological nitrogen removal theory and technology[M]. Beijing: Science Press,2004: 5565. | |
6 | 王茹 . 铁型脱氮技术及其微生物学特性研究[D]. 杭州: 浙江大学, 2017. |
WANG R . Ferrous-dependent nitrate reduction technology and its microbial characteristics[D]. Hangzhou: Zhejiang University, 2017. | |
7 | KANAPARTHI D , POMMERENKE B , CASPER P , et al . Chemolithotrophic nitrate-dependent Fe(Ⅱ)-oxidizing nature of actinobacterial subdivision lineage TM3[J]. ISME Journal, 2013, 7(8): 1582-1594. |
8 | 左莉娜, 贺前锋 . 酸性矿山废水的治理技术现状及进展[J]. 环境工程, 2013, 31(5): 35-38. |
ZUO L N , HE Q F . The state-of-art and progress of the treatementwechnology for acid mine wastewater[J]. Environmental Engineering, 2013(5): 35-38. | |
9 | STRAUB K L , BENZ M , SCHINK B , et al . Anaerobic,nitrate-dependent microbial oxidation of ferrous iron[J]. Appl. Environ. Microb., 1996, 62(4): 1458-1460. |
10 | STRAUB K L , BUCHHOLZ-CLEVEN B E . Enumeration and detection of anaerobic ferrous iron-oxidizing, nitrate-reducing bacteria from diverse European sediments[J]. Appl. Environ. Microb. ,1998, 64(12): 4846-4856. |
11 | STRAUB K L , SCHONHUBER W , BUCHHOLZ-CLEVEN B E . Diversity of ferrous iron-oxidizing, nitrate-reducing bacteria and their involvement in oxygen-independsent iron cycling[J]. Geomicrobiol J., 2004, 21(6): 371-378. |
12 | 王茹, 郑平, 张萌, 等 . 硝酸盐型厌氧铁氧化菌的种类、分布和特性[J]. 微生物学通报, 2015, 42(12): 2448-2456. |
WANG R , ZHENG P , ZHANG M ,et al . Nitrate-dependent anaerobic ferrous/iron oxidation microorganism:review on its species, distribution and characteristics[J]. Microbiology Bulletins, 2015, 42(12): 2448-2456. | |
13 | KUMARASWAMY R , SJOLLEMA K , KUENEN G , et al . Nitrate-dependent [Fe(Ⅱ) EDTA] 2−oxidation by Paracoccusferrooxidans sp. nov., isolated from a denitrifying bioreactor[J]. Systematic and Applied Microbiology,2006, 29(4): 276-286. |
14 | KAPPLER A , SCHINK B , NEWMAN D K . Fe(Ⅲ) mineral formation and cell encrustation by the nitrate-dependent Fe(Ⅱ)-oxidizer strain BoFeN1 [J]. Geobiology, 2005, 3(4): 235-245. |
15 | KANAPARTHI D , POMMERENKE B , CASPER P ,et al . Chemolithotrophic nitrate-dependent Fe(Ⅱ)-oxidizing nature of actinobacterial subdivision lineage TM3 [J]. ISME Journal,2013,7(8):1582-94. |
16 | HAFENBRADL D , KELLER M , DIRMEIER R , et al . Ferroglobus placidus gen. nov., sp. nov., a novel hyperthermophilicarchaeum that oxidizes Fe2+ at neutral pH under anoxic conditions[J]. Archives of Microbiology, 1996, 166(5): 308-314. |
17 | HAUCK S , BENZ M , BRUNE A . Ferrous iron oxidation by denitrifying bacteria in profundal sediments of a deep lake (Lake Constance)[J]. FEMS Microbiol Ecol., 2001, 37(2): 127-134. |
18 | HEGLER F , LOSEKANN-BEHRENS T , HANSELMANN K , et al . Influence of seasonal and geochemical changes on the geomicrobiology of an iron carbonate mineral water spring[J]. Appl. Environ. Microbiol., 2012, 78(20): 7185-7196. |
19 | JORGENSEN C J , JACOBSEN O S , ELBERLING B . Microbial oxidation of pyrite coupled to nitrate reduction in anoxic groundwater sediment[J]. Environ. Sci. Technol., 2009, 43(13): 4851-4857. |
20 | ZHANG M , ZHENG P , LI W ,et al . Performance of nitrate-dependent anaerobic ferrous oxidizing (NAFO) process: a novel prospective technology for autotrophic denitrification[J]. Bioresource Technology, 2015, 179: 543-548. |
21 | WANG R , YANG C , ZHANG M ,et al . Chemoautotrophic denitrification based on ferrous iron oxidation: reactor performance and sludge characteristics[J]. Chemical Engineering Journal, 2017, 313: 693-701. |
22 | WEBER K A , HEDRICK D B , PEACOCK A D , at et . Physiological and taxonomic description of the novel autotrophic, metal oxidizing bacterium, Pseudogulbenkiania sp. strain 2002[J]. Applied Microbiology and Biotechnology, 2009, 83(3): 555-565. |
23 | SHELOBOLINA E , XU H ,KONISHIH,et al . Microbial lithotrophic oxidation of structural Fe(Ⅱ) in biotite[J]. Applied and Environmental Microbiology, 2012, 78(16): 746-5752. |
24 | LIU H B , CHEN Z H , GUAN Y N , et al . Role and application of iron in water treatment for nitrogen removal: a review[J]. Chemosphere, 2018, 204: 51-62. |
25 | ZHAO L , DONG H , KUKKADAPU R ,et al . Biological oxidation of Fe(Ⅱ) in reduced nontronite coupled with nitrate reduction by Pseudogulbenkiania sp. strain 2002[J]. Geochimica et Cosmochimica Acta, 2013, 119: 231-247. |
26 | BISWAS S , BOSE P . Zero-valent iron-assisted autotrophic denitrification[J]. Journal of Environmental Engineering,2005,131(8): 1212-1220. |
27 | CARLSON H K , CLARK I C , MELNYK R A ,et al . Toward a mechanistic understanding of anaerobic nitrate-dependent iron oxidation: balancing electron uptake and detoxification[J]. Frontiers in Microbiology, 2012, 3(57): 1-7. |
28 | MUEHE E M , GERHARDT S , SCHINK B , et al . Ecophysiology and the energetic benefit of mixotrophic Fe(Ⅱ) oxidation by various strains of nitrate reducing bacteria[J]. FEMS Microbiology Ecology,2009,70(3):335-343. |
29 | BIRD L J , BONNEFOY V , NEWMAN D K . Bioenergetic challenges of microbial iron metabolisms[J]. Trends in Microbiology, 2011,19(7),330-340. |
30 | FERGUSON S J , INGLEDEW W J . Energetic problems faced by micro-organisms growing or surviving on parsimonious energy sources and at acidic pH: Ⅰ. Acidithiobacillusferrooxidans as a paradigm[J]. Biochimica et Biophysica Acta (BBA)—Bioenergetics, 2008, 1777(12): 1471-1479. |
31 | KRAFT B , STROUS M , TEGETMEYER H E . Microbial nitrate respiration-genes, enzymes and environmental distribution[J]. Journal of Biotechnology, 2011, 155(1): 104-117. |
32 | ZHOU J , WANG H , YANG K ,et al . Nitrate removal by nitrate-dependent Fe(Ⅱ) oxidation in an upflowdenitrifying biofilm reactor[J]. Water Science and Technology, 2015, 72(3): 377-383. |
33 | ZHOU J , WANG H , YANG K . et al . Autotrophic denitrification by nitrate-dependent Fe(Ⅱ) oxidation in a continuous up-flow biofilter[J]. Bioprocess and Biosystems Engineering, 2016, 39(2): 277-284. |
34 | ZHANG X , LI A , SZEWZYK U . Improvement of biological nitrogen removal with nitrate-dependent Fe(Ⅱ) oxidation bacterium Aquabacterium parvum B6 in an up-flow bioreactor for wastewater treatment[J]. Bioresource Technology, 2016, 219: 624-631. |
35 | ZHANG M , ZHENG P , LI W , et al . Performance of nitrate-dependent anaerobic ferrous oxidizing (NAFO) process:anovelprospective technology for autotrophic denitrification[J]. Bioresource Technology,2015,179: 543-548. |
36 | OSHIKI M , ISHII S , YOSHIDA K , et al . Nitrate-dependent ferrous iron oxidation by anaerobic ammonium oxidation (anammox) bacteria[J]. Applied and Environmental Microbiology, 2013,79(13): 4087-4093. |
37 | BLOTHE M , RODEN E . Composition and activity of an autotrophic Fe(Ⅱ)-oxidizing, nitrate-reducing enrichment culture[J]. Applied and Environmental Microbiology,2009,75(21): 6937-6940. |
38 | CHAUDHURI S K , LACK J G , COATES J D . Biogenic magnetite formation through anaerobic biooxidation of Fe(Ⅱ)[J]. Applied and Environmental Microbiology, 2001, 67(6): 2844-2848. |
39 | LI B , TIAN C , ZHANG D , et al . Anaerobic nitrate-dependent iron (Ⅱ) oxidation by a novel autotrophic bacterium,Citrobacterfreundii strain PXL1[J]. Geomicrobiology Journal, 2014, 31(2): 138-144. |
40 | WEBER K A , POLLCK J , COLE K A , et al . Anaerobic nitrate-dependent iron (Ⅱ) bio-oxidation by a novel lithoautotrophic betaproteobacterium, strain 2002[J]. Applied and Environmental Microbiology,2006,72(1): 686-694. |
41 | MARJORIE ETIQUE F P A , JORAND A Z , BRIAN G C D , et al . Abiotic process for Fe(Ⅱ) oxidation and green rust mineralization driven by a heterotrophic nitrate reducing bacteria (Klebsiella mobilis)[J]. Environmental Science & Technology, 2014, 48(7): 3742-3751. |
42 | WANG R , ZHENG P , ZHANG M ,et al . Bioaugmentation of nitrate-dependent anaerobic ferrous oxidation by heterotrophic denitrifying sludge addition: a promising way for promotion of chemoautotrophic denitrification[J]. Bioresource Technology, 2015, 197: 410-415. |
43 | ZHOU J , WANG H , YANG K ,et al . Autotrophic denitrification by nitrate-dependent Fe(Ⅱ) oxidation in a continuous up-flow biofilter[J]. Bioprocess and Biosystems Engineering, 2016, 39(2): 277-284. |
44 | SHEN D S , LI W B , YAO J ,et al . Microbial-mediated anaerobic oxidation of ferrous iron and its mechanism to remediate contaminated environments[J]. Journal of Zhejiang University, 2011, 37(1): 112-118. |
45 | WANG R , ZHENG P , XING Y . et al . Anaerobic ferrous oxidation by heterotrophic denitrifying enriched culture[J]. J. Ind. Microbiol. Biotechno. , 2014, 41(5): 803-809. |
46 | ZHANG M , ZHENG P , WANG R , et al . Nitrate-dependent anaerobic ferrous oxidation (NAFO) by denitrifying bacteria: a perspective autotrophic nitrogen pollution control technology[J]. Chemosphere, 2014, 117: 604-609. |
47 | 张萌 . 新型铁盐脱氮除磷技术的研究[D]. 杭州: 浙江大学, 2015. |
ZHANG M . Novel iron-dependent technology for nitrate and phosphorus removal[D]. Hangzhou: Zhejiang University, 2015. | |
48 | DE G C, CARAVELLI A H , ZARITZKY N E . Performance and biological isndicators of a laboratory-scale activated sludge reactor with phosphate simultaneous precipitation as affected by ferric chloride addition[J]. Chemical Engineering Journal,2010,165(2): 607-616. |
49 | 李娜, 孙竹梅, 阮福辉, 等 . 三氯化铁除砷(Ⅲ)机理[J]. 化工学报,2012, 63(7): 2224-2228. |
LI N , SUN Z M , RUAN F H , et al . Mechanism of removing arsenic (Ⅲ) from ferric chloride[J]. CIESC Journal, 2012, 63(7): 2224-2228. | |
50 | 王谦, 李延, 孙平, 等 . 含铬废水处理技术及研究进展[J]. 环境科学与技术, 2013, 36(12): 150-156. |
WANG Q , LI Y , SUN P ,et al . The treatment technology and research progress of hexavalent chromium-containing wastewater[J]. Environmental Science and Technology, 2013, 36(12): 150-156. | |
51 | 周玲玲, 张永吉, 孙丽华, 等 . 铁盐和铝盐混凝对水中天然有机物的去除特性研究[J]. 环境科学, 2008, 29(5):1187-1191. |
ZHOU L L , ZHANG Y J , SUN L H , et al . Characteristic of natural organic matter removal by ferric and aluminium coagulation[J]. Environmental Science, 2008, 29(5): 1187-1191. | |
52 | 杨雪, 张景成, 关小红 . 新生态铁的混凝作用探索[J]. 环境科学,2012, 33(4): 1221-1226. |
YANG X , ZHANG J C , GUAN X H . Exploration of newly-formed ferric as the coagulant[J]. Environmental Science, 2012, 33(4): 1221-1226. |
[1] | 戴欢涛, 曹苓玉, 游新秀, 徐浩亮, 汪涛, 项玮, 张学杨. 木质素浸渍柚子皮生物炭吸附CO2特性[J]. 化工进展, 2023, 42(S1): 356-363. |
[2] | 王敏, 毛玉红, 陈超, 白丹. 水处理工艺中铝盐水解物的毒性、形态及控制研究进展[J]. 化工进展, 2023, 42(S1): 479-488. |
[3] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[4] | 张婷婷, 左旭乾, 田玲娣, 王世猛. 化工园区挥发性有机物排放清单及因子库构建方法[J]. 化工进展, 2023, 42(S1): 549-557. |
[5] | 袁礼, 王学谦, 李翔, 王郎郎, 马懿星, 宁平, 熊亦然. 催化脱除钢铁副产煤气中COS和H2S的研究进展[J]. 化工进展, 2023, 42(10): 5147-5161. |
[6] | 苏景振, 詹健. 生物炭对水环境中微塑料的去除研究进展[J]. 化工进展, 2023, 42(10): 5445-5458. |
[7] | 王书燕, 张新波, 彭安萍, 刘阳, NGO HUU HAO, 郭文珊, 温海涛. 生物炭回收水中氮磷营养物质的研究进展与挑战[J]. 化工进展, 2023, 42(10): 5459-5469. |
[8] | 张英杰, 陆加越, 王方刚. 新型磁性树脂的合成及其在水中去除Cu(Ⅱ)的性能[J]. 化工进展, 2023, 42(10): 5558-5566. |
[9] | 王晋刚, 张剑波, 唐雪娇, 刘金鹏, 鞠美庭. 机动车尾气脱硝催化剂Cu-SSZ-13的改性研究进展[J]. 化工进展, 2023, 42(9): 4636-4648. |
[10] | 史天茜, 石永辉, 武新颖, 张益豪, 秦哲, 赵春霞, 路达. Fe2+对厌氧氨氧化EGSB反应器运行性能的影响[J]. 化工进展, 2023, 42(9): 5003-5010. |
[11] | 杨静, 李博, 李文军, 刘晓娜, 汤刘元, 刘月, 钱天伟. 焦化污染场地中萘降解菌的分离及降解特性[J]. 化工进展, 2023, 42(8): 4351-4361. |
[12] | 郑梦启, 王成业, 汪炎, 王伟, 袁守军, 胡真虎, 何春华, 王杰, 梅红. 菌藻共生技术在工业废水零排放中的应用与展望[J]. 化工进展, 2023, 42(8): 4424-4431. |
[13] | 徐伟, 李凯军, 宋林烨, 张兴惠, 姚舜华. 光催化及其协同电化学降解VOCs的研究进展[J]. 化工进展, 2023, 42(7): 3520-3531. |
[14] | 郭立行, 庞蔚莹, 马克遥, 杨镓涵, 孙泽辉, 张盼, 付东, 赵昆. 层序空间多孔结构TiO2实现高效光催化CO2还原[J]. 化工进展, 2023, 42(7): 3643-3651. |
[15] | 李海东, 杨远坤, 郭姝姝, 汪本金, 岳婷婷, 傅开彬, 王哲, 何守琴, 姚俊, 谌书. 炭化与焙烧温度对植物基铁碳微电解材料去除As(Ⅲ)性能的影响[J]. 化工进展, 2023, 42(7): 3652-3663. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |