1 | BAGGE-HANSEN M, BASTEA S, HAMMONS J A, et al. Detonation synthesis of carbon nano-onions via liquid carbon condensation [J]. Nature Communications, 2019, 10: 3819. | 2 | LI X J, QU Y D, XIE X H, et al. Preparation of SrAl2O4:Eu2+, Dy3+ nanometer phosphors by detonation method [J]. Materials Letters, 2006, 60(29): 3673–3677. | 3 | 姜宗林, 滕宏辉, 刘云峰. 气相爆轰物理的若干研究进展[J]. 力学进展, 2012, 42(2): 129-140. | 3 | JIANG Zonglin, TENG Honghui, LIU Yunfeng. Some research progress on gaseous detonation physics [J]. Advances In Mechanics, 2012, 42(2): 129-140. | 4 | 曲艳东, 孔祥清, 李晓杰, 等. 热处理对爆轰合成的纳米TiO2混晶的结构相变的影响[J]. 物理学报, 2014, 63(3):037301. | 4 | QU Yandong, KONG Xiangqing, LI Xiaojie, et al. Effect of thermal treatment on the structural phase transformation of the detonation-prepared TiO2 mixed crystal nanoparticles [J]. Acta Physica Sinica, 2014, 63(3): 037301. | 5 | 曲艳东, 李晓杰, 刘元. 纳米氧化钛团聚结构的研究[J]. 高压物理学报, 2010, 24(6): 438-442. | 5 | QU Yandong, LI Xiaojie, LIU Yuan. Study on the agglomerate structures of TiO2 nanoparticles [J]. Chinese Journal of High Pressure Physics, 2010, 24(6): 438-442. | 6 | HENSEL R C, MOREIRA M, RIUL A, et al. Monitoring the dispersion and agglomeration of silver nanoparticles in polymer thin films using localized surface plasmons and ferrell plasmons [J]. Applied Physics Letters, 2020, 116(10):103105. | 7 | TANG C, LI X, TANG Y, et al. Agglomeration mechanism and restraint measures of SiO2 nanoparticles in meta-aramid fibers doping modification via molecular dynamics simulations [J]. Nanotechnology, 2020, 31(16):165702. | 8 | 李晓杰, 王旭光, 张勇, 等. 爆炸合成新材料中的几个关键问题[C]//王旭光. 爆炸合成新材料与高效、安全爆破关键技术科学和工程技术. 北京:冶金工业出版社, 2011. | 8 | LI Xiaojie, WANG Xuguang, ZHANG Yong, et al. Several key problems in explosive synthesis of new materials [C]//WANG Xuguang. Explosive synthetic new material and key technology of high efficiency and safety blasting science and engineering technology [M]. Beijing: Metallurgical Industry Press, 2011. | 9 | QU Y D, ZHANG W J, KONG X Q, et al. Theoretical investigation of calculating temperatures in the combining zone of Cu/Fe composite plate jointed by explosive welding [J]. Phys. Metals Metallogr., 2016, 117(3): 260–266. | 10 | KUZ'MIN E V, LYSAK V I, KUZ'MIN S V, et al. Effect of parameters of high-velocity collision on the structure and properties of joints upon explosive welding with simultaneous ultrasonication [J]. Phys. Metals Metallogr., 2019, 120(2): 197-203. | 11 | STEPAN S B, ALEXANDER N O, NAUMOV STEPAN P, et al. Novel synthesis and properties of hydrogen-free detonation nanodiamond [J]. Propell. Explos. Pyrot., 2015, 40(1):39-45. | 12 | KOMATSU T. Bulk synthesis and characterization of graphite-like B-C-N and B-C-N hetero diamond compounds [J]. J. Mater. Chem., 2004, 14(2): 221–227. | 13 | SIVKOV A A, NAIDEN E P, PAK A Y. Dynamic synthesis of ultradispersed crystalline phases of the C-N system[J]. J. Superhard Mater., 2009, 31(5): 300-305. | 14 | KOJIMA Y, OHFUJI H. Structure and stability of carbon nitride under high pressure and high temperature up to 125GPa and 3000K [J]. Diam. Relat. Mater., 2013, 39(10): 1–7. | 15 | WANG Y G, LIU F S, LIU Q J, et al. Recover of C3N4 nanoparticles under high-pressure by shock wave loading [J]. Ceram. Int., 2018, 44(16): 19290-19294. | 16 | LANGENDERFER M J, FAHRENHOLTZ W G, CHERTOPALOV S, et al. Detonation synthesis of silicon carbide nanoparticles [J]. Ceram. Int., 2020, 46(5): 6951-6954. | 17 | 邵丙璜, 张晓堤. 爆炸合成纳米聚晶超硬材料及其制品的产业化前景[J]. 金刚石与磨料磨具工程, 2001(6):26-27. | 17 | SHAO Binghuang, ZHANG Xiaodi. Industrialization prospect of explosive synthesis of nano-polycrystalline superhard materials and its products [J]. Diamond and Abrasives Engineering, 2001(6):26-27. | 18 | TSVIGUNOV A N, FROLOVA L A, KHOTIN V G. Detonation synthesis of cuprite with a cubic face-centered lattice (a review) [J]. Glass & Ceramics, 2003, 60(9/10): 347-350. | 19 | 李晓杰. 氧化物粉末的爆轰合成方法: CN1569617 [P]. 2005-01-26. | 19 | LI Xiaojie. Detonation synthesis of oxide powder: CN1569617 [P]. 2005-01-26. | 20 | QU Y D, LI X J, LI R Y, et al. Preparation and characterization of the TiO2 ultrafine particles by detonation method [J]. Mater. Res. Bull., 2008, 43(1): 97-103. | 21 | LI R Y, LI X J, XIE X H. Explosive synthesis of ultrafine Al2O3 and effect of temperature of explosion [J]. Combust. Explos. Shock Waves, 2006, 42 (5): 607-610. | 22 | XIE X H, LI X J, YAN H H. Detonation synthesis of zinc oxide nanometer powders [J]. Mater. Lett., 2006, 60(25/26): 3149-3152. | 23 | 李晓杰, 杜云艳, 王小红, 等. 爆轰法制备球形纳米CeO2粉末[J].中国稀土学报, 2008, 26(2): 209-212. | 23 | LI Xiaojie, DU Yunyan, WANG Xiaohong, et al. Preparation of nanometer-sized ceria powders by detonation method [J]. Journal of the Chinese Rare Earth Society, 2008, 26(2): 209-212. | 24 | 郑敏, 王作山. 爆炸法合成纳米α-Fe2O3[J]. 硅酸盐学报, 2005, 33(8):14-17. | 24 | ZHENG Min, WANG Zuoshan. Synthesis of α-Fe2O3 nanopowder by explosive method [J]. Journal of the Chinese Ceramic Society, 2005, 33(8): 14-17. | 25 | QU Y D, LI X J, YAN H H, et al. Selective synthesis of TiO2 nanopowders [J]. Glass Phys. Chem., 2008, 34(5): 637–639. | 26 | 解一超. 爆轰法制备纳米二氧化铈及其性能研究[D].南京:南京理工大学, 2013. | 26 | XIE Yichao. Study on preparation and properties of nano-cerium dioxide by detonation [D].Nanjing: Nanjing University of Science and Technology, 2013. | 27 | 侯毅峰, 刘玉存, 王作山, 等. 爆炸法制备纳米氧化锆及其表征[J].含能材料, 2011, 19(1): 89–93. | 27 | HOU Yifeng, LIU Yucun, WANG Zuoshan, et al. Preparation and characterization of nanometer zirconia via explosive detonation technique[J]. Chinese Journal of Energetic Materials, 2011, 19(1): 89–93. | 28 | QU Y D, SUN C H, SUN G L, et al. Preparation, characterization, and kinetic and thermodynamic studies of mixed-phase TiO2 nanoparticles prepared by detonation method [J]. Results in Physics, 2016, 6: 100–106. | 29 | VASYLKIV O, SAKKA Y, SKOROKHOD V V. Nano-explosion synthesis of multi-component ceramic nano-composites [J]. J. Eur. Ceram. Soc., 2007, 27 (2/3): 585–592. | 30 | WANG X H, LI X J, YAN H H, et al. Nano-MnFe2O4 powder synthesis by detonation of emulsion explosive [J]. Applied Physics A: Materials Science Processing, 2008, 90(3): 417-422. | 31 | QU Y D, LI X J, ZHAO Z, et al. Synthesis of SrAl2O4:Eu2+, Dy3+ nanometer phosphors by detonation and combustion method[J]. Chinese Journal of High Pressure Physics, 2008(2):175-180. | 32 | XIE X H, LI X J, ZHAO Z, et al. Growth and morphology of nanometer LiMn2O4 powder [J]. Powder Technology, 2006, 169(3):143-146. | 33 | LUO N, SUN X, LIANG H L, et al. Gas-liquid detonation synthesis of CNTs@Fe/Fe3C composites and their application as electrode materials for double-layer capacitors[J]. Fuller. Nanotub. Carbon N., 2020, 28(6): 480-486. | 34 | 冯余庆. 爆炸法合成钛酸锂材料的研究[D]. 淮南: 安徽理工大学, 2019. | 34 | FENG Yuqing. Study on synthesis of lithium titanate materials by explosion method [D]. Huainan:Anhui University of Technology, 2019. | 35 | WANG X H, GUO L, LI X J, et al. Controlled detonation synthesis of nano Fe-based oxides/SiO2 core-shell composite particles[J]. Chemical Physics Letters, 2020, 740: 137016. | 36 | HAMMONS J A, NIELSEN M H, BAGGE-HANSEN M, et al. Resolving detonation nanodiamond size evolution and morphology at sub-microsecond timescales during high-explosive detonations[J]. J. Phys. Chem. C, 2019, 123(31): 19153-19164. | 37 | 徐康, 薛群基. 炸药爆炸法合成的纳米金刚石粉[J]. 化学进展, 1997, 9(2): 201-208. | 37 | XU Kang, XUE Qunji. Nanometer-sized diamond powders synthesized by explosive detonation [J]. Progress in Chemistry, 1997, 9(2): 201-208. | 38 | 文潮, 关锦清, 刘晓新, 等. 炸药爆轰合成纳米金刚石的研发历史与现状[J]. 超硬材料工程, 2009, 21(2): 46-51. | 38 | WEN Chao, GUAN Jinqing, LIU Xiaoxin, et al. Developing history and current situation of nano-diamond synthesized by explosive detonation[J]. Superhard Material Engineering, 2009, 21(2): 46-51. | 39 | 苗卫朋, 丁玉龙, 翟黎鹏, 等.爆轰法合成纳米金刚石的分散技术研究进展[J].金刚石与磨料磨具工程, 2019, 39(1): 18-22. | 39 | MIAO Weipeng, DING Yulong, CUI Lipeng, et al. Progress of research on nano-diamond dispersion [J]. Diamond & Abrasives Engineering, 2019, 39(1): 18-22. | 40 | CHEN P W, HUANG F L, YUN S R. Optical characterization of nanocarbon phases in detonation soot and shocked graphite [J]. Diam. Relat. Mater., 2006, 15(9): 1400-1404. | 41 | SUN G L, LI X J, QU Y D, et al. Preparation and characterization of graphite nanosheets from detonation technique [J]. Mater. Lett., 2008, 62(4/5): 703-706. | 42 | LU Y, ZHU Z P, LIU Z Y. Catalytic growth of carbon nanotubes through CHNO explosive detonation [J]. Carbon, 2004, 42(2): 361-370. | 43 | ZOU Q, LI Y G, ZOU L H, et al. Characterization of structures and surface states of the nanodiamond synthesized by detonation [J]. Mater. Charact., 2009, 60(11): 1257-1262. | 44 | LUO N, XIANG J X, SHEN T, et al. One-step gas-liquid detonation synthesis of carbon nano-onions and their tribological performance as lubricant additives [J]. Diam. Relat. Mater. 2019, 97:107448. | 45 | PANICH AM, SHAMES AI, MOGILYANSKY D, et al. Detonation nanodiamonds fabricated from tetryl: synthesis, NMR, EPR and XRD study[J]. Diam. Relat. Mater., 2020, 108: 107918. | 46 | BUKAEMSKII A A, BELOSHAPKO A G. Explosive synthesis of ultradisperse aluminum oxide in an oxygen-containing medium [J]. Combust Explo. Shock Waves, 2001, 37(5): 594-599. | 47 | YAN H H, HUN C H, LI X J, et al. Synthesis of carbon-encapsulated iron nanoparticles by gaseous detonation of hydrogen and oxygen at different temperatures within detonation tube [J]. Rare Metal. Mat. Eng., 2015, 44(9): 2152-2155. | 48 | 孔祥清, 朱凯泽, 高化东, 等. 气相爆轰法制备纳米TiO2-SiO2复合氧化物及其表征[J]. 稀有金属与硬质合金, 2018, 46(1): 44-48. | 48 | KONG X Q, ZHU Z K, GAO H D, et al. Gaseous detonation synthesis and characterization of TiO2-SiO2 nanometer composite oxide[J]. Rare Metals and Cemented Carbides, 2018, 46(1): 44-48. | 49 | YAN Honghao, WU Linsong, LI Xiaojie, et al. Detonation synthesis of SnO2 nanoparticles in gas phase [J]. Rare Metal. Mat. Eng., 2013, 42(7):1325-1327. | 50 | 潘训岑, 李雪琪, 李晓杰, 等.气相爆轰法合成超细碳包铁纳米颗粒[J]. 稀有金属材料与工程, 2019, 48(3): 981-986. | 50 | PAN Xuncen, LI Xueqi, LI Xiaojie, et al. Research on synthesis of ultrafine carbon-encapsulated iron by gaseous detonation method [J]. Rare Metal. Mat. Eng., 2019, 48(3):981-986. | 51 | 向俊庠, 罗宁, 马占国, 等. 爆炸合成石墨包覆金属(Fe, Co, Ni)纳米颗粒及其摩擦学性能[J]. 稀有金属材料与工程, 2019, 48(5):1682-1686. | 51 | XIANG Junxiang, LUO Ning, MA Zhanguo, et al. Explosive detonation synthesis and tribological performance of graphite coated metal nanoparticles [J]. Rare Metal. Mat. Eng., 2019, 48(5): 1682-1686. | 52 | TANAKA S, HOKAMOTO K, TORII S, et al. Surface coating by diamond particles on an aluminum substrate by underwater shock wave[J]. J. Mate. Process. Tech., 2010, 210(1): 32-36. | 53 | 曲艳东, 孙从煌, 孔祥清, 等. 一种球形纳米混合氧化物(SiO-FeO)粉体的合成方法: CN105753069A[P]. 2016-07-13. | 53 | QU Yandong, SUN Conghuang, KONG Xiangqing, et al. A method to prepare spherical mixed oxide (SiO-FeO) nanoparticles: CN105753069A[P]. 2016-07-13. | 54 | ZHAO Tiejun, WANG Xiaohong, LI Xiaojie, et al. Gaseous detonation synthesis of Co@C nanoparticles/CNTs materials[J]. Mater. Lett., 2019, 236: 179-182. | 55 | LIU B Y, KE S Y, SHAO Y F, et al. Formation mechanism for oxidation synthesis of carbon nanomaterials and detonation process for core-shell structure [J]. Carbon, 2018, 127: 21-30. | 56 | JIANG T, XU K. FTIR study of ultradispersed diamond powder synthesized by explosive detonation [J]. Carbon, 1995, 33(12): 1663-1671. | 57 | JI S, JIANG T, XU K, et al. FTIR study of the adsorption of water on ultradispersed diamond powder surface [J]. Appl. Surf. Sci., 1998, 133(4): 231-238. | 58 | CHEN P W, DING Y S, CHEN Q, et al. Spherical nanometer-sized diamond obtained from detonation[J]. Diam. Relat. Mater., 2000, 9(9):1722-1725. | 59 | XU K, XUE Q J. A new method for deaggregation of nanodiamond from explosive detonation-graphitization-oxidation method [J]. Acta Phys-Chim Sini, 2003, 19(11): 993-995. | 60 | YAMADA K, BURKHARD G, TANABE Y, et al. Nanostructure and formation mechanism of proto diamond shock-synthesized from graphite [J]. Carbon, 1999, 37(2): 275-280. | 61 | 谢圣中. 爆轰纳米金刚石粒度分析研究[J]. 超硬材料工程, 2019, 31(4):18-21. | 61 | XIE Shengzhong. Analysis and research on the particle size of detonation nanodiamond [J]. Superhard Material Engineering, 2019, 31(4):18-21. | 62 | 陈鹏万, 恽寿榕, 陈权, 等. 爆轰合成纳米超微金刚石的热稳定性研究[J]. 金刚石与磨料磨具工程, 1999(5): 3-5. | 62 | CHEN Pengwan, YUN Shourong, CHEN Quan, et al. The thermal stability of ultrafined diamond(UFD) obtained from detonation. [J]. Diamond & Abrasives Engineering, 1999(5): 3-5. | 63 | 曲艳东, 孙从煌, 朱凯泽, 等.气相爆轰合成纳米TiO2粉末的实验研究[J].稀有金属与硬质合金, 2017, 45(6): 48-53. | 63 | QU Yandong, SUN Conghuang, ZHU Kaize, et al. Experimental study on TiO2 nanoparticles prepared by gaseous detonation [J]. Rare Metals and Cemented Carbides, 2017, 45(6): 48-53. | 64 | LI R Y, LI X J, YAN H H, et al. Experimental investigations of the controlled explosive synthesis of ultrafine Al2O3 [J]. Combust. Explo. Shock Waves, 2013, 49(1): 105-108. | 65 | KOLOMIICHUK V N, MAL'KOV I Y. Synthesis of an ultradispersed diamond phase during detonation of composites [J]. Combust. Explo. Shock Waves, 1993, 29(1): 113-112. | 66 | ANISICHKIN V F, DOLGUSHIN D S, PETROV E A. The effect of temperature on the growth of ultradispersed diamonds at a detonation front [J]. Combust. Explo. Shock Waves, 1995, 31(1): 106-109. | 67 | OUYANG X, LI X J, YAN H H, et al. Preparation and characterization of nanosized TiO2 powders by gaseous detonation method [J]. Mater. Sci. Eng. B: Solid., 2008, 153(S1): 21-24. | 68 | 韩志伟, 解立峰, 邓吉平, 等. 爆轰法合成纳米氧化铈粒径的控制[J].高压物理学报, 2014, 28(5): 585-590. | 68 | HAN Zhiwei, XIE Lifeng, DENG Jiping, et al. Size-control of nanostructured Ceria synthesized by detonation method [J]. Chinese Journal of High Pressure Physics, 2014, 28(5): 585-590. | 69 | 闫鸿浩, 王胜杰, 李晓杰, 等. 氧气含量比变化对气相爆轰合成纳米二氧化钛的影响[J].材料工程, 2013, 25(6): 82-86. | 69 | YAN Honghao, WANG Shengjie, LI Xiaojie, et al. Influence of oxygen concentration on TiO2 nanoparticles prepared by gaseous detonation [J]. Journal of Materials Engineering, 2013, 25(6): 82-86. | 70 | YAMADA K, SAWAOKA A B. Very small spherical crystals of distorted diamond found in a detonation product of explosive/graphite mixtures and their formation mechanism [J]. Carbon, 1994, 32(4): 665-673. | 71 | 王小红, 李晓杰, 闫鸿浩, 等. 一类爆轰合成用乳化炸药的爆轰反应特征[J]. 爆炸与冲击, 2012, 32(5): 523-527. | 71 | WANG Xiaohong, LI Xiaojie, YAN Honghao, et al. Detonation reaction characteristic of emulsion explosives used for nano-materials synthesis [J]. Explosion and Shock Waves, 2012, 32(5): 523-527. | 72 | 罗宁, 李晓杰, 王小红, 等. 硝酸铁对RDX热分解行为的影响[J].火工品, 2010(3): 39-43. | 72 | LUO Ning, LI Xiaojie, WANG Xiaohong, et al. Effect of ferric nitrate on thermal decomposition behavior of RDX [J]. Initiators & Pyrotechnics, 2010(3): 39-43. | 73 | 张厚生, 胡荣祖, 杨德锁.多硝基芳香族化合物的分解热与爆热的关系[J].化学通报, 1987(12):30-32. | 73 | ZHANG Housheng, HU Rongzu, YANG Desuo. Relationship between the heat of decomposition and the heat of explosion of aromaticity [J] Chemistry, 1987(12):30-32. | 74 | WANG X H, LI X J, YAN H H, et al. Research of thermal decomposition kinetic characteristic of emulsion explosive base containing Fe and Mn elements[J]. J. Therm. Anal. Calorim., 2008, 91(2): 545-550. | 75 | QU Y D, LI X J, ZHAO Z, et al. Titania nanocrystalline prepared by detonation method and calculation of detonation parameters [J]. Propell. Explos. Pyrot., 2011, 36(1): 75-79. | 76 | PETROV E A, SAKOVICH G V, BRYLYAKOV P M. Conditions for preserving diamonds when produced by explosion [J]. Sov. Phys. Dokl., 1990, 35: 765-767. | 77 | SAVVAKIN G I, TREFILOV V I. Structure and properties of ultradisperse diamond formed during detonation in various media of condensed, carbon-containing explosives with negative oxygen balance [J]. Sov. Phys. Dokl., 1991, 36(11): 785-787. | 78 | MAL'KOV I Y, FILATOV L I, TITOV V M, et al. Formation of diamond from the liquid phase of carbon [J]. Combust. Explo. Shock Waves, 1993, 29(4): 542-544. | 79 | AMIN M H, MOTTALEBIZADEH A A, BORJI S. Influence of cooling medium on detonation synthesis of ultradispersed diamond [J]. Diam. Relat. Mater., 2009, 18(4): 611-614. | 80 | 马峰, 恽寿榕, 陈权, 等. 装药及外界保护介质对炸药爆轰合成超微金刚石的影响[J].爆炸与冲击, 1998, 18(4): 289-295. | 80 | MA Feng, YUN Shourong, CHEN Quan, et al. The influence of charge and preserving media on the yield of ultrafine diamond formation during detonation [J]. Explosion and Shock Waves, 1998, 18(4): 289-295. | 81 | 王志伟, 李艳国, 邹芹, 等. 后处理对爆轰纳米金刚石表面官能团的影响[J].矿冶工程, 2020, 40(1):125-129. | 81 | WANG Zhiwei, LI Yanguo, ZOU Qin, et al. Effect of post-treatment on surface functional groups of detonation nanodiamonds[J]. Mining and Metallurgical Engineering, 2020, 40(1):125-129. | 82 | DONNET J B, FOUSSON E, WANG T K, et al. Dynamic synthesis of diamonds [J]. Diam. Relat. Mater., 2000, 9(S3/S4/S5/S6): 887-892. | 83 | OKOTRUB A V, BULUSHEVA L G, LARIONOVA I S, et al. Surface electronic structure of detonation nanodiamonds after oxidative treatment [J]. Diam. Relat. Mater., 2007, 16(12): 2090-2092. | 84 | HA S, HONG S P, LEE M, et al. Chemical purification of detonation-synthesized nanodiamond: recycling of H2SO4 and optimization of process parameters [J]. Materials Today Communications, 2019, 21: 100571. | 85 | QU Y D, LI X J, WANG X H, et al. Detonation synthesis of nanosized titanium dioxide powders [J]. Nanotechnology, 2007, 18: 205602. | 86 | PICHOT V, COMET M, FOUSSON E, et al. An efficient purification method for detonation nanodiamonds [J]. Diam. Rel. Mater., 2008, 17(1): 13-22. | 87 | SHENDEROVA O, PETROV I, WALSH J, et al. Modification of detonation nanodiamonds by heat treatment in air [J]. Diam. Rel. Mater, 2006, 15(S11/S12): 1799-1803. | 88 | ACKERMANNA J, KRUEGER A. Efficient surface functionalization of detonation nanodiamond using ozone under ambient conditions [J]. Nanoscale, 2019, 11: 8012-8019. | 89 | KUME A, MOCHALIN V N. Sonication-assisted hydrolysis of ozone oxidized detonation nanodiamond [J]. Diam. Relat. Mater., 2020,103:107705. | 90 | XU K, XUE Q. A new method for deaggregation of nanodiamond from explosive detonation: graphitization-oxidation method [J]. Phys. Solid. State., 2003, 46(4): 649-650. | 91 | LI X J, QU Y D, YAN H H, et al. Research progress on nanosized materials synthesized by detonation method [J]. Rare Metal. Mat. Eng., 2007, 36(12): 2069-2074. | 92 | QU Y D, LI X J, YAN H H. Heat transfer analysis of the micron-scale agglomerates of TiO2 precursor during the detonation process [J]. Adv. Mater. Res., 2011, 306/307: 1138-1141. | 93 | 许向阳. 纳米金刚石的解团聚与稳定分散研究[D]. 长沙: 中南大学, 2007. | 93 | XU Xiangyang. Deagglomeration and stable dispersion of detonation nanodiamond particles[D].Changsha: Central South University, 2007. | 94 | TSE J S, KLUG D, GAO F. Hardness of nanocrystalline diamonds [J]. Phys. Rev. B, 2006, 73(14): 140102. | 95 | KRüGER A, LIANG Y J, JARRE G, et al. Surface functionalisation of detonation diamond suitable for biological applications [J]. J. Mater. Chem., 2006, 16(24): 2322-2328. | 96 | 李晓杰, 易彩虹, 王小红, 等. 爆轰纳米金刚石在水中稳定分散研究[J]. 材料科学与工艺, 2011, 19(5): 144-148. | 96 | LI Xiaojie, YI Caihong, WANG Xiaohong, et al. Stable dispersion of detonation nanodiamond in aqueous medium [J]. Mater. Sci. Tech., 2011,19(5): 144-148. | 97 | LI C C, HUANG C L. Preparation of clear colloidal solutions of detonation nanodiamond in organic solvents [J]. Colloids Surf. A, 2010, 353(1): 52-56. | 98 | ZHU Y, XU X, WANG B, et al. Surface modification and dispersion of nanodiamond in clean oil [J]. China Particuology, 2004, 2(3): 132-134. | 99 | MITEV D P, TOWNSEND A T, PAULL B, et al. Microwave-assisted purification of detonation nanodiamond [J]. Diam. Relat. Mater., 2014, 48: 37-46. | 100 | BERGMANN O R, BARRINGTON J. Effect of explosive shock waves on ceramic powders [J]. J. Am. Ceram. Soc., 1966, 49(9): 502-507. | 101 | 薛鸿陆, 洪延姬. 冲击波对氮化铝粉体的活化及烧结[J].爆炸与冲击, 1995, 15 (4): 322-328. | 101 | XUE Honglu, HONG Yanji. Aluminum nitride activated and sintered under shock pressure [J]. Explosion and Shock Waves, 1995, 15 (4):322-328. | 102 | 钟盛文, 焦永斌, 匡敬忠. 爆炸冲击粉碎纳米粉末硬团聚体的机理分析[J].中国粉体技术, 2000(5): 19-22. | 102 | ZHONG Shenwen, JIAO Yongbin, KUANG Jingzhong. Mechanism analysis of impact crushing of harden nano aggregation powder by shock wave [J]. China Powder Science and Technology, 2000(5): 19-22. | 103 |
[1] |
何阳, 李思盈, 李传强, 袁小亚, 郑旭煦. 热还原氧化石墨烯/环氧树脂复合涂层的防腐性能[J]. 化工进展, 2023, 42(4): 1983-1994. |
[2] |
李光文, 华渠成, 黄作鑫, 达志坚. 聚甲基丙烯酸酯类黏度指数改进剂的研究进展[J]. 化工进展, 2023, 42(3): 1562-1571. |
[3] |
杨世杰, 王军锋, 张伟, 王东保. 非均匀电场作用下气泡生长及运动特性[J]. 化工进展, 2021, 40(1): 48-56. |
[4] |
陈日志, 姜红, 范益群, 高从堦, 邢卫红. 膜分散技术及其强化反应过程的研究进展[J]. 化工进展, 2020, 39(12): 4812-4822. |
[5] |
郑帼,苗同梦,吴波,周存. 高强高模维纶纤维的表面修饰及其在水泥中的分散性[J]. 化工进展, 2020, 39(1): 250-256. |
[6] |
虞宇翔,徐平平,邢靖晨,常建民. 合成工艺对热解油改性酚醛树脂老化性能影响[J]. 化工进展, 2019, 38(03): 1530-1537. |
[7] |
赵晓童, 徐世昌, 马冬雅, 王越, 王巧灵. 碳纳米管流动电极分散性和悬浮稳定性的优化[J]. 化工进展, 2019, 38(02): 956-963. |
[8] |
王荣杰, 沈本贤, 刘纪昌, 赵基钢. 清洁工艺不溶性硫黄生产全钢胎带束层性能[J]. 化工进展, 2018, 37(06): 2432-2437. |
[9] |
张兰河, 李佳栋, 刘春光, 王旭明. 新型石墨烯/聚吡咯水性防腐涂料的制备及性能[J]. 化工进展, 2017, 36(12): 4562-4568. |
[10] |
陶俊, 倪涛, 夏亮亮, 王进春, 刘昭洋. 本体聚合法合成固体聚羧酸减水剂的研究及性能评价[J]. 化工进展, 2017, 36(08): 3013-3018. |
[11] |
朱红姣, 张光华, 何志琴, 王子儒. 抗泥型聚羧酸减水剂的制备及性能[J]. 化工进展, 2016, 35(09): 2920-2925. |
[12] |
柳沛宏, 曹端林, 王建龙, 冯璐璐, 张楠, 秦宗扬. 3,4-二氨基呋咱及其高能量密度衍生物合成研究进展[J]. 化工进展, 2015, 34(05): 1357-1364. |
[13] |
周云龙, 杨宁. 流化床液固共存区域团聚结构表观黏结特性[J]. 化工进展, 2015, 34(05): 1225-1231. |
[14] |
李金梅1,3,黄晓玲2,苏海全1,2 . γ-氨丙基二甲基乙氧基硅烷修饰蒙脱土及硅烷化蒙脱土的性能[J]. 化工进展, 2014, 33(01): 178-182. |
[15] |
冯筱晴1,2,沈 力1,王瑞瑞1,王彦臣1,宋国强1. 1, 8-二氮杂双环(5, 4, 0)-7-十一烯的合成工艺及其应用开发[J]. 化工进展, 2013, 32(01): 174-179. |
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部
地址:北京市东城区青年湖南街13号 邮编:100011
电子信箱:hgjz@cip.com.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
|
|