化工进展 ›› 2025, Vol. 44 ›› Issue (10): 5899-5910.DOI: 10.16085/j.issn.1000-6613.2024-1291
• 资源与环境化工 • 上一篇
收稿日期:2024-08-07
修回日期:2024-09-05
出版日期:2025-10-25
发布日期:2025-11-10
通讯作者:
薛立新
作者简介:曾军建(1992—),男,博士研究生,研究方向为膜科学与技术。E-mail:745036425@qq.com。
基金资助:
ZENG Junjian1,2(
), DU Yijun2, HE Jing1, XUE Lixin1,3(
)
Received:2024-08-07
Revised:2024-09-05
Online:2025-10-25
Published:2025-11-10
Contact:
XUE Lixin
摘要:
水体染料污染是当下严重威胁人类健康和环境安全的重要问题之一。为克服传统水处理技术在降解效率和持久性方面的局限,结合膜和光催化技术的石墨相氮化碳(g-C3N4)光催化膜技术已成为当前的研究热点。本文从g-C3N4的结构、性质和催化机理出发,强调了其在大比表面积、可定制结构、稳定性以及光催化效率方面的优势。本文进一步对比了g-C3N4不同制备方法的优劣,指出传统热聚合法导致的产物结构密集化问题,以及通过结构优化和协同效应来增强其光催化性能的不同策略。接着,本文还系统介绍了g-C3N4光催化膜的制备技术及其在染料降解中的应用,涵盖从自支撑膜、负载膜到杂化膜的演进趋势及各类膜的优劣势对比,展示了其在水处理领域的巨大发展潜力。最后,本文指出g-C3N4光催化膜在规模化应用、评价标准确立和复合材料选择方面仍面临挑战。
中图分类号:
曾军建, 杜轶君, 何静, 薛立新. 石墨相氮化碳的制备及在染料降解膜中的应用进展[J]. 化工进展, 2025, 44(10): 5899-5910.
ZENG Junjian, DU Yijun, HE Jing, XUE Lixin. Progress in the synthesis of graphitic carbon nitride and its application in dye degradation membranes[J]. Chemical Industry and Engineering Progress, 2025, 44(10): 5899-5910.
| 制备方法 | 方法介绍 | 优点 | 缺点 | 主要应用场景 |
|---|---|---|---|---|
| 水热合成[ | 在封闭系统中使用水作溶剂,加热和高压合成g-C3N4 | 条件温和,易控制 | 时间较长,对设备要求高 | 实验室小批量制备 |
| 化学气相沉积[ | 通过分解气态前体高温下在基板上沉积g-C3N4 | 可控性高,纯度高 | 成本高,设备复杂 | 高端应用如半导体行业 |
| 等离子体溅射反应沉积[ | 使用等离子体技术将g-C3N4的靶材料溅射到基板上 | 膜质均匀,结构紧凑 | 能耗高,设备成本高 | 用于制备薄膜和涂层 |
| 热聚合法 | 将含氮有机物(如尿素或三聚氰胺)在高温下直接转化 | 操作简便,成本低,效率高 | 高温反应造成结构密集化 | 大规模工业生产、光催化剂制备 |
表1 g-C3N4的主要制备方法比较
| 制备方法 | 方法介绍 | 优点 | 缺点 | 主要应用场景 |
|---|---|---|---|---|
| 水热合成[ | 在封闭系统中使用水作溶剂,加热和高压合成g-C3N4 | 条件温和,易控制 | 时间较长,对设备要求高 | 实验室小批量制备 |
| 化学气相沉积[ | 通过分解气态前体高温下在基板上沉积g-C3N4 | 可控性高,纯度高 | 成本高,设备复杂 | 高端应用如半导体行业 |
| 等离子体溅射反应沉积[ | 使用等离子体技术将g-C3N4的靶材料溅射到基板上 | 膜质均匀,结构紧凑 | 能耗高,设备成本高 | 用于制备薄膜和涂层 |
| 热聚合法 | 将含氮有机物(如尿素或三聚氰胺)在高温下直接转化 | 操作简便,成本低,效率高 | 高温反应造成结构密集化 | 大规模工业生产、光催化剂制备 |
| 结构优化 | 方法介绍 | 优化方法 | 优点 | 缺点 |
|---|---|---|---|---|
| 剥离处理法 | 使用物理或化学手段将g-C3N4从多层结构剥离成单层纳米片 | 热氧化蚀刻 | 简单,成本低;可在室温下操作,适用于大规模生产;通过质子化和层间膨胀简化剥离过程 | 会引入缺陷,产品收率低;需要适当的溶剂和超声设备;对化学品和处理条件要求高 |
| 超声辅助液体剥离 | ||||
| 化学剥离 | ||||
| 模板辅助合成法 | 依赖于模板来控制g-C3N4的二维结构,从而构建特定形态的纳米片 | 硬模板法 | 精确控制纳米片的形状和尺寸;环保,避免使用有害化学品 | 需要使用有害化学品;无法精确控制结构 |
| 软模板法 |
表2 g-C3N4结构优化的主要方法比较
| 结构优化 | 方法介绍 | 优化方法 | 优点 | 缺点 |
|---|---|---|---|---|
| 剥离处理法 | 使用物理或化学手段将g-C3N4从多层结构剥离成单层纳米片 | 热氧化蚀刻 | 简单,成本低;可在室温下操作,适用于大规模生产;通过质子化和层间膨胀简化剥离过程 | 会引入缺陷,产品收率低;需要适当的溶剂和超声设备;对化学品和处理条件要求高 |
| 超声辅助液体剥离 | ||||
| 化学剥离 | ||||
| 模板辅助合成法 | 依赖于模板来控制g-C3N4的二维结构,从而构建特定形态的纳米片 | 硬模板法 | 精确控制纳米片的形状和尺寸;环保,避免使用有害化学品 | 需要使用有害化学品;无法精确控制结构 |
| 软模板法 |
| 序号 | 光催化剂 | 支撑材料 | 合成方法 | 染料污染物 | 降解性能 |
|---|---|---|---|---|---|
| 1 | g-C3N4 | Al2O3[ | 真空过滤法 | MB,5mg/L | 120min内99% |
| 2 | g-C3N4 | PAN[ | 真空过滤法 | MB,20mg/L | 120min内99% |
| 3 | g-C3N4 | PMMA[ | 真空过滤法 | RhB,10mg/L | 180min内83% |
| 4 | g-C3N4 | PVDF[ | 真空过滤法 | RhB,10mg/L | 250min内84.24% |
| 5 | Fe-POMs/g-C3N4 | PC[ | 真空过滤法 | MB,10mg/L | 80min内98.6% |
| 6 | GNPs/g-C3N4/GO | PC[ | 真空过滤法 | R6G,4.8mg/L | 120min内100% |
| 7 | g-C3N4 | 碳纤维布[ | 热凝聚法 | RhB,10mg/L | 30min内98% |
| 8 | g-C3N4 | Cu[ | 热凝聚法 | MB,3.2mg/L | 120min内85% |
| 9 | g-C3N4/TiO2 | 玻璃[ | 浸涂法 | RhB,5mg/L | 180min内31.2% |
| 10 | g-C3N4/rGO | 泡沫镍[ | 浸涂法 | MO,5mg/L | 180min内97% |
| 11 | GCNS | CCP[ | 化学气相沉积法 | MB,10mg/L | 180min内60% |
| 12 | CNTs/MCU-C3N4/GO | PVDF[ | 层层自组装法 | RhB,10mg/L | 100min内98.31% |
表3 用于去除染料的g-C3N4负载膜的研究进展
| 序号 | 光催化剂 | 支撑材料 | 合成方法 | 染料污染物 | 降解性能 |
|---|---|---|---|---|---|
| 1 | g-C3N4 | Al2O3[ | 真空过滤法 | MB,5mg/L | 120min内99% |
| 2 | g-C3N4 | PAN[ | 真空过滤法 | MB,20mg/L | 120min内99% |
| 3 | g-C3N4 | PMMA[ | 真空过滤法 | RhB,10mg/L | 180min内83% |
| 4 | g-C3N4 | PVDF[ | 真空过滤法 | RhB,10mg/L | 250min内84.24% |
| 5 | Fe-POMs/g-C3N4 | PC[ | 真空过滤法 | MB,10mg/L | 80min内98.6% |
| 6 | GNPs/g-C3N4/GO | PC[ | 真空过滤法 | R6G,4.8mg/L | 120min内100% |
| 7 | g-C3N4 | 碳纤维布[ | 热凝聚法 | RhB,10mg/L | 30min内98% |
| 8 | g-C3N4 | Cu[ | 热凝聚法 | MB,3.2mg/L | 120min内85% |
| 9 | g-C3N4/TiO2 | 玻璃[ | 浸涂法 | RhB,5mg/L | 180min内31.2% |
| 10 | g-C3N4/rGO | 泡沫镍[ | 浸涂法 | MO,5mg/L | 180min内97% |
| 11 | GCNS | CCP[ | 化学气相沉积法 | MB,10mg/L | 180min内60% |
| 12 | CNTs/MCU-C3N4/GO | PVDF[ | 层层自组装法 | RhB,10mg/L | 100min内98.31% |
| 序号 | 光催化剂 | 聚合物基体 | 合成方法 | 染料污染物 | 降解性能 |
|---|---|---|---|---|---|
| 1 | PS/g-C3N4/rGO/TiO2 | PS[ | 溶液混合法 | RTB,10mg/L | 90min内99% |
| 2 | CN/CA | CA[ | 溶液混合法 | RhB,10mg/L | 150min内99% |
| 3 | Ag/g-C3N4/PES | PES[ | 溶液混合法 | MO,10mg/L | 100min内77% |
| 4 | CA/β-CD/g-C3N4 | CA[ | 溶液混合法 | MB,6.4mg/L | 60min内99% |
| 5 | Ag/g-C3N4/Nafion | Nafion[ | 溶液混合法 | RhB,10mg/L | 150min内86% |
| 6 | Ag3PO4/g-C3N4/PVDF | PVDF[ | 溶液混合法 | RhB,10mg/L | 100min内97% |
| 7 | g-C3N4/TiO2/PAA/PTFE | PTFE[ | 等离子体增强法 | MB,10mg/L | 100min内78% |
| 8 | g-C3N4/TNA | TNA[ | 恒电位阳极氧化法 | RhB,3mg/L | 100min内60% |
| 9 | Fe3O4/g-C3N4/PVDF | PVDF[ | 磁感应冷冻铸造法 | RhB,10mg/L | 150min内97.8% |
| 10 | CS/PAN@FeOOH/g-C3N4 | PAN[ | 静电纺丝法 | MB,50mg/L | 100min内68.49% |
表4 用于去除染料的g-C3N4杂化膜的研究进展
| 序号 | 光催化剂 | 聚合物基体 | 合成方法 | 染料污染物 | 降解性能 |
|---|---|---|---|---|---|
| 1 | PS/g-C3N4/rGO/TiO2 | PS[ | 溶液混合法 | RTB,10mg/L | 90min内99% |
| 2 | CN/CA | CA[ | 溶液混合法 | RhB,10mg/L | 150min内99% |
| 3 | Ag/g-C3N4/PES | PES[ | 溶液混合法 | MO,10mg/L | 100min内77% |
| 4 | CA/β-CD/g-C3N4 | CA[ | 溶液混合法 | MB,6.4mg/L | 60min内99% |
| 5 | Ag/g-C3N4/Nafion | Nafion[ | 溶液混合法 | RhB,10mg/L | 150min内86% |
| 6 | Ag3PO4/g-C3N4/PVDF | PVDF[ | 溶液混合法 | RhB,10mg/L | 100min内97% |
| 7 | g-C3N4/TiO2/PAA/PTFE | PTFE[ | 等离子体增强法 | MB,10mg/L | 100min内78% |
| 8 | g-C3N4/TNA | TNA[ | 恒电位阳极氧化法 | RhB,3mg/L | 100min内60% |
| 9 | Fe3O4/g-C3N4/PVDF | PVDF[ | 磁感应冷冻铸造法 | RhB,10mg/L | 150min内97.8% |
| 10 | CS/PAN@FeOOH/g-C3N4 | PAN[ | 静电纺丝法 | MB,50mg/L | 100min内68.49% |
| [1] | LOTFI Safia, OUARDI Mohamed EL, AHSAINE Hassan Ait, et al. Recent progress on the synthesis, morphology and photocatalytic dye degradation of BiVO4 photocatalysts: A review[J]. Catalysis Reviews, 2024, 66(1): 214-258. |
| [2] | XIE Kangle, FANG Junfei, LI Le, et al. Progress of graphite carbon nitride with different dimensions in the photocatalytic degradation of dyes: A review[J]. Journal of Alloys and Compounds, 2022, 901: 163589. |
| [3] | NASROLLAHI Nazanin, GHALAMCHI Leila, VATANPOUR Vahid, et al. Photocatalytic-membrane technology: A critical review for membrane fouling mitigation[J]. Journal of Industrial and Engineering Chemistry, 2021, 93: 101-116. |
| [4] | ZHANG Huiru, WAN Yinhua, LUO Jianquan, et al. Drawing on membrane photocatalysis for fouling mitigation[J]. ACS Applied Materials & Interfaces, 2021, 13(13): 14844-14865. |
| [5] | TRAN Duc-Trung, Jean-Pierre MÉRICQ, MENDRET Julie, et al. Influence of preparation temperature on the properties and performance of composite PVDF-TiO2 membranes[J]. Membranes, 2021, 11(11): 876. |
| [6] | SHAWKET Ali N, Nisreen S ALI, ALSALHY Qusay F. Systematic study for a comprehensive evaluation of PPSU modified with ZnO for ultrafiltration membranes: Morphological characteristics and performance[J]. Desalination and Water Treatment, 2023, 284: 27-38. |
| [7] | WU Tiantian, CAO Jinxing, JIANG Xiaohong. In situ synthesis of oxygen-deficient Cu2O on eggshell membranes and study of its efficient photocatalytic activity[J]. Applied Surface Science, 2023, 612: 155752. |
| [8] | MAHMOUDI Farzaneh, SARAVANAKUMAR Karunamoorthy, MAHESKUMAR Velusamy, et al. Application of perovskite oxides and their composites for degrading organic pollutants from wastewater using advanced oxidation processes: Review of the recent progress[J]. Journal of Hazardous Materials, 2022, 436: 129074. |
| [9] | DAI Yexin, LIU Miao, LI Jingyu, et al. Graphene-based membranes for water desalination: A literature review and content analysis[J]. Polymers, 2022, 14(19): 4246. |
| [10] | QAMAR Muhammad Azam, JAVED Mohsin, SHAHID Sammia, et al. Synthesis and applications of graphitic carbon nitride (g-C3N4) based membranes for wastewater treatment: A critical review[J]. Heliyon, 2023, 9(1): e12685. |
| [11] | KROKE Edwin, SCHWARZ Marcus, Elisabeth HORATH-BORDON, et al. Tri-s-triazine derivatives. Part Ⅰ. From trichloro-tri-s-triazine to graphitic C3N4 structures[J]. New Journal of Chemistry, 2002, 26(5): 508-512. |
| [12] | ZHANG Yuanjian, MORI Toshiyuki, NIU Li, et al. Non-covalent doping of graphitic carbon nitride polymer with graphene: Controlled electronic structure and enhanced optoelectronic conversion[J]. Energy & Environmental Science, 2011, 4(11): 4517-4521. |
| [13] | WANG Yang, GAO Baoyu, YUE Qinyan, et al. Graphitic carbon nitride (g-C3N4)-based membranes for advanced separation[J]. Journal of Materials Chemistry A, 2020, 8(37): 19133-19155. |
| [14] | Wee-Jun ONG, TAN Lling-Lling, Yun Hau NG, et al. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability?[J]. Chemical Reviews, 2016, 116(12): 7159-7329. |
| [15] | CAO Shaowen, Jingxiang LOW, YU Jiaguo, et al. Polymeric photocatalysts based on graphitic carbon nitride[J]. Advanced Materials, 2015, 27(13): 2150-2176. |
| [16] | WANG Xinchen, BLECHERT Siegfried, ANTONIETTI Markus. Polymeric graphitic carbon nitride for heterogeneous photocatalysis[J]. ACS Catalysis, 2012, 2(8): 1596-1606. |
| [17] | CUI Yanhua, YANG Lili, ZHENG Jian, et al. Synergistic interaction of Z-scheme 2D/3D g-C3N4/BiOI heterojunction and porous PVDF membrane for greatly improving the photodegradation efficiency of tetracycline[J]. Journal of Colloid and Interface Science, 2021, 586: 335-348. |
| [18] | YU Kun, HU Xiaofeng, YAO Kaiyuan, et al. Preparation of an ultrathin 2D/2D rGO/g-C3N4 nanocomposite with enhanced visible-light-driven photocatalytic performance[J]. RSC Advances, 2017, 7(58): 36793-36799. |
| [19] | JIA Changchao, YANG Lijun, ZHANG Yizhu, et al. Graphitic carbon nitride films: Emerging paradigm for versatile applications[J]. ACS Applied Materials & Interfaces, 2020, 12(48): 53571-53591. |
| [20] | WANG Xinchen, MAEDA Kazuhiko, THOMAS Arne, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nature Materials, 2009, 8(1): 76-80. |
| [21] | DONG Haoran, ZENG Guangming, TANG Lin, et al. An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures[J]. Water Research, 2015, 79: 128-146. |
| [22] | MURUGESAN Pramila, MOSES J A, ANANDHARAMAKRISHNAN C. Photocatalytic disinfection efficiency of 2D structure graphitic carbon nitride-based nanocomposites: A review[J]. Journal of Materials Science, 2019, 54(19): 12206-12235. |
| [23] | MISHRA Amit, MEHTA Akansha, BASU Soumen, et al. Graphitic carbon nitride (g-C3N4)-based metal-free photocatalysts for water splitting: A review[J]. Carbon, 2019, 149: 693-721. |
| [24] | ZHANG Chi, LI Yi, SHUAI Danmeng, et al. Graphitic carbon nitride (g-C3N4)-based photocatalysts for water disinfection and microbial control: A review[J]. Chemosphere, 2019, 214: 462-479. |
| [25] | CUI Yanjuan, TANG Yubin, WANG Xinchen. Template-free synthesis of graphitic carbon nitride hollow spheres for photocatalytic degradation of organic pollutants[J]. Materials Letters, 2015, 161: 197-200. |
| [26] | WANG Yangang, WANG Fei, ZUO Yuanhui, et al. Simple synthesis of ordered cubic mesoporous graphitic carbon nitride by chemical vapor deposition method using melamine[J]. Materials Letters, 2014, 136: 271-273. |
| [27] | XU Zhuoqi, GUAN Leilei, LI Hui, et al. Structure transition mechanism of single-crystalline silicon, g-C3N4, and diamond nanocone arrays synthesized by plasma sputtering reaction deposition[J]. The Journal of Physical Chemistry C, 2015, 119(52): 29062-29070. |
| [28] | LI Qiaoqiao, ZHAO Wenli, ZHAI Zicheng, et al. 2D/2D Bi2MoO6/g-C3N4 S-scheme heterojunction photocatalyst with enhanced visible-light activity by Au loading[J]. Journal of Materials Science & Technology, 2020, 56: 216-226. |
| [29] | XU Fan, MO Zhao, YAN Jia, et al. Nitrogen-rich graphitic carbon nitride nanotubes for photocatalytic hydrogen evolution with simultaneous contaminant degradation[J]. Journal of Colloid and Interface Science, 2020, 560: 555-564. |
| [30] | BAI Xiaojuan, YAN Shicheng, WANG Jiajia, et al. A simple and efficient strategy for the synthesis of a chemically tailored g-C3N4 material[J]. Journal of Materials Chemistry A, 2014, 2(41): 17521-17529. |
| [31] | LIU Jian, HUANG Jianhui, ZHOU Han, et al. Uniform graphitic carbon nitride nanorod for efficient photocatalytic hydrogen evolution and sustained photoenzymatic catalysis[J]. ACS Applied Materials & Interfaces, 2014, 6(11): 8434-8440. |
| [32] | DONG Fan, ZHAO Zaiwang, XIONG Ting, et al. In situ construction of g-C3N4/g-C3N4 metal-free heterojunction for enhanced visible-light photocatalysis[J]. ACS Applied Materials & Interfaces, 2013, 5(21): 11392-11401. |
| [33] | QAMAR Muhammad Azam, JAVED Mohsin, SHAHID Sammia, et al. Fabrication of g-C3N4/transition metal (Fe, Co, Ni, Mn and Cr)-doped ZnO ternary composites: Excellent visible light active photocatalysts for the degradation of organic pollutants from wastewater[J]. Materials Research Bulletin, 2022, 147: 111630. |
| [34] | SAKTHIVEL Thangavel, RAMACHANDRAN Rajendran, KIRUBAKARAN Kiranpreethi. Photocatalytic properties of copper-two dimensional graphitic carbon nitride hybrid film synthesized by pyrolysis method[J]. Journal of Environmental Chemical Engineering, 2018, 6(2): 2636-2642. |
| [35] | LEONG Sookwan, RAZMJOU Amir, WANG Kun, et al. TiO2 based photocatalytic membranes: A review[J]. Journal of Membrane Science, 2014, 472: 167-184. |
| [36] | WU Dandan, HU Shaonian, XUE Hongyun, et al. Protonation and microwave-assisted heating induced excitation of lone-pair electrons in graphitic carbon nitride for increased photocatalytic hydrogen generation[J]. Journal of Materials Chemistry A, 2019, 7(35): 20223-20228. |
| [37] | HAN Xiaoxue, YUAN Aili, YAO Chengkai, et al. Synergistic effects of phosphorous/sulfur co-doping and morphological regulation for enhanced photocatalytic performance of graphitic carbon nitride nanosheets[J]. Journal of Materials Science, 2019, 54(2): 1593-1605. |
| [38] | ZHANG Suyun, GAO Lina, FAN Dongliang, et al. Synthesis of boron-doped g-C3N4 with enhanced electro-catalytic activity and stability[J]. Chemical Physics Letters, 2017, 672: 26-30. |
| [39] | ZHENG Dandan, PANG Chenyang, LIU Yuxing, et al. Shell-engineering of hollow g-C3N4 nanospheres via copolymerization for photocatalytic hydrogen evolution[J]. Chemical Communications, 2015, 51(47): 9706-9709. |
| [40] | LIU Yanan, SU Yanlei, GUAN Jingyuan, et al. 2D heterostructure membranes with sunlight-driven self-cleaning ability for highly efficient oil-water separation[J]. Advanced Functional Materials, 2018, 28(13): 1706545. |
| [41] | SHEN Xiaofeng, ZHANG Yan, DUOERKUN Gumila, et al. Vis-NIR light-responsive photocatalytic activity of C3N4-Ag-Ag2O heterojunction-decorated carbon-fiber cloth as efficient filter-membrane-shaped photocatalyst[J]. ChemCatChem, 2019, 11(4): 1362-1373. |
| [42] | XUE Jinjuan, MA Shuaishuai, ZHOU Yuming, et al. Facile photochemical synthesis of Au/Pt/g-C3N4 with plasmon-enhanced photocatalytic activity for antibiotic degradation[J]. ACS Applied Materials & Interfaces, 2015, 7(18): 9630-9637. |
| [43] | HU Chechia, WANG Maosheng, CHEN Chien-Hua, et al. Phosphorus-doped g-C3N4 integrated photocatalytic membrane reactor for wastewater treatment[J]. Journal of Membrane Science, 2019, 580: 1-11. |
| [44] | JIANG Longbo, YUAN Xingzhong, ZENG Guangming, et al. Phosphorus- and sulfur-codoped g-C3N4: Facile preparation, mechanism insight, and application as efficient photocatalyst for tetracycline and methyl orange degradation under visible light irradiation[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(7): 5831-5841. |
| [45] | RAN Jin, PAN Ting, WU Yuying, et al. Endowing g-C3N4 membranes with superior permeability and stability by using acid spacers[J]. Angewandte Chemie International Edition, 2019, 58(46): 16463-16468. |
| [46] | OUYANG Liping, ZHAO Yaochao, JIN Guodong, et al. Influence of sulfur content on bone formation and antibacterial ability of sulfonated PEEK[J]. Biomaterials, 2016, 83: 115-126. |
| [47] | KUMRU Baris, CRUZ Daniel, HEIL Tobias, et al. Electrostatic stabilization of carbon nitride colloids in organic solvents enables stable dispersions and transparent homogeneous CN films for optoelectronics[J]. Journal of the American Chemical Society, 2018, 140(50): 17532-17537. |
| [48] | YANG Zhao, ZHANG Yuanjian, SCHNEPP Zoe. Soft and hard templating of graphitic carbon nitride[J]. Journal of Materials Chemistry A, 2015, 3(27): 14081-14092. |
| [49] | LI Xinhao, WANG Xinchen, ANTONIETTI Markus. Mesoporous g-C3N4 nanorods as multifunctional supports of ultrafine metal nanoparticles: Hydrogen generation from water and reduction of nitrophenol with tandem catalysis in one step[J]. Chemical Science, 2012, 3(6): 2170-2174. |
| [50] | ZHANG Xiaodong, WANG Hongxia, WANG Hui, et al. Single-layered graphitic-C3N4 quantum dots for two-photon fluorescence imaging of cellular nucleus[J]. Advanced Materials, 2014, 26(26): 4438-4443. |
| [51] | SUN Shaodong, LI Jia, CUI Jie, et al. Constructing oxygen-doped g-C3N4 nanosheets with an enlarged conductive band edge for enhanced visible-light-driven hydrogen evolution[J]. Inorganic Chemistry Frontiers, 2018, 5(7): 1721-1727. |
| [52] | TIAN Na, ZHANG Yihe, LI Xiaowei, et al. Precursor-reforming protocol to 3D mesoporous g-C3N4 established by ultrathin self-doped nanosheets for superior hydrogen evolution[J]. Nano Energy, 2017, 38: 72-81. |
| [53] | ZHANG Jinshui, CHEN Yan, WANG Xinchen. Two-dimensional covalent carbon nitride nanosheets: Synthesis, functionalization, and applications[J]. Energy & Environmental Science, 2015, 8(11): 3092-3108. |
| [54] | NIU Ping, ZHANG Lili, LIU Gang, et al. Graphene-like carbon nitride nanosheets for improved photocatalytic activities[J]. Advanced Functional Materials, 2012, 22(22): 4763-4770. |
| [55] | ZHANG Xiaodong, XIE Xiao, WANG Hui, et al. Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging[J]. Journal of the American Chemical Society, 2013, 135(1): 18-21. |
| [56] | XU Jing, ZHANG Liwu, SHI Rui, et al. Chemical exfoliation of graphitic carbon nitride for efficient heterogeneous photocatalysis[J]. Journal of Materials Chemistry A, 2013, 1(46): 14766-14772. |
| [57] | LI Gengnan, LI Liang, YUAN Haiyang, et al. Alkali-assisted mild aqueous exfoliation for single-layered and structure-preserved graphitic carbon nitride nanosheets[J]. Journal of Colloid and Interface Science, 2017, 495: 19-26. |
| [58] | ZHANG Jinshui, ZHANG Mingwen, LIN Lihua, et al. Sol processing of conjugated carbon nitride powders for thin-film fabrication[J]. Angewandte Chemie International Edition, 2015, 54(21): 6297-6301. |
| [59] | ZHANG Xiaoyu, WU Xinyu, ZHANG Jian, et al. Recent progress in graphitic carbon nitride-based materials for antibacterial applications: Synthesis, mechanistic insights, and utilization[J]. Microstructures, 2024, 4(2): 2024017. |
| [60] | YANG Shubin, FENG Xinliang, WANG Xinchen, et al. Graphene-based carbon nitride nanosheets as efficient metal-free electrocatalysts for oxygen reduction reactions[J]. Angewandte Chemie International Edition, 2011, 50(23): 5339-5343. |
| [61] | LU Xiuli, XU Kun, CHEN Pengzuo, et al. Facile one step method realizing scalable production of g-C3N4 nanosheets and study of their photocatalytic H2 evolution activity[J]. Journal of Materials Chemistry A, 2014, 2(44): 18924-18928. |
| [62] | DING Xing, XIAO Dong, JI Lei, et al. Simple fabrication of Fe3O4/C/g-C3N4 two-dimensional composite by hydrothermal carbonization approach with enhanced photocatalytic performance under visible light[J]. Catalysis Science & Technology, 2018, 8(14): 3484-3492. |
| [63] | GAO Xiang, LI Yiming, YANG Xiaolong, et al. Highly permeable and antifouling reverse osmosis membranes with acidified graphitic carbon nitride nanosheets as nanofillers[J]. Journal of Materials Chemistry A, 2017, 5(37): 19875-19883. |
| [64] | WANG Liqun, TONG Yueyu, FENG Jianmin, et al. G-C3N4-based films: A rising star for photoelectrochemical water splitting[J]. Sustainable Materials and Technologies, 2019, 19: e00089. |
| [65] | XIAO Kai, GIUSTO Paolo, WEN Liping, et al. Nanofluidic ion transport and energy conversion through ultrathin free-standing polymeric carbon nitride membranes[J]. Angewandte Chemie International Edition, 2018, 57(32): 10123-10126. |
| [66] | LIU Jian, WANG Hongqiang, CHEN Zupeng, et al. Microcontact-printing-assisted access of graphitic carbon nitride films with favorable textures toward photoelectrochemical application[J]. Advanced Materials, 2015, 27(4): 712-718. |
| [67] | SHEN Xiaofeng, ZHANG Yan, SHI Zhun, et al. Construction of C3N4/CdS nanojunctions on carbon fiber cloth as a filter-membrane-shaped photocatalyst for degrading flowing wastewater[J]. Journal of Alloys and Compounds, 2021, 851: 156743. |
| [68] | LI Rui, REN Yuling, ZHAO Peixia, et al. Graphitic carbon nitride (g-C3N4) nanosheets functionalized composite membrane with self-cleaning and antibacterial performance[J]. Journal of Hazardous Materials, 2019, 365: 606-614. |
| [69] | WANG Siyu, DAI Xiaohui, LI Fei, et al. Floating and stable g-C3N4/PMMA/CFs porous film: An automatic photocatalytic reaction platform for dye water treatment under solar light[J]. Journal of Porous Materials, 2020, 27(2): 465-472. |
| [70] | HUANG Jinhui, HU Jianglin, SHI Yahui, et al. Evaluation of self-cleaning and photocatalytic properties of modified g-C3N4 based PVDF membranes driven by visible light[J]. Journal of Colloid and Interface Science, 2019, 541: 356-366. |
| [71] | LAN Huachun, WANG Feng, LAN Mei, et al. Hydrogen-bond-mediated self-assembly of carbon-nitride-based photo-Fenton-like membranes for wastewater treatment[J]. Environmental Science & Technology, 2019, 53(12): 6981-6988. |
| [72] | QU Lulu, WANG Na, XU Hui, et al. Gold nanoparticles and g-C3N4-intercalated graphene oxide membrane for recyclable surface enhanced Raman scattering[J]. Advanced Functional Materials, 2017, 27(31): 1701714. |
| [73] | SHEN Xiaofeng, ZHANG Tianya, XU Pengfei, et al. Growth of C3N4 nanosheets on carbon-fiber cloth as flexible and macroscale filter-membrane-shaped photocatalyst for degrading the flowing wastewater[J]. Applied Catalysis B: Environmental, 2017, 219: 425-431. |
| [74] | ZHAO Wan, YANG Xiuru, LIU Chunxi, et al. Facile construction of all-solid-state Z-scheme g-C3N4/TiO2 thin film for the efficient visible-light degradation of organic pollutant[J]. Nanomaterials, 2020, 10(4): 600. |
| [75] | WANG Xiuyuan, WANG Huihu, YU Kun, et al. Immobilization of 2D/2D structured g-C3N4 nanosheet/reduced graphene oxide hybrids on 3D nickel foam and its photocatalytic performance[J]. Materials Research Bulletin, 2018, 97: 306-313. |
| [76] | DOU Tianwei, ZANG Linlin, ZHANG Yanhong, et al. Hybrid g-C3N4 nanosheet/carbon paper membranes for the photocatalytic degradation of methylene blue[J]. Materials Letters, 2019, 244: 151-154. |
| [77] | SHI Yahui, WAN Dongjin, HUANG Jinhui, et al. Stable LBL self-assembly coating porous membrane with 3D heterostructure for enhanced water treatment under visible light irradiation[J]. Chemosphere, 2020, 252: 126581. |
| [78] | Suman DAS, MAHALINGAM Hari. Exploring the synergistic interactions of TiO2, rGO, and g-C3N4 catalyst admixtures in a polystyrene nanocomposite photocatalytic film for wastewater treatment: Unary, binary and ternary systems[J]. Journal of Environmental Chemical Engineering, 2019, 7(4): 103246. |
| [79] | WANG Siyu, LI Fei, DAI Xiaohui, et al. Highly flexible and stable carbon nitride/cellulose acetate porous films with enhanced photocatalytic activity for contaminants removal from wastewater[J]. Journal of Hazardous Materials, 2020, 384: 121417. |
| [80] | ZHANG Manying, LIU Ziya, GAO Yong, et al. Ag modified g-C3N4 composite entrapped PES UF membrane with visible-light-driven photocatalytic antifouling performance[J]. RSC Advances, 2017, 7(68): 42919-42928. |
| [81] | LIU Zhongguo, XU Miao, YANG Ze, et al. Efficient removal of organic dyes from water by β-cyclodextrin functionalized graphite carbon nitride composite[J]. ChemistrySelect, 2017, 2(5): 1753-1758. |
| [82] | ZHANG Huoli, CAO Jianliang, KANG Peng, et al. Ag nanocrystals decorated g-C3N4/Nafion hybrid membranes: One-step synthesis and photocatalytic performance[J]. Materials Letters, 2018, 213: 218-221. |
| [83] | CUI Yanhua, YANG Lili, MENG Minjia, et al. Facile preparation of antifouling g-C3N4/Ag3PO4 nanocomposite photocatalytic polyvinylidene fluoride membranes for effective removal of rhodamine B[J]. Korean Journal of Chemical Engineering, 2019, 36(2): 236-247. |
| [84] | CHI Lina, QIAN Yingjia, GUO Junqiu, et al. Novel g-C3N4/TiO2/PAA/PTFE ultrafiltration membrane enabling enhanced antifouling and exceptional visible-light photocatalytic self-cleaning[J]. Catalysis Today, 2019, 335: 527-537. |
| [85] | ZHANG Qi, QUAN Xie, WANG Hua, et al. Constructing a visible-light-driven photocatalytic membrane by g-C3N4 quantum dots and TiO2 nanotube array for enhanced water treatment[J]. Scientific Reports, 2017, 7(1): 3128. |
| [86] | LI Binrong, MENG Minjia, CUI Yanhua, et al. Changing conventional blending photocatalytic membranes (BPMs): Focus on improving photocatalytic performance of Fe3O4/g-C3N4/PVDF membranes through magnetically induced freezing casting method[J]. Chemical Engineering Journal, 2019, 365: 405-414. |
| [87] | ZHENG Shengyang, CHEN Haisheng, TONG Xin, et al. Integration of a photo-Fenton reaction and a membrane filtration using CS/PAN@FeOOH/g-C3N4 electrospun nanofibers: Synthesis, characterization, self-cleaning performance and mechanism[J]. Applied Catalysis B: Environmental, 2021, 281: 119519. |
| [1] | 王文君, 刘瑞鑫, 王军, 张庆磊, 侯立安. 浅析二氧化钛材料可见光降解室内VOCs的研究进展[J]. 化工进展, 2025, 44(9): 5351-5362. |
| [2] | 王帅, 钱相臣, 章雷其, 吴启亮, 刘敏. 质子交换膜燃料电池和电解槽关键组件衰减机理[J]. 化工进展, 2025, 44(7): 3804-3815. |
| [3] | 周美梅, 何家慧, 向婉婷, 尚佳欣, 魏心语, 孙蜜蜜, 邹伟, 罗平平. 电纺PVA/SiO2纳米纤维负载A-TiO2/BiOBr增强可见光催化活性[J]. 化工进展, 2025, 44(6): 3084-3092. |
| [4] | 肖立, 岐少鹏, 周昆, 薄雅楠, 王秀林, 姚辉超, 戴若云, 隋依言. 缺陷态TiO2-x -Au团簇复合结构设计实现高效可见光驱动CO2还原[J]. 化工进展, 2025, 44(6): 3062-3071. |
| [5] | 张佩, 高莉宁, 丁思晴, 李立, 祝锡爇, 何锐. g-C3N4/TiO2异质结光催化剂的制备及其对NO的降解性能[J]. 化工进展, 2025, 44(4): 2045-2056. |
| [6] | 张绎如, 韩东梅, 马伟芳. 铁基复合卤氧化铋磁性材料强化可见光催化处理难降解有机废水研究进展[J]. 化工进展, 2025, 44(4): 2258-2273. |
| [7] | 张馨儿, 裴刘军, 周雨蝶, 靳凯丽, 王际平. 基于TiO2的光催化剂利用太阳能裂解水制氢研究进展[J]. 化工进展, 2025, 44(3): 1298-1308. |
| [8] | 马晓宇, 张岩, 周阿武, 李涵冰, 杨飞华, 李建荣. MOF-on-MOF复合材料制备与光催化性能的研究进展[J]. 化工进展, 2025, 44(3): 1417-1431. |
| [9] | 方碧瑶, 邱健豪, 李伊馨, 姚建峰. 木质纤维素基生物质炭改性半导体及其光催化应用[J]. 化工进展, 2025, 44(2): 957-970. |
| [10] | 赵文武, 刘进强, 周海静, 刘剑, 郝斌. 层状Bi2WO6的合成及氧空位在光降解四环素中的作用机理[J]. 化工进展, 2025, 44(10): 5859-5870. |
| [11] | 蒋莉萍, 张雪乔, 钟晓娟, 魏于凡, 肖利, 郭旭晶, 羊依金. 钒渣酸浸提铁工艺优化及复合光催化剂的制备[J]. 化工进展, 2025, 44(1): 538-548. |
| [12] | 刘炜, 张敏, 朱照琪, 王毅, 梁卫东, 孙寒雪. 黑色二氧化钛纳米材料的构筑及其应用现状[J]. 化工进展, 2025, 44(1): 341-353. |
| [13] | 毛华恺, 余洋, 张悦, 夏广坤, 吴赟韬, 楼乐瑶, 牛文娟, 刘念. 生物炭光催化氧化-吸附协同降解亚硝酸盐[J]. 化工进展, 2024, 43(8): 4757-4765. |
| [14] | 吴泽亮, 管琦卉, 陈世霞, 王珺. 炔烃选择性加氢制烯烃反应的研究进展[J]. 化工进展, 2024, 43(8): 4366-4381. |
| [15] | 付涛, 李立, 高莉宁, 朱富维, 曹炜烨, 陈华鑫. 水泥基硼掺杂石墨相氮化碳降解NO[J]. 化工进展, 2024, 43(8): 4403-4410. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |