化工进展 ›› 2019, Vol. 38 ›› Issue (04): 1823-1832.DOI: 10.16085/j.issn.1000-6613.2018-1608
收稿日期:
2018-08-06
修回日期:
2018-12-25
出版日期:
2019-04-05
发布日期:
2019-04-05
作者简介:
<named-content content-type="corresp-name">夏道宏</named-content>(1963—),男,教授,博士生导师。E-mail:<email>xiadh@upc.edu.cn</email>。
基金资助:
Daohong XIA(),Zunbin DUAN,Zunlong HU,Xunchun DING,Lijun ZHU,Yuzhi XIANG
Received:
2018-08-06
Revised:
2018-12-25
Online:
2019-04-05
Published:
2019-04-05
摘要:
β-环糊精是由7个D-吡喃葡萄糖单元通过α-1,4-糖苷键键连成环的超分子主体分子,“内疏水、外亲水”的独特结构赋予了其优异的分子识别能力;氧化石墨烯类材料凭借其优良特性成为近几年的研究热点。由β-环糊精和氧化石墨烯构筑的超分子杂化体在兼具二者特有性能的基础上又有新功能的引入。本文综述了β-环糊精-氧化石墨烯超分子杂化体的构筑方式,按二者间的连接方式,分别为共价键和非共价键两种连接方式,其中通过共价键连接是目前最主要的构筑方式;此外对β-环糊精-氧化石墨烯超分子杂化体的特征和表征进行了简述。同时对β-环糊精-氧化石墨烯超分子杂化体在水污染处理、电化学检测、药物控释和催化等领域的应用进展进行了综述。最后对该超分子杂化体在构筑和应用上的发展趋势进行了展望。
中图分类号:
夏道宏, 段尊斌, 胡尊龙, 丁雪春, 朱丽君, 项玉芝. β-环糊精-氧化石墨烯超分子杂化体的构筑及应用进展[J]. 化工进展, 2019, 38(04): 1823-1832.
Daohong XIA, Zunbin DUAN, Zunlong HU, Xunchun DING, Lijun ZHU, Yuzhi XIANG. Progress in preparation and application of β-cyclodextrin-graphene oxide supramolecular hybrid[J]. Chemical Industry and Engineering Progress, 2019, 38(04): 1823-1832.
1 | DONG S , LUO Y , YAN X , et al . A dual-responsive supramolecular polymer gel formed by crown ether based molecular recognition[J]. Angewandte Chemie International Edition, 2011, 50(8): 1905-1909. |
2 | ALSBAIEE A , SMITH B J , XIAO L , et al .Rapid removal of organic micropollutants from water by a porous β-cyclodextrin polymer[J]. Nature, 2015, 529(7585): 190-194. |
3 | XIAO L , LING Y , ALSBAIEE A , et al . β-Cyclodextrin polymer network sequesters perfluorooctanoic acid at environmentally relevant concentrations[J]. Journal of the American Chemical Society, 2017, 139(23): 7689-7692. |
4 | HU J , LIU S . Engineering responsive polymer building blocks with host-guest molecular recognition for functional applications[J]. Accounts of Chemical Research, 2014, 47(7): 2084-2095. |
5 | YIN Z , WU Z , LIN F , et al . A supramolecular bottlebrush polymer assembled on the basis of cucurbit[8] uril-encapsulation-enhanced donor-acceptor interaction[J]. Chinese Chemical Letters, 2017, 28(6): 1167-1171. |
6 | QI Z , SCHALLEY C A . Exploring macrocycles in functional supramolecular gels:from stimuli responsiveness to systems chemistry[J]. Accounts of Chemical Research, 2014, 47(7): 2222-2233. |
7 | HARADA A , TAKASHIMA Y , YAMAGUCHI H . Cyclodextrin-based supramolecular polymers[J]. Chemical Society Reviews, 2009, 38(4): 875-882. |
8 | GUO Y , GUO S , REN J , et al . Cyclodextrin functionalized graphene nanosheets with high supramolecular recognition capability:synthesis and host-guest inclusion for enhanced electrochemical performance[J]. ACS Nano, 2010, 4(7): 4001-4010. |
9 | ZHANG W , LIN M , WANG M , et al . Magnetic porous β-cyclodextrin polymer for magnetic solid-phase extraction of microcystins from environmental water samples[J]. Journal of Chromatography A, 2017, 1503: 1-11. |
10 | CHALASANI R , VASUDEVAN S . Cyclodextrin-functionalized Fe3O4@TiO2:reusable, magnetic nanoparticles for photocatalytic degradation of endocrine-disrupting chemicals in water supplies[J]. ACS Nano, 2013, 7(5): 4093-4104. |
11 | BARUAH U , GOGOI N , MAJUMDAR G , et al . β-Cyclodextrin and calix[4] are ne-25,26,27,28-tetrol capped carbon dots for selective and sensitive detection of fluoride[J]. Carbohydrate Polymers, 2015, 117:377-383. |
12 | WAYU M B , DIPASQUALE L T , SCHWARZMANN M A , et al . Electropolymerization of β-cyclodextrin onto multi-walled carbon nanotube composite films for enhanced selective detection of uric acid[J]. Journal of Electroanalytical Chemistry, 2016, 783:192-200. |
13 | GEIM A K . Graphene:status and prospects[J]. Science, 2009, 324(5934): 1530-1534. |
14 | 孙涛, 李建业, 郝爱友 . 环糊精-石墨烯超分子体系[J]. 有机化学, 2012(11): 2054-2062. |
SUN T , LI J Y , HAO A Y . Cyclodextrin-graphene supramolecular system[J]. Chinese Journal of Organic Chemistry, 2012(11): 2054-2062. | |
15 | TAN J , MENG N , FAN Y , et al . Hydroxypropyl-β-cyclodextrin-graphene oxide conjugates:carriers for anti-cancer drugs[J]. Materials Science and Engineering:C, 2016, 61: 681-687. |
16 | XU C , WANG J , WAN L , et al . Microwave-assisted covalent modification of graphene nanosheets with hydroxypropyl-β-cyclodextrin and its electrochemical detection of phenolic organic pollutants[J]. Journal of Materials Chemistry, 2011, 21(28): 10463-10471. |
17 | WU H , PENG J , WANG S , et al . Fabrication of graphene oxide-β-cyclodextrin nanoparticle releasing doxorubicin and topotecan for combination chemotherapy[J]. Materials Technology, 2015, 30(5): 242-249. |
18 | YAN J , LI X , QIU F , et al . Synthesis of beta-cyclodextrin-chitosan-graphene oxide composite and its application for adsorption of manganese ion(Ⅱ)[J]. Materials Technology, 2016, 31(7): 406-415. |
19 | HOU X , LU X , NIU P , et al . β-Cyclodextrin-modified three-dimensional graphene oxide-wrapped melamine foam for the solid-phase extraction of flavonoids[J]. Journal of Separation Science, 2018, 41(10): 2207-2213. |
20 | YU Z , CHEN Q , LV L , et al . Attached β-cyclodextrin/γ-(2,3-epoxypropoxy) propyl trimethoxysilane to graphene oxide and its application in copper removal[J]. Water Science and Technology, 2017, 75(10): 2403-2411. |
21 | MOURYA V K , INAMDAR N N . Chitosan-modifications and applications: opportunities galore[J]. Reactive and Functional Polymers, 2008, 68(6): 1013-1051. |
22 | CROFT A P , BARTSCH R A . Synthesis of chemically modified cyclodextrins[J]. Tetrahedron, 1983, 39(9): 1417-1474. |
23 | KHAN A R , FORGO P , STINE K J , et al . Methods for selective modifications of cyclodextrins[J]. Chemical Reviews, 1998, 98(5): 1977-1996. |
24 | LI Y , GAO Y , LI Y , et al . A novel fluorescence probing strategy based on mono-[6-(2-aminoethylamino)-6-deoxy]-β-cyclodextin functionalized graphene oxide for the detection of amantadine[J]. Sensors and Actuators B: Chemical, 2014, 202: 323-329. |
25 | YANG L , ZHAO H , LI Y , et al . Electrochemical simultaneous determination of hydroquinone and p-nitrophenol based on host-guest molecular recognition capability of dual β-cyclodextrin functionalized Au@graphene nanohybrids[J]. Sensors and Actuators B: Chemical, 2015, 207: 1-8. |
26 | XU C , WANG X , WANG J , et al . Synthesis and photoelectrical properties of β-cyclodextrin functionalized graphene materials with high bio-recognition capability[J]. Chemical Physics Letters, 2010, 498(1-3): 162-167. |
27 | SEDGHI R , HEIDARI B , YASSARI M . Novel molecularly imprinted polymer based on β-cyclodextrin@graphene oxide: synthesis and application for selective diphenylamine determination[J]. Journal of Colloid and Interface Science, 2017, 503: 47-56. |
28 | WANG S , LI Y , FAN X , et al . β-cyclodextrin functionalized graphene oxide: an efficient and recyclable adsorbent for the removal of dye pollutants[J]. Frontiers of Chemical Science and Engineering, 2015, 9(1): 77-83. |
29 | YUAN J , QIU F , LI P . Synthesis and characterization of β-cyclodextrin-carboxymethyl cellulose-graphene oxide composite materials and its application for removal of basic fuchsin[J]. Journal of the Iranian Chemical Society, 2017, 14(9): 1827-1837. |
30 | ZHONG Y , HE Y , GE Y , et al . β-Cyclodextrin protected Cu nanoclusters as a novel fluorescence sensor for graphene oxide in environmental water samples[J]. Luminescence, 2017, 32(4): 596-601. |
31 | OGOSHI T , ICHIHARA Y , YAMAGISHI T , et al . Supramolecular polymer networks from hybrid between graphene oxide and per-6-amino-β-cyclodextrin[J]. Chemical Communications, 2010, 46(33): 6087-6089. |
32 | TAN L , WANG G , CHEN N , et al . Layer-by-layer assembled multilayers of graphene/mono-(6-amino-6-deoxy)-β-cyclodextrin for detection of dopamine[J]. Chinese Journal of Chemistry, 2015, 33(2): 185-191. |
33 | ZHU G , ZHANG X , GAI P , et al . Enhanced electrochemical sensing for persistent organic pollutants by nanohybrids of graphene nanosheets that are noncovalently functionalized with cyclodextrin[J]. ChemPlusChem, 2012, 77(9): 844-849. |
34 | YANG Y , ZHANG Y , CHEN Y , et al . Construction of a graphene oxide based noncovalent multiple nanosupramolecular assembly as a scaffold for drug delivery[J]. Chemistry—A European Journal, 2012, 18(14): 4208-4215. |
35 | WU Y , QI H , SHI C , et al . Preparation and adsorption behaviors of sodium alginate-based adsorbent-immobilized beta-cyclodextrin and graphene oxide[J]. RSC Advances, 2017, 7(50): 31549-31557. |
36 | LIU Y , HUANG S , ZHAO X , et al . Fabrication of three-dimensional porous β-cyclodextrin/chitosan functionalized graphene oxide hydrogel for methylene blue removal from aqueous solution[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 539: 1-10. |
37 | FAN L , LUO C , SUN M , et al . Synthesis of magnetic β-cyclodextrin-chitosan/graphene oxide as nanoadsorbent and its application in dye adsorption and removal[J]. Colloids and Surfaces B: Biointerfaces, 2013, 103: 601-607. |
38 | LI L , FAN L , DUAN H , et al . Magnetically separable functionalized graphene oxide decorated with magnetic cyclodextrin as an excellent adsorbent for dye removal[J]. RSC Advances, 2014, 4(70): 37114-37121. |
39 | CAO X T , SHOWKAT A M , KANG I , et al . β-Cyclodextrin multi-conjugated magnetic graphene oxide as a nano-adsorbent for methylene blue removal[J]. Journal of Nanoscience and Nanotechnology, 2016, 16(2): 1521-1525. |
40 | FAN L , LUO C , SUN M , et al . Synthesis of graphene oxide decorated with magnetic cyclodextrin for fast chromium removal[J]. Journal of Materials Chemistry, 2012, 22(47): 24577-24583. |
41 | LI L , FAN L , SUN M , et al . Adsorbent for chromium removal based on graphene oxide functionalized with magnetic cyclodextrin-chitosan[J]. Colloids and Surfaces B: Biointerfaces, 2013, 107: 76-83. |
42 | WANG H , LIU Y G , ZENG G M , et al . Grafting of beta-cyclodextrin to magnetic graphene oxide via ethylenediamine and application for Cr(Ⅵ) removal[J]. Carbohydrate Polymers, 2014, 113: 166-173. |
43 | LIU Y , LI M , HE C . Removal of Cr(Ⅵ) and Hg(Ⅱ) ions from wastewater by novel β-CD/MGO-SO3H composite[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 512: 129-136. |
44 | HU X , LIU Y , WANG H , et al . Adsorption of copper by magnetic graphene oxide-supported β-cyclodextrin: effects of pH, ionic strength, background electrolytes, and citric acid[J]. Chemical Engineering Research and Design, 2015, 93: 675-683. |
45 | CUI L , WANG Y , GAO L , et al . Removal of Hg(Ⅱ) from aqueous solution by resin loaded magnetic β-cyclodextrin bead and graphene oxide sheet: synthesis, adsorption mechanism and separation properties[J]. Journal of Colloid and Interface Science, 2015, 456: 42-49. |
46 | SONG W , HU J , ZHAO Y , et al . Efficient removal of cobalt from aqueous solution using beta-cyclodextrin modified graphene oxide[J]. RSC Advances, 2013, 3(24): 9514-9521. |
47 | SONG W , SHAO D , LU S , et al . Simultaneous removal of uranium and humic acid by cyclodextrin modified graphene oxide nanosheets[J]. Science China Chemistry, 2014, 57(9): 1291-1299. |
48 | KUMAR A S K , JIANG S . Synthesis of magnetically separable and recyclable magnetic nanoparticles decorated with beta-cyclodextrin functionalized graphene oxide an excellent adsorption of As(Ⅴ)/(Ⅲ)[J]. Journal of Molecular Liquids, 2017, 237: 387-401. |
49 | ZHU G , YI Y , CHEN J . Recent advances for cyclodextrin-based materials in electrochemical sensing[J]. TrAC Trends in Analytical Chemistry, 2016, 80: 232-241. |
50 |
LIU J , CHEN Y , GUO Y , et al . Electrochemical sensor for o-nitrophenol based on β-cyclodextrin functionalized graphene nanosheets[J]. Journal of Nanomaterials, 2013. DOI: 10.1155/2013/632809.
DOI URL |
51 | LIU W , LI C , GU Y , et al . One-step synthesis of beta-cyclodextrin functionalized graphene/Ag nanocomposite and its application in sensitive determination of 4-nitrophenol[J]. Electroanalysis, 2013, 25(10): 2367-2376. |
52 | FENG W , LIU C , LU S , et al . Electrochemical chiral recognition of tryptophan using a glassy carbon electrode modified with β-cyclodextrin and graphene[J]. Microchimica Acta, 2014, 181(5/6): 501-509. |
53 | WANG C , LI T , LIU Z , et al . An ultra-sensitive sensor based on β-cyclodextrin modified magnetic graphene oxide for detection of tryptophan[J]. Journal of Electroanalytical Chemistry, 2016, 781: 363-370. |
54 | XU J , WANG Q , XUAN C , et al . Chiral recognition of tryptophan enantiomers based on β-cyclodextrin-platinum nanoparticles/graphene nanohybrids modified electrode[J]. Electroanalysis, 2016, 28(4): 868-873. |
55 | GUO Y , GUO S , REN J , et al . Cyclodextrin functionalized graphene nanosheets with high supramolecular recognition capability: synthesis and host-guest inclusion for enhanced electrochemical performance[J]. ACS Nano, 2010, 4(7): 4001-4010. |
56 | PUTTA C , SHARAVATH V , SARKAR S , et al . Palladium nanoparticles on β-cyclodextrin functionalised graphene nanosheets: a supramolecular based heterogeneous catalyst for C—C coupling reactions under green reaction conditions[J]. RSC Advances, 2015, 5(9): 6652-6660. |
57 | LI Z , ZHANG L , HUANG X , et al . Shape-controlled synthesis of Pt nanoparticles via integration of graphene and β-cyclodextrin and using as a noval electrocatalyst for methanol oxidation[J]. Electrochimica Acta, 2014, 121: 215-222. |
58 | RAN X , YANG L , QU Q , et al . Synthesis of well-dispersive 2.0 nm Pd-Pt bimetallic nanoclusters supported on β-cyclodextrin functionalized graphene with excellent electrocatalytic activity[J]. RSC Advances, 2017, 7(4): 1947-1955. |
59 | YEE E M H, HOOK J M , BHADBHADE M M , et al .Preparation, characterization and in vitro biological evaluation of (1:2) phenoxodiol-beta-cyclodextrin complex[J]. Carbohydrate Polymers, 2017, 165: 444-454. |
60 | SZEJTLI J . Introduction and general overview of cyclodextrin chemistry[J]. Chemical Reviews, 1998, 98(5): 1743-1754. |
61 | ZHU Y , MURALI S , CAI W , et al . Graphene and graphene oxide: synthesis, properties, and applications[J]. Advanced Materials, 2010, 22(35): 3906-3924. |
62 | XIAO Y , FAN Y , WANG W , et al . Novel GO-COO-beta-CD/CA inclusion: its blood compatibility, antibacterial property and drug delivery[J]. Drug Delivery, 2014, 21(5): 362-369. |
63 | WANG C , LI B , NIU W , et al . β-Cyclodextrin modified graphene oxide-magnetic nanocomposite for targeted delivery and pH-sensitive release of stereoisomeric anti-cancer drugs[J]. RSC Advances, 2015, 5(108): 89299-89308. |
64 | MENG N , SU Y , ZHOU N , et al . Carboxylated graphene oxide functionalized with β-cyclodextrin-engineering of a novel nanohybrid drug carrier[J]. International Journal of Biological Macromolecules, 2016, 93: 117-122. |
65 | SIRIVIRIYANUN A , TSAI Y , VOON S H , et al . Cyclodextrin-and dendrimer-conjugated graphene oxide as a nanocarrier for the delivery of selected chemotherapeutic and photosensitizing agents[J]. Materials Science and Engineering C, 2018, 89: 307-315. |
66 | GAO Y , JIAO T , MA K, et al . Variable self-assembly and in situ host-guest reaction of beta-cyclodextrin-modified graphene oxide composite Langmuir films with azobenzene compounds[J]. RSC Advances, 2017, 7(65): 41043-41051. |
67 | DONG H , LI Y , YU J , et al . A versatile multicomponent assembly via β-cyclodextrin host-guest chemistry on graphene for biomedical applications[J]. Small, 2013, 9(3): 446-456. |
68 | HOU X , WANG L , TANG X , et al . Application of a beta-cyclodextrin/graphene oxide-modified fiber for solid-phase microextraction of six fragrance allergens in personal products[J]. Analyst, 2015, 140(19): 6727-6735. |
69 | LIANG R , LIU C , MENG X , et al . A novel open-tubular capillary electrochromatography using β-cyclodextrin functionalized graphene oxide-magnetic nanocomposites as tunable stationary phase[J]. Journal of Chromatography A, 2012, 1266: 95-102. |
70 | HOU X , LU X , NIU P , et al . β-Cyclodextrin-modified three-dimensional graphene oxide-wrapped melamine foam for the solid-phase extraction of flavonoids[J]. Journal of Separation Science, 2018, 41(10): 2207-2213. |
71 | 张树鹏, 宋海欧 . 氧化石墨烯/β-环糊精超分子杂化体的制备及表征[J]. 无机材料学报, 2012, 27(6): 596-602. |
ZHANG S P , SONG H O . Preparation and characterization of graphene oxide/β-cyclodextrin supramolecular hybrid material[J]. Journal of Inorganic Materials, 2012, 27(6): 596-602. | |
72 | 沈海民, 武宏科, 纪红兵, 等 . β-环糊精-Fe3O4超分子体系的构筑及其应用研究进展[J]. 有机化学, 2014, 34(4): 630-646. |
SHEN H M , WU H K , JI H B , et al . Progress in the construction of β-cyclodextrin-Fe3O4 supramolecular systems and their application[J]. Chinese Journal of Organic Chemistry, 2014, 34(4): 630-646. | |
73 | SUN Y , XIA D , XIANG Y . A novel method for removing sulfur compounds from light oil by molecular recognition with beta-cyclodextrin[J]. Petroleum Science and Technology, 2008, 26(17): 2023-2032. |
74 | LI L , DUAN Z , CHEN J , et al . Molecular recognition with cyclodextrin polymer: a novel method for removing sulfides efficiently[J]. RSC Advances, 2017, 7(62): 38902-38910. |
75 | 夏道宏, 段尊斌, 卜婷婷, 等 . 一种基于超分子包合作用的轻质油品脱硫剂及其使用方法: CN105126768A[P]. 2015-12-09. |
XIA D H , DUAN Z B , BU T T , et al . Light oil desulfurization agent based on supramolecular inclusion and its using method: CN105126768A[P]. 2015-12-09. | |
76 | 夏道宏, 卜婷婷, 段尊斌, 等 . 一种利用超分子包合作用的燃料油品脱氮剂及其使用方法: CN105087050A[P]. 2015-11-25. |
XIA D H , BU T T , DUAN Z B , et al . Fuel oil denitrification agent utilizing supramolecular inclusion and its using method: CN105087050A[P]. 2015-11-25. | |
77 | DUAN Z , BU T , BIAN H , et al . Effective removal of phenylamine, quinoline, and indole from light oil by β-cyclodextrin aqueous solution through molecular inclusion[J]. Energy & fuels, 2018, 32(9): 9280-9288. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 郑谦, 官修帅, 靳山彪, 张长明, 张小超. 铈锆固溶体Ce0.25Zr0.75O2光热协同催化CO2与甲醇合成DMC[J]. 化工进展, 2023, 42(S1): 319-327. |
[6] | 胡喜, 王明珊, 李恩智, 黄思鸣, 陈俊臣, 郭秉淑, 于博, 马志远, 李星. 二硫化钨复合材料制备与储钠性能研究进展[J]. 化工进展, 2023, 42(S1): 344-355. |
[7] | 张杰, 白忠波, 冯宝鑫, 彭肖林, 任伟伟, 张菁丽, 刘二勇. PEG及其复合添加剂对电解铜箔后处理的影响[J]. 化工进展, 2023, 42(S1): 374-381. |
[8] | 王正坤, 黎四芳. 双子表面活性剂癸炔二醇的绿色合成[J]. 化工进展, 2023, 42(S1): 400-410. |
[9] | 高雨飞, 鲁金凤. 非均相催化臭氧氧化作用机理研究进展[J]. 化工进展, 2023, 42(S1): 430-438. |
[10] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[11] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[12] | 许友好, 王维, 鲁波娜, 徐惠, 何鸣元. 中国炼油创新技术MIP的开发策略及启示[J]. 化工进展, 2023, 42(9): 4465-4470. |
[13] | 耿源泽, 周俊虎, 张天佑, 朱晓宇, 杨卫娟. 部分填充床燃烧器中庚烷均相/异相耦合燃烧[J]. 化工进展, 2023, 42(9): 4514-4521. |
[14] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[15] | 王晋刚, 张剑波, 唐雪娇, 刘金鹏, 鞠美庭. 机动车尾气脱硝催化剂Cu-SSZ-13的改性研究进展[J]. 化工进展, 2023, 42(9): 4636-4648. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |