化工进展 ›› 2025, Vol. 44 ›› Issue (S1): 368-387.DOI: 10.16085/j.issn.1000-6613.2025-0464
• 材料科学与技术 • 上一篇
翟恒艳1(
), 金宇凡1, 黎水涵1, 尹衍军1,2, 王季平1,2, 贾献峰1,2(
)
收稿日期:2025-03-28
修回日期:2025-05-19
出版日期:2025-10-25
发布日期:2025-11-24
通讯作者:
贾献峰
作者简介:翟恒艳(2004—),女,本科生,研究方向为轻质碳纤维/酚醛复合材料。E-mail:zhaihengyan0424@163.com。
基金资助:
ZHAI Hengyan1(
), JIN Yufan1, LI Shuihan1, YIN Yanjun1,2, WANG Jiping1,2, JIA Xianfeng1,2(
)
Received:2025-03-28
Revised:2025-05-19
Online:2025-10-25
Published:2025-11-24
Contact:
JIA Xianfeng
摘要:
以酚醛气凝胶为基体、碳纤维为增强体的轻质碳纤维/酚醛复合材料,由于具有低热导率、较高力学性能和耐烧蚀等优点,在航天飞行器热防护系统领域具有良好的应用前景。然而,轻质碳纤维/酚醛复合材料存在制备工艺周期较长、抗氧化性能差和脆性大等问题,限制了其更广泛的发展与应用。因此,对其进一步改性与优化成为当前研究领域热点。本文简述了轻质碳纤维/酚醛复合材料的制备工艺和结构特征,分别从酚醛气凝胶基体、碳纤维增强体、基体与增强体协同改性、结构与功能化设计和界面优化五个方面,分析了轻质碳纤维/酚醛复合材料的研究成果和进展,并介绍了烧蚀/隔热一体化的热防护机理。最后,对轻质碳纤维/酚醛复合材料在未来发展中应进行的研究和面临的挑战进行了总结和展望,提出制备工艺的绿色低碳发展、材料性能的协同提升与多功能化集成是主要研究方向。
中图分类号:
翟恒艳, 金宇凡, 黎水涵, 尹衍军, 王季平, 贾献峰. 轻质碳纤维/酚醛复合材料的制备与改性研究进展[J]. 化工进展, 2025, 44(S1): 368-387.
ZHAI Hengyan, JIN Yufan, LI Shuihan, YIN Yanjun, WANG Jiping, JIA Xianfeng. Research progress on preparation and modification of lightweight carbon fiber/phenolic composite materials[J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 368-387.
| 材料 | 浸渍-固化工艺 | 密度/g·cm-³ | 力学性能/MPa | 热导率/W·m-1·K-1 | 线烧蚀率/mm·s-1 | 参考文献 |
|---|---|---|---|---|---|---|
| PICA | 真空/高温 | 0.22~0.37 | 1.1029 | 0.40~1.70 | — | [ |
| PICA-flex | 真空/高温 | 0.15~0.35 | 0.24~0.69 | 0.12 | — | [ |
| CBCF-Si-RF | 真空/低温 | 0.309~0.375 | 0.759~2.940 | 0.085~0.136 | — | [ |
| PICA | 常压/低温 | 0.27~0.47 | 2.2~16.5 | 0.056~0.062 | — | [ |
| PICA | 常压/低温 | 0.27~0.43 | 0.45~3.12 | 0.08 | — | [ |
| PAC | 真空/低温 | 0.27~0.40 | 2.2~30.5 | 0.056~0.068 | 0.0147 | [ |
| 碳纤维/有机硅-酚醛气凝胶(CFSP) | 常压/低温 | 0.25~0.28 | 0.8~1.8 | 0.054~0.056 | 0.227 | [ |
| SiCF/PR | 真空/高温 | 0.30~0.35 | 4.57~5.83 | 0.068 | 0.0109~0.0282 | [ |
| NCF-PR | 真空/高温 | 0.270~0.370 | 0.83~11.02 | 0.093~0.230 | 0.029 | [ |
| CF-Si-PR | 真空/高温 | 0.402~0.463 | 0.33~2.44 | 0.089~0.116 | 0.117 | [ |
| PSZ-PR/CF | 真空/低温 | 0.485~0.686 | 23.35~124.75 | 约0.126 | 0.018 | [ |
| CF-Si-PR | 真空/高温 | 0.30 | 2.45~4.18 | 0.063~0.091 | — | [ |
| CF/PFA/SiA | 真空/高温 | 0.323~0.381 | 2.1~4.1 | 0.081 | — | [ |
| ZrC-C/Ph | 真空/高温 | 0.322~0.437 | — | 0.129~0.150 | 0.015~0.075 | [ |
| SiC-C/Ph | 真空/高温 | 0.322~0.409 | 5~57 | 0.129~0.164 | 0.032~0.075 | [ |
| C-QF/PSi | 真空/高温 | 0.460~0.515 | 5.96~17.01 | 约0.112 | 0.017 | [ |
| Cf/TS-PR | 真空/高温 | 0.30 | 1.20 | 0.0756 | 0.003 | [ |
| YS-CFs/PR | 真空/高温 | 0.474~0.540 | 1.00~1.29 | 0.142~0.146 | 0.00500~0.00844 | [ |
| 3D TPS | 真空/高温 | 0.30~0.70 | 2~57 | 0.078~0.120 | 0.011 | [ |
| CPA | 真空/高温 | 0.34 | — | 0.057 | 0.012 | [ |
| PCS薄层(PL/PR/Cf) | 真空/高温 | 0.264~0.307 | 0.96~12.89 | 0.121~0.178 | 0.089 | [ |
| C-Ph/Si/GO | 常压/低温 | 0.32~0.35 | 45.63 | 0.1 | 0.215 | [ |
| LIMC | 真空/低温 | 0.74~1.13 | 1.24~212 | 0.136~0.385 | 0.0132~0.0176 | [ |
| TiCF/PR | 真空/高温 | 0.30~0.32 | 0.6~2.4 | 0.034 | 0.0262 | [ |
表1 轻质碳纤维/酚醛复合材料主要性能对比
| 材料 | 浸渍-固化工艺 | 密度/g·cm-³ | 力学性能/MPa | 热导率/W·m-1·K-1 | 线烧蚀率/mm·s-1 | 参考文献 |
|---|---|---|---|---|---|---|
| PICA | 真空/高温 | 0.22~0.37 | 1.1029 | 0.40~1.70 | — | [ |
| PICA-flex | 真空/高温 | 0.15~0.35 | 0.24~0.69 | 0.12 | — | [ |
| CBCF-Si-RF | 真空/低温 | 0.309~0.375 | 0.759~2.940 | 0.085~0.136 | — | [ |
| PICA | 常压/低温 | 0.27~0.47 | 2.2~16.5 | 0.056~0.062 | — | [ |
| PICA | 常压/低温 | 0.27~0.43 | 0.45~3.12 | 0.08 | — | [ |
| PAC | 真空/低温 | 0.27~0.40 | 2.2~30.5 | 0.056~0.068 | 0.0147 | [ |
| 碳纤维/有机硅-酚醛气凝胶(CFSP) | 常压/低温 | 0.25~0.28 | 0.8~1.8 | 0.054~0.056 | 0.227 | [ |
| SiCF/PR | 真空/高温 | 0.30~0.35 | 4.57~5.83 | 0.068 | 0.0109~0.0282 | [ |
| NCF-PR | 真空/高温 | 0.270~0.370 | 0.83~11.02 | 0.093~0.230 | 0.029 | [ |
| CF-Si-PR | 真空/高温 | 0.402~0.463 | 0.33~2.44 | 0.089~0.116 | 0.117 | [ |
| PSZ-PR/CF | 真空/低温 | 0.485~0.686 | 23.35~124.75 | 约0.126 | 0.018 | [ |
| CF-Si-PR | 真空/高温 | 0.30 | 2.45~4.18 | 0.063~0.091 | — | [ |
| CF/PFA/SiA | 真空/高温 | 0.323~0.381 | 2.1~4.1 | 0.081 | — | [ |
| ZrC-C/Ph | 真空/高温 | 0.322~0.437 | — | 0.129~0.150 | 0.015~0.075 | [ |
| SiC-C/Ph | 真空/高温 | 0.322~0.409 | 5~57 | 0.129~0.164 | 0.032~0.075 | [ |
| C-QF/PSi | 真空/高温 | 0.460~0.515 | 5.96~17.01 | 约0.112 | 0.017 | [ |
| Cf/TS-PR | 真空/高温 | 0.30 | 1.20 | 0.0756 | 0.003 | [ |
| YS-CFs/PR | 真空/高温 | 0.474~0.540 | 1.00~1.29 | 0.142~0.146 | 0.00500~0.00844 | [ |
| 3D TPS | 真空/高温 | 0.30~0.70 | 2~57 | 0.078~0.120 | 0.011 | [ |
| CPA | 真空/高温 | 0.34 | — | 0.057 | 0.012 | [ |
| PCS薄层(PL/PR/Cf) | 真空/高温 | 0.264~0.307 | 0.96~12.89 | 0.121~0.178 | 0.089 | [ |
| C-Ph/Si/GO | 常压/低温 | 0.32~0.35 | 45.63 | 0.1 | 0.215 | [ |
| LIMC | 真空/低温 | 0.74~1.13 | 1.24~212 | 0.136~0.385 | 0.0132~0.0176 | [ |
| TiCF/PR | 真空/高温 | 0.30~0.32 | 0.6~2.4 | 0.034 | 0.0262 | [ |
| [1] | 李仲平, 冯志海, 徐樑华, 等. 我国高性能纤维及其复合材料发展战略研究[J]. 中国工程科学, 2020, 22(5): 28-36. |
| LI Zhongping, FENG Zhihai, XU Lianghua, et al. Development strategies for China’s high-performance fibers and their composites[J]. Strategic Study of CAE, 2020, 22(5): 28-36. | |
| [2] | 解维华, 韩国凯, 孟松鹤, 等. 返回舱/空间探测器热防护结构发展现状与趋势[J]. 航空学报, 2019, 40(8): 022792. |
| XIE Weihua, HAN Guokai, MENG Songhe, et al. Development status and trend of thermal protection structure for return capsules and space probes[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(8): 022792. | |
| [3] | 冯志海, 师建军, 孔磊, 等. 航天飞行器热防护系统低密度烧蚀防热材料研究进展[J]. 材料工程, 2020, 48(8): 14-24. |
| FENG Zhihai, SHI Jianjun, KONG Lei, et al. Research progress in low-density ablative materials for thermal protection system of aerospace flight vehicles[J]. Journal of Materials Engineering, 2020, 48(8): 14-24. | |
| [4] | 李亮, 任智毅, 王鹏, 等. 轻质树脂基防隔热一体化材料研究进展[J]. 空天防御, 2024, 7(6): 58-75. |
| LI Liang, REN Zhiyi, WANG Peng, et al. Research progress on lightweight resin-based thermal protection materials[J]. Air & Space Defense, 2024, 7(6): 58-75. | |
| [5] | TRUMBLE Kerry A, COZMUTA Ioana, SEPKA Steve, et al. Postflight aerothermal analysis of the stardust sample return capsule[J]. Journal of Spacecraft and Rockets, 2010, 47(5): 765-774. |
| [6] | AGRAWAL Parul, CHAVEZ-GARCIA Jose F, PHAM John. Fracture in phenolic impregnated carbon ablator[J]. Journal of Spacecraft and Rockets, 2013, 50(4): 735-741. |
| [7] | MILOS Frank S, GASCH Matthew J, PRABHU Dinesh K. Conformal phenolic impregnated carbon ablator arcjet testing, ablation, and thermal response[J]. Journal of Spacecraft and Rockets, 2015, 52(3): 804-812. |
| [8] | STACKPOOLE Margaret M, GHANDEHARI Ehson M, THORNTON Jeremy J, et al. Method of fabricating a flexible, low-density thermal protection material: US10427807B1[P]. 2019-10-01. |
| [9] | MAHZARI Milad, BRAUN Robert D, WHITE Todd R, et al. Inverse estimation of the Mars science laboratory entry aeroheating and heatshield response[J]. Journal of Spacecraft and Rockets, 2015, 52(4): 1203-1216. |
| [10] | NATALI Maurizio, PURI Ivan, KENNY José M, et al. Microstructure and ablation behavior of an affordable and reliable nanostructured phenolic impregnated carbon ablator (PICA)[J]. Polymer Degradation and Stability, 2017, 141: 84-96. |
| [11] | HONG Changqing, HAN Jiecai, ZHANG Xinghong, et al. Novel phenolic impregnated 3-D Fine-woven pierced carbon fabric composites: Microstructure and ablation behavior[J]. Composites Part B: Engineering, 2012, 43(5): 2389-2394. |
| [12] | CHENG Haiming, HONG Changqing, ZHANG Xinghong, et al. Super flame-retardant lightweight rime-like carbon-phenolic nanofoam[J]. Scientific Reports, 2016, 6: 33480. |
| [13] | CHENG Haiming, XUE Huafei, HONG Changqing, et al. Characterization, thermal and mechanical properties and hydrophobicity of resorcinol-furfural/silicone hybrid aerogels synthesized by ambient-pressure drying[J]. RSC Advances, 2016, 6(79): 75793-75804. |
| [14] | ZHANG Jun, FANG Guodong, YANG Lingwei, et al. Comparison of ablative and compressive mechanical behavior of several PICA-like ablative materials[J]. Science China Technological Sciences, 2020, 63(8): 1478-1486. |
| [15] | 贾献峰, 刘旭华, 乔文明, 等. 酚醛浸渍碳烧蚀体(PICA)的制备、结构及性能[J]. 宇航材料工艺, 2016, 46(1): 77-80, 90. |
| JIA Xianfeng, LIU Xuhua, QIAO Wenming, et al. Preparation and properties of phenolic impregnated carbon ablator[J]. Aerospace Materials & Technology, 2016, 46(1): 77-80, 90. | |
| [16] | 杨威, 贾献峰, 乔文明, 等. 刚性短切碳纤维预制体和酚醛浸渍碳烧蚀体的制备及性能[J]. 宇航材料工艺, 2016, 46(2): 13-18. |
| YANG Wei, JIA Xianfeng, QIAO Wenming, et al. Preparation and properties of rigid carbon fiber preform and resulting phenolic impregnated carbon ablator[J]. Aerospace Materials & Technology, 2016, 46(2): 13-18. | |
| [17] | 朱召贤, 董金鑫, 贾献峰, 等. 酚醛气凝胶/炭纤维复合材料的结构与烧蚀性能[J]. 新型炭材料, 2018, 33(4): 370-376. |
| ZHU Zhaoxian, DONG Jinxin, JIA Xianfeng, et al. The microstructure and ablation behavior of carbon fiber/phenolic aerogel composites[J]. New Carbon Materials, 2018, 33(4): 370-376. | |
| [18] | SONG Wenda, JIA Xianfeng, MA Cheng, et al. Facile fabrication of lightweight carbon fiber/phenolic ablator with improved flexibility via natural rubber modification[J]. Composites Communications, 2022, 31: 101119. |
| [19] | WANG Wenkai, XU Wenjie, JIA Xianfeng, et al. A facile in situ strategy to fabricate lightweight carbon fiber/silicone-phenolic aerogel composites with superior toughness and ablation performance[J]. Journal of Materials Science, 2024, 59(39): 18488-18498. |
| [20] | 师建军, 孔磊, 左小彪, 等. 酚醛/SiO2双体系凝胶网络结构杂化气凝胶的制备与性能[J]. 高分子学报, 2018, 49(10): 1307-1314. |
| SHI Jianjun, KONG Lei, ZUO Xiaobiao, et al. Preparation of PR/SiO2 hybrid phenolic aerogel with bi-component gel networks[J]. Acta Polymerica Sinica, 2018, 49(10): 1307-1314. | |
| [21] | 师建军, 张宗波, 冯志海, 等. 低密度碳粘接碳纤维复合材料(CBCF)抗氧化改性研究[J]. 无机材料学报, 2018, 33(7): 728-734. |
| SHI Jianjun, ZHANG Zongbo, FENG Zhihai, et al. Modification of oxidation resistance for low density carbon-bonded carbon fiber (CBCF) composite[J]. Journal of Inorganic Materials, 2018, 33(7): 728-734. | |
| [22] | 师建军, 李弘瑜, 张凌东, 等. 烧蚀型防隔热/隐身多功能复合材料制备与性能[J]. 宇航材料工艺, 2021, 51(6): 59-64. |
| SHI Jianjun, LI Hongyu, ZHANG Lingdong, et al. Preparation and properties of multi-functional composite integrated with heat-shielding, insulating and radar-absorbing[J]. Aerospace Materials & Technology, 2021, 51(6): 59-64. | |
| [23] | 郭慧, 刘圆圆, 宋寒, 等. 纤维对酚醛气凝胶材料性能的影响[J]. 材料导报, 2020, 34(S2): 513-515, 520. |
| GUO Hui, LIU Yuanyuan, SONG Han, et al. Effect of fibers on the properties of fiber reinforced phenolic aerogel composites[J]. Materials Reports, 2020, 34(S2): 513-515, 520. | |
| [24] | 王瑞杰, 郭建业, 宋寒, 等. 酚醛气凝胶多功能复合材料的设计与性能[J]. 材料导报, 2021, 35(S1): 548-551. |
| WANG Ruijie, GUO Jianye, SONG Han, et al. Design and properties of multifunctional phenolic aerogel composites[J]. Materials Reports, 2021, 35(S1): 548-551. | |
| [25] | YUAN Quan, YAN Liwei, LU Junyu, et al. Influence of three-dimensional skeletal support by different fiber felts on thermal protection properties of aerogel composites[J]. Industrial & Engineering Chemistry Research, 2024, 63(22): 9858-9868. |
| [26] | LIU Xinchao, SUN Jiancheng, YUAN Fang, et al. Lightweight, flexible, and heat-insulated phenolic impregnated carbon ablator (PICA) with adjustable flexibility and high compressive resilience property[J]. Journal of Applied Polymer Science, 2022, 139(9): 51712. |
| [27] | 程海明, 薛华飞, 洪长青, 等. 一种新型低密度低热导率碳/酚醛复合材料的制备与隔热性能研究[J]. 稀有金属材料与工程, 2015, 44(S1): 478-481. |
| CHENG Haiming, XUE Huafei, HONG Changqing, et al. Fabrication and heat-insolation of a novel low-density and low thermal conductivity carbon/phenolic composite[J]. Rare Metal Materials and Engineering, 2015, 44(S1): 478-481 | |
| [28] | WANG Hebing, PAN Yiwu, JIN Xiangyu, et al. Gradient fiber-reinforced aerogel composites using surface ceramicizable-resin densification with outstanding ablation resistance for high-temperature thermal protection[J]. Composites Science and Technology, 2022, 230: 109798. |
| [29] | WANG Hebing, YAN Xiaojie, JIN Xiangyu, et al. Mechanical and thermal ablative behavior of ceramic-modified lightweight quartz felt reinforced phenolic aerogel[J]. Composites Communications, 2022, 35: 101285. |
| [30] | WANG Hebing, QUAN Xiandong, YIN Lianhua, et al. Lightweight quartz fiber fabric reinforced phenolic aerogel with surface densified and graded structure for high temperature thermal protection[J]. Composites Part A: Applied Science and Manufacturing, 2022, 159: 107022. |
| [31] | NIU Bo, ZHANG Hongyu, QIAN Zhen, et al. Micro-fracture behaviors of needled short-chopped fiber reinforced phenolic aerogel composites based on in situ X-ray micro-CT[J]. Composites Communications, 2022, 33: 101224. |
| [32] | 沈昊辰, 牛波, 张琪凯, 等. 2.5D石英纤维增强纳米孔酚醛树脂基复合材料的力学和传热性能[J]. 复合材料科学与工程, 2023(4): 5-13. |
| SHEN Haochen, NIU Bo, ZHANG Qikai, et al. Mechanical and thermal properties of 2.5D quartz fiber reinforced nano-porous resin-based composites[J]. Composites Science and Engineering, 2023(4): 5-13. | |
| [33] | WU Can, WANG Lumeng, YAN Xiaojie, et al. Environmental-friendly and fast production of ultra-strong phenolic aerogel composite with superior thermal insulation and ablative-resistance[J]. Composites Science and Technology, 2024, 256: 110776. |
| [34] | WU Cao, CHEN Zhaofeng, WANG Fei, et al. Preparation and characterization of ultralight glass fiber wool/phenolic resin aerogels with a spring-like structure[J]. Composites Science and Technology, 2019, 179: 125-133. |
| [35] | HUANG He, LI Jinliang, WANG Wei, et al. Lightweight, flexible, and covalent-bonding phenolic fabric reinforced phenolic ablator for thermal insulation and conformal infrared stealth[J]. ACS Applied Materials & Interfaces, 2023, 15(51): 59866-59875. |
| [36] | ZUBER C, REIMER T, ESSER B, et al. Development of the low-density phenolic-based fibrous ablator ZURAM-K[J]. Journal of Spacecraft and Rockets, 2020, 58(2): 415-424. |
| [37] | LI Jian, GUO Penglei, HU Chenglong, et al. Fabrication of large aerogel-like carbon/carbon composites with excellent load-bearing capacity and thermal-insulating performance at 1800℃[J]. ACS Nano, 2022, 16(4): 6565-6577. |
| [38] | MA Jian, LI Jian, GUO Penglei, et al. Tailoring microstructures of carbon fiber reinforced carbon aerogel-like matrix composites by carbonization to modulate their mechanical properties and thermal conductivities[J]. Carbon, 2022, 196: 807-818. |
| [39] | YUAN Chengfan, WANG Degang, ZHANG Yijun, et al. Research progress on preparation, modification, and application of phenolic aerogel[J]. Nanotechnology Reviews, 2023, 12: 20230109. |
| [40] | 贾献峰, 陈伟, 马成, 等. 常压干燥制备酚醛树脂基炭气凝胶研究进展[J]. 化学通报, 2021, 84(3): 194-203. |
| JIA Xianfeng, CHEN Wei, MA Cheng, et al. Research progress in the preparation of phenolic resin based carbon aerogels via ambient pressure drying[J]. Chemistry, 2021, 84(3): 194-203. | |
| [41] | 张世忠, 贺丽娟, 孔得力, 等. 反应溶剂极性对酚醛气凝胶微观结构的影响研究[J]. 高分子通报, 2024, 37(11): 1620-1627. |
| ZHANG Shizhong, HE Lijuan, KONG Deli, et al. Study on the effect of solvent polarity on the microstructure of phenolic aerogel[J]. Chinese Polymer Bulletin, 2024, 37(11): 1620-1627. | |
| [42] | 严蛟, 邝旻翾, 胡宏林, 等. 间苯二酚-甲醛基酚醛/碳气凝胶微观结构调控研究进展[J]. 材料导报, 2022, 36(12): 209-218. |
| YAN Jiao, KUANG Minxuan, HU Honglin, et al. Research progress in tailoring the microstructure of resorcinol-formaldehyde organic/carbon aerogel[J]. Materials Reports, 2022, 36(12): 209-218. | |
| [43] | JIA Xianfeng, DAI Bowen, ZHU Zhaoxian, et al. Strong and machinable carbon aerogel monoliths with low thermal conductivity prepared via ambient pressure drying[J]. Carbon, 2016, 108: 551-560. |
| [44] | 郑振荣, 吕红丽, 罗丽娟, 等. 原料配比对酚醛气凝胶结构和性能的影响[J]. 宇航材料工艺, 2024, 54(6): 52-58. |
| ZHENG Zhenrong, Hongli LYU, LUO Lijuan, et al. Effects of material composition on structure and properties of phenolic aerogel[J]. Aerospace Materials & Technology, 2024, 54(6): 52-58. | |
| [45] | 付前刚, 张佳平, 李贺军. 抗烧蚀C/C复合材料研究进展[J]. 新型炭材料, 2015, 30(2): 97-105. |
| FU Qiangang, ZHANG Jiaping, LI Hejun. Advances in the ablation resistance of C/C composites[J]. New Carbon Materials, 2015, 30(2): 97-105. | |
| [46] | TIAN Ye, HUANG Haiming, XU Xiaoliang. Optimization of the curing process of phenolic impregnated carbon ablator[J]. Journal of Applied Polymer Science, 2018, 135(18): 46230. |
| [47] | JIN Xiangyu, LIU Chen, HUANG He, et al. Multiscale, elastic, and low-density carbon fibre/siliconoxycarbide-phenolic interpenetrating aerogel nanocomposite for ablative thermal protection[J]. Composites Part B: Engineering, 2022, 245: 110212. |
| [48] | 张鸿宇, 钱震, 牛波, 等. 低密度纤维增强酚醛气凝胶复合材料的力学特性及断裂机制[J]. 复合材料学报, 2022, 39(8): 3663-3673. |
| ZHANG Hongyu, QIAN Zhen, NIU Bo, et al. Mechanical properties and fracture mechanisms of low-density fiber preforms reinforced phenolic aerogel composites[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3663-3673. | |
| [49] | CHENG Haiming, XUE Huafei, HONG Changqing, et al. Preparation, mechanical, thermal and ablative properties of lightweight needled carbon fibre felt/phenolic resin aerogel composite with a bird’s nest structure[J]. Composites Science and Technology, 2017, 140: 63-72. |
| [50] | YU Zhilong, GAO Yucheng, QIN Bing, et al. Revitalizing traditional phenolic resin toward a versatile platform for advanced materials[J]. Accounts of Materials Research, 2024, 5(2): 146-159. |
| [51] | WANG Chonghai, CHENG Haiming, HONG Changqing, et al. Lightweight chopped carbon fibre reinforced silica-phenolic resin aerogel nanocomposite: Facile preparation, properties and application to thermal protection[J]. Composites Part A: Applied Science and Manufacturing, 2018, 112: 81-90. |
| [52] | 徐文杰, 贾献峰, 王际童, 等. 有机硅/酚醛杂化气凝胶的制备和性能研究[J]. 化工学报, 2023, 74(8): 3572-3583. |
| XU Wenjie, JIA Xianfeng, WANG Jitong, et al. Preparation and properties of silicone/phenolic hybrid aerogel[J]. CIESC Journal, 2023, 74(8): 3572-3583. | |
| [53] | YOU Qi, LIU Gang, ZHONG Ya, et al. Mechanical properties and oxidative ablation behaviors of polysilazane-modified phenolic resin aerogel/carbon fiber fabric composites[J]. Polymer Composites, 2024, 45(1): 286-301. |
| [54] | POLONI Erik, GRIGAT Felix, EBERHART Martin, et al. An open carbon-phenolic ablator for scientific exploration[J]. Scientific Reports, 2023, 13(1): 13135. |
| [55] | PAGLIA Laura, BOTTACCHIARI Rita, COGNIGNI Flavio, et al. Micro and nanostructured carbon-phenolic ablators modified by PVP addition[J]. Materials & Design, 2024, 242: 113014. |
| [56] | POLONI Erik, BOUVILLE Florian, SCHMID Alexander L, et al. Carbon ablators with porosity tailored for aerospace thermal protection during atmospheric re-entry[J]. Carbon, 2022, 195: 80-91. |
| [57] | GE Rufei, ZHANG Jie, YANG Ning, et al. Constructing lightweight ternary interpenetrating network of carbon fabric/siloxane/phenolic aerogels for long-time high-temperature thermal protection[J]. Composites Communications, 2024, 48: 101914. |
| [58] | ZHANG Jie, YIN Rongying, FAN Zihao, et al. Significantly enhanced mechanical, thermal, and ablative properties of the lightweight carbon fabric/phenol-formaldehyde resin/siloxane aerogels ternary interpenetrating network[J]. ACS Applied Materials & Interfaces, 2024, 16(29): 38520-38530. |
| [59] | KUMAR Colonel Vijay, KANDASUBRAMANIAN Balasubramanian. Advances in ablative composites of carbon based materials: A review[J]. Industrial & Engineering Chemistry Research, 2019, 58(51): 22663-22701. |
| [60] | PULCI G, PAGLIA L, GENOVA V, et al. Low density ablative materials modified by nanoparticles addition: Manufacturing and characterization[J]. Composites Part A: Applied Science and Manufacturing, 2018, 109: 330-337. |
| [61] | WANG Shuang, HUANG Haiming, TIAN Ye. Effects of zirconium carbide content on thermal stability and ablation properties of carbon/phenolic composites[J]. Ceramics International, 2020, 46(4): 4307-4313. |
| [62] | WANG Shuang, HUANG Haiming, TIAN Ye, et al. Effects of SiC content on mechanical, thermal and ablative properties of carbon/phenolic composites[J]. Ceramics International, 2020, 46(10): 16151-16156. |
| [63] | 黄成杰, 杨敏, 李红, 等. 三维织造预制体微观结构及致密化[J]. 材料工程, 2021, 49(1): 104-111. |
| HUANG Chengjie, YANG Min, LI Hong, et al. Microstructure and densification of 3D weaving preform[J]. Journal of Materials Engineering, 2021, 49(1): 104-111. | |
| [64] | 孙乐, 王成, 李晓飞, 等. C/C复合材料预制体的研究进展[J]. 航空材料学报, 2018, 38(2): 86-95. |
| SUN Le, WANG Cheng, LI Xiaofei, et al. Research progress on preforms of C/C composites[J]. Journal of Aeronautical Materials, 2018, 38(2): 86-95. | |
| [65] | YANG Dongdong, DONG Shun, HONG Changqing, et al. Preparation, modification, and coating for carbon-bonded carbon fiber composites: A review[J]. Ceramics International, 2022, 48(11): 14935-14958. |
| [66] | LIU Chen, HAN Jiecai, ZHANG Xinghong, et al. Lightweight carbon-bonded carbon fiber composites prepared by pressure filtration technique[J]. Carbon, 2013, 59: 551-554. |
| [67] | CHENG Haiming, HONG Changqing, ZHANG Xinghong, et al. Lightweight carbon-bonded carbon fiber composites with quasi-layered and network structure[J]. Materials & Design, 2015, 86: 156-159. |
| [68] | JI Yuan, HAN Shida, XIA Lichao, et al. Synergetic effect of aramid fiber and carbon fiber to enhance ablative resistance of EPDM-based insulators via constructing high-strength char layer[J]. Composites Science and Technology, 2021, 201: 108494. |
| [69] | CHENG Haiming, FAN Zihao, HONG Changqing, et al. Lightweight multiscale hybrid carbon-quartz fiber fabric reinforced phenolic-silica aerogel nanocomposite for high temperature thermal protection[J]. Composites Part A: Applied Science and Manufacturing, 2021, 143: 106313. |
| [70] | WANG Wei, JIN Xiangyu, HUANG He, et al. Thermal-insulation and ablation-resistance of Ti-Si binary modified carbon/phenolic nanocomposites for high-temperature thermal protection[J]. Composites Part A: Applied Science and Manufacturing, 2023, 169: 107528. |
| [71] | SUN Jin, WANG Shuang, HUANG Jie, et al. Yttrium silicate-coated carbon fiber reinforced phenolic aerogel-like composites with low density and low ablation[J]. ChemistrySelect, 2024, 9(23): e202400972. |
| [72] | 张鹏飞, 赖小明, 洪长青, 等. 抗氧化三维纤维增强酚醛气凝胶的性能[J]. 材料导报, 2021, 35(16): 16155-16159. |
| ZHANG Pengfei, LAI Xiaoming, HONG Changqing, et al. Properties of anti-oxidation 3D fiber preform reinforced phenolic aerogel material[J]. Materials Reports, 2021, 35(16): 16155-16159. | |
| [73] | YUAN Quan, YAN Liwei, TIAN Jinfeng, et al. Poly(dimethyl-diphenyl-imide) siloxane/phenolic-based double network hybrid resin coatings for ablation thermal protection[J]. Progress in Organic Coatings, 2023, 182: 107693. |
| [74] | YUAN Quan, YAN Liwei, TIAN Jinfeng, et al. In situ ceramization of nanoscale interface enables aerogel with thermal protection at 1950℃[J]. ACS Nano, 2024, 18(4): 3520-3530. |
| [75] | FU Huadong, QIN Yan, ZOU Zhenyue, et al. Reinforced compressive and ablative properties of phenolic aerogel by in situ polycarbosilane-derived ceramic[J]. Ceramics International, 2023, 49(24): 40392-40402. |
| [76] | WANG Zhenyu, ZHANG Yongzheng, SUN Gangwei, et al. Improvement of carbon fiber/phenolic composite properties by low-loading graphene oxide and SiO2 nanoparticles[J]. Materials Letters, 2024, 365: 136400. |
| [77] | JIANG Zuhang, WANG Tongkai, LI Weijie, et al. Effect of weaving parameter and resin structure of lightweight integrated multifunctional composite on thermal protection performance in extreme environment[J]. Polymer Composites, 2023, 44(8): 4509-4518. |
| [78] | PAN Yiwu, JIN Xiangyu, WANG Hebing, et al. Nano-TiO2 coated needle carbon fiber reinforced phenolic aerogel composite with low density, excellent heat-insulating and infrared radiation shielding performance[J]. Journal of Materials Science & Technology, 2023, 152: 181-189. |
| [79] | ZHENG Hao, ZHANG Wenjian, LI Bowen, et al. Recent advances of interphases in carbon fiber-reinforced polymer composites: A review[J]. Composites Part B: Engineering, 2022, 233: 109639. |
| [80] | 付宇, 王洋, 蔡明. 气凝胶/纤维复合材料的热学和力学性能以及界面相容性的研究进展[J]. 材料工程, 2023, 51(11): 1-13. |
| FU Yu, WANG Yang, CAI Ming. Progress in thermal and mechanical properties and interfacial compatibility of aerogel/fiber composites[J]. Journal of Materials Engineering, 2023, 51(11): 1-13. | |
| [81] | 李成伟, 庄晟逸, 向文超, 等. 航天热防护用树脂基复合材料研制的前沿进展[J]. 中国科学:化学, 2024, 54(11): 2167-2182. |
| LI Chengwei, ZHUANG Shengyi, XIANG Wenchao, et al. Frontier development of resin-based composites for aerospace thermal protection[J]. Scientia Sinica Chimica, 2024, 54(11): 2167-2182. | |
| [82] | BESSIRE Brody K, MINTON Timothy K. Decomposition of phenolic impregnated carbon ablator (PICA) as a function of temperature and heating rate[J]. ACS Applied Materials & Interfaces, 2017, 9(25): 21422-21437. |
| [83] | BESSIRE Brody K, LAHANKAR Sridhar A, MINTON Timothy K. Pyrolysis of phenolic impregnated carbon ablator (PICA)[J]. ACS Applied Materials & Interfaces, 2015, 7(3): 1383-1395. |
| [84] | QIAN Zhen, LI Guixiang, FENG Yun, et al. Pyrolysis behavior of the nanoporous phenolic matrix and the resultant microstructure and property evolution in the composites[J]. Composites Communications, 2023, 40: 101573. |
| [85] | NIU Zhaoqi, CHEN Beixi, SHEN Shuai, et al. Zirconium chelated hybrid phenolic resin with enhanced thermal and ablation resistance properties for thermal insulation composites[J]. Composites Communications, 2022, 35: 101284. |
| [1] | 包新德, 刘必烨, 黄仁伟, 洪宇豪, 关鑫, 林金国. 生物质基@CuNiOS复合催化剂的制备及其在有机染料还原中的应用[J]. 化工进展, 2025, 44(S1): 185-196. |
| [2] | 马晓彪, 刘晗, 王伟欢, 苗培培, 季莹辉, 陈博阳, 彭晓伟, 许强, 靳凤英, 马明超, 王银斌, 郭春垒. 酸和磷复合改性对ZSM-5分子筛催化裂解性能的影响[J]. 化工进展, 2025, 44(S1): 197-204. |
| [3] | 甘玉凤, 陈静然, 周志华, 潘春荣, 张大千, 钟骏薇. 石蜡基复合相变材料及其在储能系统中的应用[J]. 化工进展, 2025, 44(S1): 277-287. |
| [4] | 杜亮亮, 邵杰, 汪超, 宋俊达, 程尧, 开元, 胡超. 沥青基钠离子电池负极材料研究进展[J]. 化工进展, 2025, 44(S1): 307-322. |
| [5] | 周慕妍, 李凯, 谢征芸, 孙彦琳. 新型多糖基二元流变改性剂在香精油微胶囊悬浮中的应用与性能[J]. 化工进展, 2025, 44(9): 5265-5276. |
| [6] | 徐茹婷, 赵剑, 孙康, 卢辛成, 蒋剑春, 苏忠高, 刘军利, 陈子标, 苏子寒. 活性炭改性及其对模拟废润滑油的净化性能[J]. 化工进展, 2025, 44(7): 4022-4031. |
| [7] | 刘文龙, 马秀清, 李长金, 何东洋, 高觊兴, 张杨, 李满意, 杨卫民, 李好义. LDPE/PEW熔喷超细纤维及其非织造布性能[J]. 化工进展, 2025, 44(7): 4032-4038. |
| [8] | 俸三喆, 匡唐清, 柳和生, 杨帆, 陈灏. 弹头直径对短玻纤增强聚丙烯水驱动弹头辅助共注塑管件的质量影响[J]. 化工进展, 2025, 44(7): 4061-4069. |
| [9] | 张巍, 梁垚城, 伍乔, 付业昊, 尹艳山, 成珊, 阮敏, 刘涛, 周昭仪, 张凯凯, 李丹聪. 基于金属离子改性的Cu-SSZ-13催化剂在NH3-SCR脱硝中的应用[J]. 化工进展, 2025, 44(7): 3879-3891. |
| [10] | 陈东健, 孙雨倩, 银凤翔. FeNi3-Fe3O4/CN催化剂的制备及其电催化析氧性能[J]. 化工进展, 2025, 44(7): 3928-3937. |
| [11] | 孙燕, 陈马超, 田娜, 谢晓阳, 李晓玲, 何皎洁, 赵晓红. 基于β-环糊精的TFC正渗透膜原位构筑及抗污染性能[J]. 化工进展, 2025, 44(6): 3671-3682. |
| [12] | 李佩燚, 孙波龙, 刘瑞岩, 周歆尧, 刘瑞林, 胡园园, 徐功涛, 李新平. 海藻酸钠/二氧化钛复合多孔材料的制备及油水分离应用[J]. 化工进展, 2025, 44(6): 3053-3061. |
| [13] | 武亚丽, 张效林, 高丽敏, 黄茂财, 蔡斌, 张继兵. 秸秆粉/纤维资源化利用技术进展[J]. 化工进展, 2025, 44(6): 3509-3523. |
| [14] | 王林艳, 周平德, 张一铎, 刘钰溪, 郝明正, 梁玉蓉. 高导热氮化硼/天然橡胶纳米复合材料的制备与性能[J]. 化工进展, 2025, 44(6): 3541-3549. |
| [15] | 刘启予, 刘伟峰, 邱学青. 基于界面相容性强化的木质素/高分子复合材料构筑策略[J]. 化工进展, 2025, 44(5): 2733-2745. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |