化工进展 ›› 2025, Vol. 44 ›› Issue (9): 5255-5264.DOI: 10.16085/j.issn.1000-6613.2024-1079
• 精细化工 • 上一篇
刘见华1,2,3(
), 袁振军2,4, 常欣2,4, 赵喜哲2,4, 万烨1,2,3(
), 余学功1(
), 杨德仁1
收稿日期:2024-07-05
修回日期:2024-08-02
出版日期:2025-09-25
发布日期:2025-09-30
通讯作者:
万烨,余学功
作者简介:刘见华(1987—),男,博士研究生,研究方向为集成电路用硅基前体。E-mail:liujh@sinosico.com。
基金资助:
LIU Jianhua1,2,3(
), YUAN Zhenjun2,4, CHANG Xin2,4, ZHAO Xizhe2,4, WAN Ye1,2,3(
), YU Xuegong1(
), YANG Deren1
Received:2024-07-05
Revised:2024-08-02
Online:2025-09-25
Published:2025-09-30
Contact:
WAN Ye, YU Xuegong
摘要:
随着集成电路制造技术的发展,特别是进入28nm/14nm/7nm等先进制程,对晶体管器件、工艺和材料提出了新的要求。硅基前体材料因其高纯度和特定性能参数,在晶圆制造的外延工艺、光刻工艺、化学气相沉积(CVD)和原子层沉积(ALD)中扮演着关键角色。文章重点分析和讨论了几种主要的硅基前体材料在先进集成电路制造中的应用现状、研究进展以及合成和提纯工艺技术,包括五氯乙硅烷(PCDS)、新戊硅烷(NPS)、二甲基二甲氧基硅烷(DMDMOS)、二乙氧基甲基硅烷(DEMS)、二异丙胺基硅烷(DIPAS)、六甲基二硅氮烷(HMDS)、正硅酸乙酯(TEOS)、一氯硅烷(MCS)、三甲硅烷基胺(TSA)和双(叔丁氨基)硅烷(BTBAS)等。
中图分类号:
刘见华, 袁振军, 常欣, 赵喜哲, 万烨, 余学功, 杨德仁. 硅基前体在先进集成电路制造中的应用与技术进展[J]. 化工进展, 2025, 44(9): 5255-5264.
LIU Jianhua, YUAN Zhenjun, CHANG Xin, ZHAO Xizhe, WAN Ye, YU Xuegong, YANG Deren. Application and technological progress of silicon-based precursors in advanced integrated circuit manufacturing[J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5255-5264.
| [1] | WAN Ye, LIU Jianhua, MAO Qiuyun, et al. Exploration of photocatalytic chlorination combined simplified distillation to produce electronic grade high-purity trichlorosilane via microchannel reactor experiments, multiphase-flow simulation, ReaxFF MD, and DFT[J]. Chemical Engineering Journal, 2022, 450: 138020. |
| [2] | ZHAO Xiong, HOU Zhengkun, GUO Shuhu, et al. Photocatalytic reactive distillation—A novel process intensification approach for purification of electronic-grade silicon tetrachloride[J]. Chemical Engineering Journal, 2023, 475: 145947. |
| [3] | FARAZ Tahsin, VAN DRUNEN Maarten, KNOOPS Harm C M, et al. Atomic layer deposition of wet-etch resistant silicon nitride using di(sec-butylamino)silane and N2 plasma on planar and 3D substrate topographies[J]. ACS Applied Materials & Interfaces, 2017, 9(2): 1858-1869. |
| [4] | KING Sean W. Dielectric barrier, etch stop, and metal capping materials for state of the art and beyond metal interconnects[J]. ECS Journal of Solid State Science and Technology, 2014, 4(1): N3029-N3047. |
| [5] | JANG Woochool, JEON Heeyoung, KANG Chunho, et al. Temperature dependence of silicon nitride deposited by remote plasma atomic layer deposition[J]. Physica Status Solidi (A), 2014, 211(9): 2166-2171. |
| [6] | ROENIGK Karl F, JENSEN Klavs F. Low pressure CVD of silicon nitride[J]. Journal of the Electrochemical Society, 1987, 134(7): 1777-1785. |
| [7] | G-N PARSONS, J-H SOUK, BATEY J. Low hydrogen content stoichiometric silicon nitride films deposited by plasma-enhanced chemical vapor deposition[J]. Journal of Applied Physics, 1991, 70(3): 1553-1560. |
| [8] | KIM Harrison Sejoon, MENG Xin, KIM Si Joon, et al. Investigation of the physical properties of plasma enhanced atomic layer deposited silicon nitride as etch stopper[J]. ACS Applied Materials & Interfaces, 2018, 10(51): 44825-44833. |
| [9] | NAKAJIMA Anri, KHOSRU Quazi D M, YOSHIMOTO Takashi, et al. NH3-annealed atomic-layer-deposited silicon nitride as a high-k gate dielectric with high reliability[J]. Applied Physics Letters, 2002, 80(7): 1252-1254. |
| [10] | MIONE M A, VANDALON V, MAMELI A, et al. Atmospheric-pressure plasma-enhanced spatial ALD of SiO2 studied by gas-phase infrared and optical emission spectroscopy[J]. The Journal of Physical Chemistry C, Nanomaterials and Interfaces, 2021, 125(45): 24945-24957. |
| [11] | DINGEMANS Gijs, VAN HELVOIRT Cristian, VAN DE SANDEN M C M, et al. Plasma-assisted atomic layer deposition of low temperature SiO2 [J]. ECS Transactions, 2011, 35(4): 191-204. |
| [12] | KING Sean W. Plasma enhanced atomic layer deposition of SiN x :H and SiO2 [J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2011, 29(4): 041501. |
| [13] | YUSUP Luchana L, PARK Jae-Min, MAYANGSARI Tirta R, et al. Surface reaction of silicon chlorides during atomic layer deposition of silicon nitride[J]. Applied Surface Science, 2018, 432: 127-131. |
| [14] | WALSH Robin. Bond dissociation energy values in silicon-containing compounds and some of their implications[J]. Accounts of Chemical Research, 1981, 14(8): 246-252. |
| [15] | MENG Xin, KIM Harrison Sejoon, LUCERO Antonio T, et al. Hollow cathode plasma-enhanced atomic layer deposition of silicon nitride using pentachlorodisilane[J]. ACS Applied Materials & Interfaces, 2018, 10(16): 14116-14123. |
| [16] | HWANG Su Min, KONDUSAMY Aswin L N, QIN Zhiyang, et al. Hollow cathode plasma (HCP) enhanced atomic layer deposition of silicon nitride (SiN x ) thin films using pentachlorodisilane (PCDS)[J]. ECS Transactions, 2019, 89(3): 63-69. |
| [17] | KETOLA Barry, CHANG Noel Mower, YOUNG Jeanette, et al. Method of preparing pentachlorodisilane purified reaction product comprising same: US11370666[P]. 2022-06-28. |
| [18] | STURM James C, CHUNG Keith H. Chemical vapor deposition epitaxy of silicon-based materials using neopentasilane[J]. ECS Transactions, 2008, 16(10): 799-805. |
| [19] | TODD Michael A, WEEKS Keith D. Low temperature, high growth rate epitaxial silicon and silicon germanium alloy films[J]. Applied Surface Science, 2004, 224(1/2/3/4): 41-45. |
| [20] | VINCENT Benjamin, VANDERVORST Wilfried, CAYMAX Matty, et al. Influence of Si precursor on Ge segregation during ultrathin Si reduced pressure chemical vapor deposition on Ge[J]. Applied Physics Letters, 2009, 95(26): 262112. |
| [21] | CHUNG K H, YAO N, BENZIGER J, et al. Ultrahigh growth rate of epitaxial silicon by chemical vapor deposition at low temperature with neopentasilane[J]. Applied Physics Letters, 2008, 92(11): 113506. |
| [22] | HÖFLER F, JANNACH R. Zur kenntnis des neopentasilans[J]. Inorganic and Nuclear Chemistry Letters, 1973, 9(7): 723-725. |
| [23] | ZHOU Xiaobing. Method of making aluminum-free neopentasilane: US11117807[P]. 2021-09-14. |
| [24] | CANNADY John Patrick, ZHOU Xiaobing. Composition comprising neopentasilane and method of preparing same: US8147789[P]. 2012-04-03. |
| [25] | KACZMARCZYK A, MILLARD M, NUSS J W, et al. The preparation and some properties of a new pentasilicon dodecachloride, Si5Cl12 [J]. Journal of Inorganic and Nuclear Chemistry, 1964, 26(3): 421-425. |
| [26] | GERWIG Maik, Uwe BÖHME, FRIEBEL Mike, et al. Syntheses and molecular structures of liquid pyrophoric hydridosilanes[J]. ChemistryOpen, 2020, 9(7): 762-773. |
| [27] | GOLDBLATT R D, AGARWALA B, ANAND M B, et al. A high performance 0.13μm copper BEOL technology with low-k dielectric[C]// Proceedings of the IEEE 2000 International Interconnect Technology Conference. IEEE, 2000: 261-263. |
| [28] | WU Zhencheng, SHIUNG Zhi-Wen, CHIANG Chiu-Chih, et al. Physical and electrical characteristics of F- and C-doped low dielectric constant chemical vapor deposited oxides[J]. Journal of the Electrochemical Society, 2001, 148(6): F115. |
| [29] | GRILL A, PATEL V. Ultralow-k dielectrics prepared by plasma-enhanced chemical vapor deposition[J]. Applied Physics Letters, 2001, 79(6): 803-805. |
| [30] | HAN Licheng M, PAN Jisheng, CHEN Shoumian, et al. Characterization of carbon-doped SiO2 low k thin films: Preparation by plasma-enhanced chemical vapor deposition from tetramethylsilane[J]. Journal of the Electrochemical Society, 2001, 148(7): F148. |
| [31] | KAWAHARA Jun, KUNIMI Nobutaka, KINOSHITA Keizo, et al. An organic low-k film deposited by plasma-enhanced copolymerization[J]. Journal of the Electrochemical Society, 2007, 154(3): H147. |
| [32] | LEE Woojin, FUKAZAWA Atsuki, CHOA Yong-Ho. Gap-fill characteristics and film properties of DMDMOS fabricated by an F-CVD system[J]. Korean Journal of Materials Research, 2016, 26(9): 455-459. |
| [33] | YASUHARA Shigeo, CHUNG Juhyun, TAJIMA Kunitoshi, et al. Structure-designable formation-method of super low-k SiOC film (k=2.2) by neutral-beam-enhanced-CVD[C]// 2008 International Interconnect Technology Conference. IEEE, 2008: 73-75. |
| [34] | Ekkehard MUH, RAULEDER Hartwig, KLEIN Harald. Preparation of organosilane esters: US7507850[P]. 2009-03-24. |
| [35] | BARRY Arthur J, GILKEY John W. Method of preparing organosilanes: US2681355[P]. 1954-06-15. |
| [36] | FERGUSON Stephen Paul. Method of purifying alkoxysilanes: US6861546[P]. 2005-03-01. |
| [37] | MUEH Ekkehard, RAULEDER Hartwig, MACK Helmut, et al. Removal of polar organic compounds and extraneous metals from organosilanes: US20100274028[P]. 2010-10-28. |
| [38] | XU Mindi, CHAUBEY Trapti. Preparation of adsorbents for purifying organosilicon compounds: US7812188[P]. 2010-10-12. |
| [39] | HSU Irene J, VRTIS Raymond N, AL-RASHID Jennifer E, et al. Understanding the impact of porosity and pore structure in ultra low dielectric constant organosilicate glasses[J]. MRS Online Proceedings Library, 2012, 1428(1): 38-44. |
| [40] | O’NEILL M L, VRTIS R N, VINCENT J L, al et, et al. Optimized materials properties for organosilicate glasses produced by plasma-enhanced chemical vapor deposition[J]. MRS Online Proceedings Library, 2002, 766: 8171-8176. |
| [41] | UZNANSKI Pawel, Agnieszka WALKIEWICZ-PIETRZYKOWSKA, JANKOWSKI Krzysztof, et al. Atomic hydrogen induced chemical vapor deposition of silicon oxycarbide thin films derived from diethoxymethylsilane precursor[J]. Applied Organometallic Chemistry, 2020, 34(8): 123-140. |
| [42] | CHENG Y L, WANG Y L, HWANG G J, et al. Effect of deposition temperature and oxygen flow rate on properties of low dielectric constant SiCOH film prepared by plasma enhanced chemical vapor deposition using diethoxymethylsilane[J]. Surface and Coatings Technology, 2006, 200(10): 3134-3139. |
| [43] | MAYORGA Steven Gerard, O’NEILL Mark Leonard, CHANDLER Kelly Ann. Low-impurity organosilicon product As precursor for CVD: US8329933[P]. 2012-12-11. |
| [44] | SHORR Leonard M. A new method of preparation for alkoxysilanes[J]. Journal of the American Chemical Society, 1954, 76(5): 1390-1391. |
| [45] | YAMAZAKI Toshio, YAMAYA Masaaki, YANAGISAWA Hideyoshi, et al. Process for removing acidic impurities from alkoxysilanes: US5247117[P]. 1993-09-21. |
| [46] | JI You jin, KIM Hae In, KANG Ji Eun, et al. Plasma enhanced atomic layer deposition of silicon nitride using magnetized very high frequency plasma[J]. Nanotechnology, 2024, 35(27): 275701. |
| [47] | PARK Jae Chan, KIM Dae Hyun, SEOK Tae Jun, et al. High-quality SiN x thin-film growth at 300℃ using atomic layer deposition with hollow-cathode plasma[J]. Journal of Materials Chemistry C, 2023, 11(27): 9107-9113. |
| [48] | Taewook NAM, LEE Hyunho, CHOI Taejin, et al. Low-temperature, high-growth-rate ALD of SiO2 using aminodisilane precursor[J]. Applied Surface Science, 2019, 485: 381-390. |
| [49] | YAEGASHI Hidetami, OYAMA Kenichi, HARA Arisa, et al. Overview: Continuous evolution on double-patterning process[C]// SPIE Proceedings", "Advances in Resist Materials and Processing Technology XXIX. SPIE, 201, 8325: 95-102. |
| [50] | KIM Kinam, U-In CHUNG, PARK Youngwoo, et al. Extending the DRAM and FLASH memory technologies to 10nm and beyond[C]// SPIE Proceedings", "Optical Microlithography XXV. SPIE, 2012, 8326: 46-56. |
| [51] | POTTS S E, KEUNING W, LANGEREIS E, et al. Low temperature plasma-enhanced atomic layer deposition of metal oxide thin films[J]. Journal of the Electrochemical Society, 2010, 157(7): P66. |
| [52] | LEE Young-Soo, HAN Ju-Hwan, PARK Jin-Seong, et al. Low temperature SiO x thin film deposited by plasma enhanced atomic layer deposition for thin film encapsulation applications[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2017, 35(4): 041508. |
| [53] | HAN Ju-Hwan, CHOI Jin-Myung, LEE Seong-Hyeon, et al. Chemistry of SiN x thin film deposited by plasma-enhanced atomic layer deposition using di-isopropylaminosilane (DIPAS) and N2 plasma[J]. Ceramics International, 2018, 44(17): 20890-20895. |
| [54] | LEHMANN John Francis, WITHERS JR Howard Paul. Aminosilanes and methods for making same: US20120277457[P]. 2012-01-12. |
| [55] | PASSARELLI Vincenzo, CARTA Giovanni, ROSSETTO Gilberto, et al. Aminolysis of the Si-Cl bond and ligand exchange reaction between silicon amido derivatives and SiCl4: Synthetic applications and kinetic investigations[J]. Dalton Transactions, 2003(3): 413-419. |
| [56] | XIAO Manchao, MACDONALD Matthew R, Richard HO, et al. Organoaminosilanes and methods for making same: US9233990[P]. 2016-01-12. |
| [57] | KETOLA Barry M, MADDOCK Jesse A, REKKEN Brian D, et al. Method for making an organoaminosilane; a method for making a silylamine from the organoaminosilane: US10875877[P]. 2020-12-29. |
| [58] | LIN C H, WANG L A. Feasibility of utilizing hexamethyldisiloxane film as a bottom antireflective coating for 157nm lithography[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 2001, 19(6): 2357-2361. |
| [59] | HINES Daniel R, SIWAK Nathan P, MOSHER Lance A, et al. MEMS lithography and micromachining techniques[M]. MEMS reference shelf. Boston, MA: Springer US, 2011: 667-753. |
| [60] | SUBRAMANIAN Ashwanth, TIWALE Nikhil, LEE Won-Il, et al. Vapor-phase infiltrated organic-inorganic positive-tone hybrid photoresist for extreme UV lithography[J]. Advanced Materials Interfaces, 2023, 10(28): 2300420. |
| [61] | YAMAMOTO Masashi, HORIBE Hideo, SEKIGUCHI Atsushi, et al. Standing-wave effect in photoresist with and without HMDS[J]. Journal of Photopolymer Science and Technology, 2008, 21(2): 299-304. |
| [62] | KUO Dong-Hau, YANG Dong-Gi. Plasma-enhanced chemical vapor deposition of silicon carbonitride using hexamethyldisilazane and nitrogen[J]. Thin Solid Films, 2000, 374(1): 92-97. |
| [63] | KOTZSCH Hans-joachim, DRAESE Rudiger, VAHLENSIECK Hans-joachim. Method of preparing silicon-nitrogen compounds: US4115427[P]. 1978-09-19. |
| [64] | FOSTER Roland S, ELLIS Craig A. Continuous process for the synthesis of hexamethyldisilazane: US4644076[P]. 1987-02-17. |
| [65] | GRINBERG E E, UKHIN V I, RAKHLIN V I, et al. Deep purification of hexamethyldisilazane[J]. Russian Journal of Applied Chemistry, 2011, 84(11): 1909-1913. |
| [66] | PONTON Simon, VERGNES Hugues, SAMELOR Diane, et al. Development of a kinetic model for the moderate temperature chemical vapor deposition of SiO2 films from tetraethyl orthosilicate and oxygen[J]. AIChE Journal, 2018, 64(11): 3958-3966. |
| [67] | SABBIONE C, DI CIOCCIO L, VANDROUX L, et al. Low temperature direct bonding mechanisms of tetraethyl orthosilicate based silicon oxide films deposited by plasma enhanced chemical vapor deposition[J]. Journal of Applied Physics, 2012, 112(6): 063501. |
| [68] | KOTCHARLAKOTA Jhansirani, SRIRAMA Venkata Hari Krishna, DUBEY Raghvendra Sarvjeet. Characterization of chemical vapor deposited tetraethyl orthosilicate based SiO2 films for photonic devices[J]. Materials Science, 2016, 22(1): 7-10. |
| [69] | ARCHARD D, GILES K, PRICE A, et al. Low temperature PECVD of dielectric films for TSV applications[C]// 2010 Proceedings 60th Electronic Components and Technology Conference (ECTC). IEEE, 2010: 764-768. |
| [70] | KAMTO A, LIU Y, SCHAPER L, et al. Reliability study of through-silicon via (TSV) copper filled interconnects[J]. Thin Solid Films, 2009, 518(5): 1614-1619. |
| [71] | GAMBINO Jeffrey P, ADDERLY Shawn A, KNICKERBOCKER John U. An overview of through-silicon-via technology and manufacturing challenges[J]. Microelectronic Engineering, 2015, 135: 73-106. |
| [72] | MALLON Charles B. Process for production of alkyl silicates from silicon metal: US4447632[P]. 1984-05-08. |
| [73] | BLEH Otto, ROGLER Walter, JOCH Wilhelm. Method of preparing orthosilicic acid tetraalkyl esters: US3627807[P]. 1971-12-14. |
| [74] | SOMMER Leo H. Stereochemistry, mechanism and silicon: An introduction to the dynamic stereochemistry and reaction mechanisms of silicon centers[M]. New York: McGraw-Hill, 1965. |
| [75] | Eduardo SÁNCHEZ-RAMÍREZ, César RAMÍREZ-MÁRQUEZ, QUIROZ-RAMÍREZ Juan José, et al. Reactive distillation column design for tetraethoxysilane (TEOS) production: Economic and environmental aspects[J]. Industrial & Engineering Chemistry Research, 2018, 57(14): 5024-5034. |
| [76] | LAXMAN Ravi Kumar. Purification of organosilanes of group 13 (IIIA) and 15 (VA) impurities: US5902893[P]. 1999-05-11. |
| [77] | POTTS Thomas M. Purified tetraethoxysilane and method of purifying: US5840953[P]. 1998-11-24. |
| [78] | MULLEE William H. Ion exchange purification of dielectric condensate precursor fluids and silicate esters such as tetraethylorthosilicate (TEOS): US6660875[P]. 2003-12-09. |
| [79] | MOCHALOV L A, KORNEV R A, NEZHDANOV A V, et al. Preparation of silicon thin films of different phase composition from monochlorosilane as a precursor by RF capacitive plasma discharge[J]. Plasma Chemistry and Plasma Processing, 2016, 36(3): 849-856. |
| [80] | TOMASINI P, WEEKS K D. Monochlorosilane for low temperature silicon epitaxy[J]. Journal of the Electrochemical Society, 2011, 158(5): H604. |
| [81] | César RAMÍREZ-MÁRQUEZ, Eduardo SÁNCHEZ-RAMÍREZ, QUIROZ-RAMÍREZ Juan José, et al. Dynamic behavior of a multi-tasking reactive distillation column for production of silane, dichlorosilane and monochlorosilane[J]. Chemical Engineering and Processing: Process Intensification, 2016, 108: 125-138. |
| [82] | MUEH Ekkehard, RAULEDER Hartwig, LANG Juergen Erwin, et al. Monochlorosilane, process and apparatus for the preparation thereof: US9221689[P]. 2015-12-29. |
| [83] | Rafael ALCÁNTARA-AVILA J, TANAKA Morihiro, RAMÍREZ MÁRQUEZ César, et al. Design of a multitask reactive distillation with intermediate heat exchangers for the production of silane and chlorosilane derivates[J]. Industrial & Engineering Chemistry Research, 2016, 55(41): 10968-10977. |
| [84] | PARK Jae-Min, JANG Se Jin, YUSUP Luchana L, et al. Plasma-enhanced atomic layer deposition of silicon nitride using a novel silylamine precursor[J]. ACS Applied Materials & Interfaces, 2016, 8(32): 20865-20871. |
| [85] | KIM Sun Jung, YONG Sang Heon, Hyung June AHN, et al. Improvement in the moisture barrier properties and flexibility by reducing hydrogen dangling bonds in SiN x thin films with plasma surface treatment[J]. Surface and Coatings Technology, 2020, 383: 125210. |
| [86] | JANG Woochool, JEON Heeyoung, SONG Hyoseok, et al. The effect of plasma power on the properties of low-temperature silicon nitride deposited by RPALD for a gate spacer[J]. Physica Status Solidi (A), 2015, 212(12): 2785-2790. |
| [87] | HOPPE Carl-Friedrich, RAULEDER Hartwig, Ingrid LUNT-RIEG, et al. Process for the preparation of trisilylamine from monochlorosilane and ammonia: US9656869[P]. 2017-05-23. |
| [88] | PEÑA Luis Fabián, NANAYAKKARA Charith E, MALLIKARJUNAN Anupama, et al. Atomic layer deposition of silicon dioxide using aminosilanes di-sec-butylaminosilane and bis(tert-butylamino)silane with ozone[J]. The Journal of Physical Chemistry C, 2016, 120(20): 10927-10935. |
| [89] | LUCERO Antonio T, KIM Jiyoung. Silicon nitride atomic layer deposition: a brief review of precursor chemistry[J]. Mater. Matters. , 2018, 13: 55. |
| [90] | MALLIKARJUNAN Anupama, CHANDRA Haripin, XIAO Manchao, et al. Designing high performance precursors for atomic layer deposition of silicon oxide[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2015, 33(1): 01A137. |
| [91] | KNOOPS Harm C M, BRAEKEN Eline M J, DE PEUTER Koen, et al. Atomic layer deposition of silicon nitride from bis(tert-butylamino)silane and N2 plasma[J]. ACS Applied Materials & Interfaces, 2015, 7(35): 19857-19862. |
| [92] | ANDRINGA Anne-Marije, PERROTTA Alberto, DE PEUTER Koen, et al. Low-temperature plasma-assisted atomic layer deposition of silicon nitride moisture permeation barrier layers[J]. ACS Applied Materials & Interfaces, 2015, 7(40): 22525-22532. |
| [93] | BOWEN Heather Regina, LEI Xinjian, SENECAL Lee Arthur. Stabilization of nitrogen-containing and oxygen-containing organosilanes using weakly basic ion-exchange resins: US7442822[P]. 2008-10-28. |
| [1] | 王帅, 张得意, 李超, 乔仁忠. 瑞来巴坦及其中间体的合成研究进展[J]. 化工进展, 2025, 44(9): 5224-5233. |
| [2] | 王思懿, 许建良, 代正华, 武国义, 王辅臣. 多晶硅还原炉气相沉积反应数值模拟[J]. 化工进展, 2025, 44(2): 706-716. |
| [3] | 龚勇, 潘忠文, 谢纯, 崔瑾, 王鲜. 碳酸钠催化制备纳米碳纤维[J]. 化工进展, 2024, 43(7): 3980-3986. |
| [4] | 高亚, 徐丹, 王树元, 朱地. 原子层沉积构建高性能催化剂的研究进展[J]. 化工进展, 2021, 40(8): 4242-4252. |
| [5] | 曲艳东, 高凌霞, 章文姣, 刘伟. 爆炸合成纳米粉体及其团聚控制研究进展[J]. 化工进展, 2020, 39(12): 5136-5147. |
| [6] | 刘马林. 流化床-化学气相沉积技术在先进核燃料制备中的应用进展[J]. 化工进展, 2019, 38(04): 1646-1653. |
| [7] | 虞宇翔,徐平平,邢靖晨,常建民. 合成工艺对热解油改性酚醛树脂老化性能影响[J]. 化工进展, 2019, 38(03): 1530-1537. |
| [8] | 黄浩鑫,张会平,鄢瑛. CuO/PSSF复合催化剂的制备及其在苯酚降解中的应用[J]. 化工进展, 2019, 38(03): 1377-1386. |
| [9] | 刘荣正, 刘马林, 邵友林, 刘兵. 流化床-化学气相沉积技术的应用及研究进展[J]. 化工进展, 2016, 35(05): 1263-1272. |
| [10] | 汪文鹄, 左然, 刘鹏, 童玉珍, 张国义. 分子吸收光谱在半导体薄膜化学气相沉积中的应用[J]. 化工进展, 2015, 34(11): 3979-3984,4000. |
| [11] | 柳沛宏, 曹端林, 王建龙, 冯璐璐, 张楠, 秦宗扬. 3,4-二氨基呋咱及其高能量密度衍生物合成研究进展[J]. 化工进展, 2015, 34(05): 1357-1364. |
| [12] | 梁尤轩1,赵斌2,姜川1,杨俊和2. 垂直碳纳米管阵列的生长控制研究进展[J]. 化工进展, 2014, 33(06): 1491-1497. |
| [13] | 李 丽,金环年,胡云剑. 加氢处理催化剂制备技术研究进展[J]. 化工进展, 2013, 32(07): 1564-1569. |
| [14] | 余正发1,王旭珍1,2,刘 宁1,刘 洋1. N掺杂多孔碳材料研究进展[J]. 化工进展, 2013, 32(04): 824-831. |
| [15] | 冯筱晴1,2,沈 力1,王瑞瑞1,王彦臣1,宋国强1. 1, 8-二氮杂双环(5, 4, 0)-7-十一烯的合成工艺及其应用开发[J]. 化工进展, 2013, 32(01): 174-179. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |