化工进展 ›› 2021, Vol. 40 ›› Issue (8): 4242-4252.DOI: 10.16085/j.issn.1000-6613.2020-1960
收稿日期:
2020-09-25
出版日期:
2021-08-05
发布日期:
2021-08-12
通讯作者:
徐丹,朱地
作者简介:
高亚(1996—),女,硕士研究生,研究方向为中长直链烷烃催化转化。E-mail:基金资助:
GAO Ya(), XU Dan(
), WANG Shuyuan, ZHU Di(
)
Received:
2020-09-25
Online:
2021-08-05
Published:
2021-08-12
Contact:
XU Dan,ZHU Di
摘要:
催化剂在能源化工领域具有重要应用,精确设计及调控催化剂结构可有效改善催化剂的性能。原子层沉积(ALD)是基于饱和自限制的气-固界面反应技术,被认为是调控活性相的组成、尺寸及落位最有效的方式之一。本文综述了ALD技术在调控催化剂活性相结构、设计多功能型催化剂及提高催化剂稳定性等方面的研究进展。重点阐述了ALD技术在调控催化剂活性相颗粒尺寸和表界面结构、设计多功能核壳结构及多孔材料限制性催化剂等方面的应用。ALD设计及控制金属沉积的技术优势可实现对催化剂活性、产物选择性和稳定性的有效调控,但其在复杂结构载体的沉积机理方面仍未得到充分研究,是今后研究工作重点。此外,利用ALD技术设计结构清晰、功能多样的催化剂来进一步提高催化性能及认识其反应机理也是未来的研究方向。
中图分类号:
高亚, 徐丹, 王树元, 朱地. 原子层沉积构建高性能催化剂的研究进展[J]. 化工进展, 2021, 40(8): 4242-4252.
GAO Ya, XU Dan, WANG Shuyuan, ZHU Di. Recent progress in fabrication of high efficient catalysts by atomic layer deposition[J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4242-4252.
1 | 罗明生, 冯旭楞, 宋丹, 等. 制备方法对FeC2O4制备的费托合成铁催化剂的影响[J]. 化工进展, 2020, 39(6): 2422-2429. |
LUO Mingsheng, FENG Xuleng, SONG Dan, et al. Effect of preparation methods on Fischer-Tropsch iron catalysts using FeC2O4[J]. Chemical Industry and Engineering Progress,2020, 39(6): 2422-2429. | |
2 | O’NEILL Brandon J, JACKSON David H K, LEE Jechan, et al. Catalyst design with atomic layer deposition[J]. ACS Catalysis, 2015, 5(3): 1804-1825. |
3 | MACKUS Adriaan J M, LEICK Noémi, BAKER Layton, et al. Catalytic combustion and dehydrogenation reactions during atomic layer deposition of platinum[J]. Chemistry of Materials, 2012, 24(10): 1752-1761. |
4 | LIANG Xinhua, LYON Lauren B, JIANG Yingbing, et al. Scalable synthesis of palladium nanoparticle catalysts by atomic layer deposition[J]. Journal of Nanoparticle Research, 2012, 14(6): 943-954. |
5 | WANG Xiaofeng, JIN Baitang, JIN Ye, et al. Supported single Fe atoms prepared via atomic layer deposition for catalytic reactions[J]. ACS Applied Nano Materials, 2020, 3(3): 2867-2874. |
6 | YI Hong, DU Hongyi, HU Yingli, et al. Precisely controlled porous alumina overcoating on Pd catalyst by atomic layer deposition: enhanced selectivity and durability in hydrogenation of 1,3-butadiene[J]. ACS Catalysis, 2015, 5(5): 2735-2739. |
7 | ZHANG Hongbo, CANLAS Christian, JEREMY Kropf A, et al. Enhancing the stability of copper chromite catalysts for the selective hydrogenation of furfural with ALD overcoating (Ⅱ) : comparison between TiO2 and Al2O3 overcoatings[J]. Journal of Catalysis, 2015, 326: 172-181. |
8 | LEI Yu, LEE Sungsik, Kebin LOW, et al. Combining electronic and geometric effects of ZnO-promoted Pt nanocatalysts for aqueous phase reforming of 1-propanol[J]. ACS Catalysis, 2016, 6(6): 3457-3460. |
9 | YANG Guoqing, WANG Huan, GONG Ting, et al. Understanding the active-site nature of vanadia-based catalysts for oxidative dehydrogenation of ethylbenzene with CO2via atomic layer deposited VOx on γ-Al2O3[J]. Journal of Catalysis, 2019, 380: 195-203. |
10 | ZHANG Lifeng, BALL Madelyn R, RVERAL-DONES Keishla R, et al. Synthesis gas conversion over molybdenum-based catalysts promoted by transition metals[J]. ACS Catalysis, 2020, 10(1): 365-374. |
11 | GOULD Troy D, LUBERS Alia M, CORPUZ April R, et al. Controlling nanoscale properties of supported platinum catalysts through atomic layer deposition[J]. ACS Catalysis, 2015, 5(2): 1344-1352. |
12 | GONG Ting, QIN Lijun, ZHANG Wei, et al. Activated carbon supported palladium nanoparticle catalysts synthesized by atomic layer deposition: genesis and evolution of nanoparticles and tuning the particle size[J]. The Journal of Physical Chemistry C, 2015, 119(21): 11544-11556. |
13 | YAN Huan, LIN Yue, WU Hong, et al. Bottom-up precise synthesis of stable platinum dimers on graphene[J]. Nature Communications, 2017, 8(1): 33-43. |
14 | ZHANG Jiankang, GAO Zhe, WANG Sen, et al. Origin of synergistic effects in bicomponent cobalt oxide-platinum catalysts for selective hydrogenation reaction[J]. Nature Communications, 2019, 10(1): 7977-7979. |
15 | GOREY Timothy J, ZANDKARIMI Borna, LI Guangjing, et al. Preparation of size- and composition-controlled PtnSnx/SiO2 (n = 4, 7, 24) bimetallic model catalysts with atomic layer deposition[J]. The Journal of Physical Chemistry C, 2019, 123(26): 16194-16209. |
16 | CHRISTENSEN Steven T, FENG Hao, LBERAL Joseph L, et al. Supported Ru-Pt bimetallic nanoparticle catalysts prepared by atomic layer deposition[J]. Nano Letters, 2010, 10(8): 3047-3051. |
17 | LIU Lichen, DIAZ Urbano, ARENAL Raul, et al. Corrigendum: Generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D[J]. Nature Materials, 2017, 16(12): 132-138. |
18 | SUN Shuhui, ZHANG Gaixia, GAUQUELIN Nicolas, et al. Single-atom catalysis using Pt/graphene achieved through atomic layer deposition[J]. Scientific Reports, 2013, 3(1): 3767-3804. |
19 | CHENG Niancai, STAMBULA Samantha, WANG Da, et al. Platinum single-atom and cluster catalysis of the hydrogen evolution reaction[J]. Nature Communications, 2016, 7(1): 1231-1244. |
20 | YAN Huan, CHENG Hao, YI Hong, et al. Single-atom Pd1/graphene catalyst achieved by atomic layer deposition: remarkable performance in selective hydrogenation of 1,3-butadiene[J]. Journal of the American Chemical Society, 2015, 137(33): 10484-10487. |
21 | XU Dan, WANG Shuyuan, WU Baoshan, et al. Highly dispersed single-atom Pt and Pt clusters in the Fe-modified KL zeolite with enhanced selectivity for n-heptane aromatization[J]. ACS Applied Materials & Interfaces, 2019, 11(33): 29858-29867. |
22 | CAO Lina, LU Junling. Atomic-scale engineering of metal-oxide interfaces for advanced catalysis using atomic layer deposition[J]. Catalysis Science & Technology, 2020, 10(9): 2695-2710. |
23 | GEORGE Cassandra, LITTLEWOOD Patrick, STAIR Peter C. Understanding pore formation in ALD alumina overcoats[J]. ACS Applied Materials & Interfaces, 2020, 12(18): 20331-20343. |
24 | LU Junling, LIU Bin, GREELEY Jeffrey P, et al. Porous alumina protective coatings on palladium nanoparticles by self-poisoned atomic layer deposition[J]. Chemistry of Materials, 2012, 24(11): 2047-2055. |
25 | LIU Xiao, ZHU Qianqian, LANG Yun, et al. Oxide-nanotrap-anchored platinum nanoparticles with high activity and sintering resistance by area-selective atomic layer deposition[J]. Angewandte Chemie International Edition, 2017, 56(6): 1648-1652. |
26 | CHENG Niancai, MOHAMMAD Norouzi Banis, LIU Jian, et al. Extremely stable platinum nanoparticles encapsulated in a zirconia nanocage by area-selective atomic layer deposition for the oxygen reduction reaction[J]. Advanced Materials, 2015, 27(2): 277-281. |
27 | CAO Lina, LIU Wei, LUO Qiquan, et al. Atomically dispersed iron hydroxide anchored on Pt for preferential oxidation of CO in H2[J]. Nature:2019, 565(7741): 631-635. |
28 | ZHAO Jixiao, CHEN Chaoqiu, XING Caihong, et al. Selectivity regulation in Au-catalyzed nitroaromatic hydrogenation by anchoring single-site metal oxide promoters[J]. ACS Catalysis, 2020, 10(4): 2837-2844. |
29 | WANG Shuyuan, XU Dan, ZHU Di, et al. Elucidating the restructuring-induced highly active bimetallic Pt-Co/KL catalyst for the aromatization of n-heptane[J]. Chemical Communications, 2020, 56(6): 892-895. |
30 | BAI Song, YANG Li, WANG Chunlei, et al. Boosting photocatalytic water splitting: interfacial charge polarization in atomically controlled core-shell cocatalysts[J]. Angewandte Chemie International Edition, 2015, 54(49): 14810-14814. |
31 | LEI Yu, LIU Bin, LU Junling, et al. Synthesis of Pt-Pd core-shell nanostructures by atomic layer deposition: application in propane oxidative dehydrogenation to propylene[J]. Chemistry of Materials, 2012, 24(18): 3525-3533. |
32 | CAO Kun, ZHU Qianqian, SHAN Bin, et al. Controlled synthesis of Pd/Pt core shell nanoparticles using area-selective atomic layer deposition[J]. Scientific Reports, 2015, 5: 8470-8476. |
33 | WANG Hengwei, WANG Chunlei, YAN Huan, et al. Precisely-controlled synthesis of Au@Pd core-shell bimetallic catalyst via atomic layer deposition for selective oxidation of benzyl alcohol[J]. Journal of Catalysis, 2015, 324: 59-68. |
34 | Wilson MCNEARY W, ZACCARINESarah F, LAI Annika, et al. Improved durability and activity of Pt/C catalysts through atomic layer deposition of tungsten nitride and subsequent thermal treatment[J]. Applied Catalysis B: Environmental, 2019, 254: 587-593. |
35 | WENG Zhihuan, ZAERA Francisco. Atomic layer deposition (ALD) as a way to prepare new mixed-oxide catalyst supports: the case of alumina addition to silica-supported platinum for the selective hydrogenation of cinnamaldehyde[J]. Topics in Catalysis, 2019, 62(12-16): 838-848. |
36 | ADIJANTO Lawrence, BENNETT David A, CHEN Chen, et al. Exceptional thermal stability of Pd@CeO2 core-shell catalyst nanostructures grafted onto an oxide surface[J]. Nano Letters, 2013, 13(5): 2252-2257. |
37 | Tzia Ming ONN, ZHANG Shuyi, Lisandra ARROYO-Ramirez, et al. Improved thermal stability and methane-oxidation activity of Pd/Al2O3 catalysts by atomic layer deposition of ZrO2[J]. ACS Catalysis, 2015, 5(10): 5696-5701. |
38 | BAI Yu, WANG Chunlei, ZHOU Xingyi, et al. Atomic layer deposition on Pd nanocrystals for forming Pd-TiO2 interface toward enhanced CO oxidation[J]. Progress in Natural Science: Materials International, 2016, 26(3): 289-294. |
39 | BAI Ying, YAN Dong, YU Caiyan, et al. Core-shell Si@TiO2 nanosphere anode by atomic layer deposition for Li-ion batteries[J]. Journal of Power Sources, 2016, 308: 75-82. |
40 | ZHANG Bin, GUO Xiaowei, LIANG Haojie, et al. Tailoring Pt-Fe2O3 interfaces for selective reductive coupling reaction to synthesize imine[J]. ACS Catalysis, 2016, 6(10): 6560-6566. |
41 | GAO Zhe, QIN Yong. Design and properties of confined nanocatalysts by atomic layer deposition[J]. Accounts of Chemical Research, 2017, 50(9): 2309-2316. |
42 | JIANG Feng, HUANG Jinjin, NIU Lei, et al. Atomic layer deposition of ZnO thin films on ZSM-5 zeolite and its catalytic performance in chichibabin reaction[J]. Catalysis Letters, 2015, 145(3): 947-954. |
43 | XU Dan, WU Baoshan, REN Pengju, et al. Controllable deposition of Pt nanoparticles into a KL zeolite by atomic layer deposition for highly efficient reforming of n-heptane to aromatics[J]. Catalysis Science & Technology, 2017, 7(6): 1342-1350. |
44 | XU Dan, WANG Shuyuan, WU Baoshan, et al. Tailoring Pt locations in KL zeolite by improved atomic layer deposition for excellent performance in n-heptane aromatization[J]. Journal of Catalysis, 2018, 365: 163-173. |
45 | SREE Sreeprasanth, DENDOOVEN Jolien, MAGUSIN Pieter, et al. Hydroisomerization and hydrocracking activity enhancement of hierarchical ZSM-5 zeolite catalyst via atomic layer deposition of aluminium[J]. Catalysis Science & Technology, 2016, 6(16): 6177-6186. |
46 | SREE Sreeprasanth Pulinthanathu, DENDOOVEN Jolien, MASSCHAELE Kasper, et al. Synthesis of uniformly dispersed anatase nanoparticles inside mesoporous silica thin films via controlled breakup and crystallization of amorphous TiO2 deposited using atomic layer deposition[J]. Nanoscale, 2013, 5(11): 5001-5008. |
47 | DETAVERNIER C, DENDOOVEN J, SREE S P, et al. Tailoring nanoporous materials by atomic layer deposition[J]. Chemical Society Reviews, 2011, 40(11): 5242-5253. |
48 | VERHEYEN E, JOOS L, Havenbergh K VAN, et al. Design of zeolite by inverse sigma transformation[J]. Nature Materials, 2012, 11(12): 1059-1064. |
49 | TONG X, QIN Y, GUO X, et al. Enhanced catalytic activity for methanol electro-oxidation of uniformly dispersed nickel oxide nanoparticles-carbon nanotube hybrid materials[J]. Small, 2012, 8(22): 3390-3395. |
50 | GAO Zhe, DONG Mei, WANG Guizhen, et al. Multiply confined nickel nanocatalysts produced by atomic layer deposition for hydrogenation reactions[J]. Angewandte Chemie International Edition, 2015, 54(31): 9006-9010. |
51 | GE Huibin, ZHANG Bin, GU Xiaomin, et al. A tandem catalyst with multiple metal oxide interfaces produced by atomic layer deposition[J]. Angewandte Chemie International Edition, 2016, 55(25): 7081-7085. |
52 | LIANG Haojie, ZHANG Bin, GE Huibin, et al. Porous TiO2/Pt/TiO2 sandwich catalyst for highly selective semihydrogenation of alkyne to olefin[J]. ACS Catalysis, 2017, 7(10): 6567-6572. |
53 | KIM In Soo, BORYCZ Joshua, PLATERO Prats Ana E, et al. Targeted single-site MOF node modification: trivalent metal loading via atomic layer deposition[J]. Chemistry of Materials, 2015, 27(13): 4772-4778. |
54 | IKUNO Takaaki, ZHENG Jian, VJUNOV Aleksei, et al. Methane oxidation to methanol catalyzed by Cu-oxo clusters stabilized in NU-1000 metal-organic framework[J]. Journal of the American Chemical Society, 2017, 139(30): 10294-10301. |
[1] | 王太, 苏硕, 李晟瑞, 马小龙, 刘春涛. 交流电场中贴壁气泡的动力学行为[J]. 化工进展, 2023, 42(S1): 133-141. |
[2] | 杨玉地, 李文韬, 钱永康, 惠军红. 工业燃烧室天然气湍流扩散火焰长度影响因素分析[J]. 化工进展, 2023, 42(S1): 267-275. |
[3] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[4] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[5] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[6] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[7] | 王家庆, 宋广伟, 李强, 郭帅成, DAI Qingli. 橡胶混凝土界面改性方法及性能提升路径[J]. 化工进展, 2023, 42(S1): 328-343. |
[8] | 张祚群, 高扬, 白超杰, 薛立新. 二次界面聚合同步反扩散原位生长ZIF-8纳米粒子制备聚酰胺混合基质反渗透(RO)膜[J]. 化工进展, 2023, 42(S1): 364-373. |
[9] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[10] | 顾永正, 张永生. HBr改性飞灰对Hg0的动态吸附及动力学模型[J]. 化工进展, 2023, 42(S1): 498-509. |
[11] | 李化全, 王明华, 邱贵宝. 硫酸酸解钙钛矿相精矿的行为[J]. 化工进展, 2023, 42(S1): 536-541. |
[12] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[13] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[14] | 王晋刚, 张剑波, 唐雪娇, 刘金鹏, 鞠美庭. 机动车尾气脱硝催化剂Cu-SSZ-13的改性研究进展[J]. 化工进展, 2023, 42(9): 4636-4648. |
[15] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 272
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 400
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |