| [1] |
房英健, 陈瑶, 张俊明, 等. 层状双金属氢氧化物及其复合材料加速电解水制氢的研究进展[J]. 化学通报, 2023, 86(8): 897-907.
|
|
FANG Yingjian, CHEN Yao, ZHANG Junming, et al. Research progress in layered double hydroxides and their composites to accelerate hydrogen production from water electrolysis[J]. Chemistry, 2023, 86(8): 897-907.
|
| [2] |
路绍琰, 田欣霞, 骆碧君, 等. 水滑石的改性研究概况及发展趋势[J]. 盐科学与化工, 2023, 52(7): 13-17.
|
|
LU Shaoyan, TIAN Xinxia, LUO Bijun, et al. Overview and development trends of modification research on hydrotalcite[J]. Journal of Salt Science and Chemical Industry, 2023, 52(7): 13-17.
|
| [3] |
薛明华, 夏多兵, 胡子健, 等. 基于超声波衰减谱的石膏浆液粒度测量方法[J]. 中国电力, 2019, 52(9): 173-178.
|
|
XUE Minghua, XIA Duobing, HU Zijian, et al. Ultrasonic attenuation spectrum based method for measuring the particle size distribution of gypsum slurry[J]. Electric Power, 2019, 52(9): 173-178.
|
| [4] |
徐颖晋, 庞振宇. 基于改进支持向量机的致密砂岩储层参数预测研究[J]. 现代电子技术, 2024, 47(5): 132-138.
|
|
XU Yingjin, PANG Zhenyu. Research on tight sandstone reservoir parameter prediction based on improved support vector machine[J]. Modern Electronics Technique, 2024, 47(5): 132-138.
|
| [5] |
王龙龙, 余威龙, 章玉容. 基于支持向量机回归的粉煤灰混凝土氯离子质量分数预测[J]. 浙江建筑, 2024, 41(3): 79-83.
|
|
WANG Longlong, YU Weilong, ZHANG Yurong. Prediction of chloride ions mass fraction in fly ash concrete based on support vector regression[J]. Zhejiang Construction, 2024, 41(3): 79-83.
|
| [6] |
张明峰, 吴博, 侯光昊, 等. 用超声衰减谱测量层状双金属氢氧化物粒度分布的方法[J]. 高等学校化学学报, 2024, 45(3): 69-77.
|
|
ZHANG Mingfeng, WU Bo, HOU Guanghao, et al. The method of measuring particle size distribution of layered double hydroxides(LDHs) using ultrasonic attenuation spectroscopy[J]. Chemical Journal of Chinese Universities, 2024, 45(3): 69-77.
|
| [19] |
王晓华, 陈林凡. 基于PCA-SVM的新能源产业财务预警模型研究[J]. 商业观察, 2024(23): 52-55.
|
|
WANG Xiaohua, CHEN Linfan. Research on financial early warning model of new energy industry based on PCA-SVM[J]. Business Observation, 2024(23): 52-55.
|
| [20] |
徐元博, 辛雯静, 任艳. 超声波技术在铼酸铵结晶过程中的应用研究[J]. 中国钼业, 2024, 48(2): 44-47, 51.
|
|
XU Yuanbo, XIN Wenjing, REN Yan. Application and research of ultrasonic technology in the crystallization process of ammonium rhenate[J]. China Molybdenum Industry, 2024, 48(2): 44-47, 51.
|
| [21] |
李烨明. 基于改进RBF神经网络的悬移质粒径分布测量研究[D]. 杭州: 中国计量大学, 2020.
|
|
LI Yeming. Study on particle size distribution measurement of suspended mass based on improved RBF neural network[D]. Hangzhou: China University of Metrology, 2020.
|
| [22] |
张小涛, 张新东, 王晨晖. 基于遗传算法优化支持向量机的震级预测模型研究[J]. 河北地质大学学报, 2023, 46(6): 41-46.
|
|
ZHANG Xiaotao, ZHANG Xindong, WANG Chenhui. Earthquake magnitude prediction model based on support vector machine optimized by genetic algorithm[J]. Journal of Hebei GEO University, 2023, 46(6): 41-46.
|
| [7] |
黄明心, 周蕾, 王学重. 超声衰减谱测量电池浆料的粒度分布[J]. 高等学校化学学报, 2022, 43(6): 108-114.
|
|
HUANG Mingxin, ZHOU Lei, WANG Xuezhong. Measurement of particle size distribution of battery slurries using ultrasonic attenuation spectroscopy[J]. Chemical Journal of Chinese Universities, 2022, 43(6): 108-114.
|
| [8] |
栾玲玉. LDH纳米粒子水热合成、固液界面自组装及其分散体系的相行为[D]. 济南: 山东大学, 2009.
|
|
LUAN Lingyu. Hydrothermal synthesis, solid-liquid interface self-assembly and phase behavior of LDH nanoparticles in their dispersion system[D]. Jinan: Shandong University, 2009.
|
| [9] |
聂敏, 刘志辉, 刘洋, 等. 基于PCA和BP神经网络的径流预测[J]. 中国沙漠, 2016, 36(4): 1144-1152.
|
|
NIE Min, LIU Zhihui, LIU Yang, et al. Runoff forecast based on principal component analysis and BP neural network[J]. Journal of Desert Research, 2016, 36(4): 1144-1152.
|
| [10] |
陈旭东, 许忠平, 童凯, 等. 基于网格搜索优化支持向量机多分类参数识别不同工艺酱酒的应用研究[J]. 中国酿造, 2024, 43(6): 213-217.
|
|
CHEN Xudong, XU Zhongping, TONG Kai, et al. Application of grid search-optimized support vector machine multi-classification parameters in identifying sauce-flavor Baijiu with different processes[J]. China Brewing, 2024, 43(6): 213-217.
|
| [11] |
高晶. 支持向量回归机参数优化的方法研究[D]. 阜新: 辽宁工程技术大学, 2015.
|
|
GAO Jing. Research on parameter optimization method of support vector regression machine[D]. Fuxin: Liaoning Technical University, 2015.
|
| [12] |
张雯雯. 基于PCA分析的奉贤区地表水水质评价[J]. 陕西水利, 2025(2): 77-79.
|
|
ZHANG Wenwen. Evaluation of surface water quality in Fengxian district based on PCA analysis[J]. Shaanxi Water Resources, 2025(2): 77-79.
|
| [13] |
汤荣志. 数据归一化方法对提升SVM训练效率的研究[D]. 济南: 山东师范大学, 2017.
|
|
TANG Rongzhi. Research on data normalization method to improve SVM training efficiency[D]. Jinan: Shandong Normal University, 2017.
|
| [14] |
王建国, 赵鹏飞, 张文兴, 等. 多尺度高斯核支持向量机算法[J]. 机床与液压, 2020, 48(20): 5-8.
|
|
WANG Jianguo, ZHAO Pengfei, ZHANG Wenxing, et al. Multi-scale Gaussian kernel algorithm based on support vector machine[J]. Machine Tool & Hydraulics, 2020, 48(20): 5-8.
|
| [15] |
丁辉. 基于网格优化模型的支持向量机企业信用评级应用研究[J]. 金融科技时代, 2021, 29(10): 63-66.
|
|
DING Hui. Reseach on support vector machine in enterprise credit rating application based on grid optimization model[J]. FinTech Time, 2021, 29(10): 63-66.
|
| [16] |
张立秀, 张淑娟, 孙海霞, 等. 高光谱技术结合网格搜索优化支持向量机的桃缺陷检测[J]. 食品与发酵工业, 2023, 49(16): 269-275.
|
|
ZHANG Lixiu, ZHANG Shujuan, SUN Haixia, et al. Hyperspectral technology combined with grid search optimized support vector machines to detect defects of peach[J]. Food and Fermentation Industries, 2023, 49(16): 269-275.
|
| [17] |
任永良, 代岳成, 高生亮, 等. 基于贝叶斯优化的CNN-LSTM的油田注水管网压力预测[J]. 数学的实践与认识, 2024, 54(12): 160-174.
|
|
REN Yongliang, DAI Yuecheng, GAO Shengliang, et al. Pressure prediction of oilfield water injection pipeline network based on Bayesian-optimized CNN-LSTM[J]. Mathematics in Practice and Theory, 2024, 54(12): 160-174.
|
| [18] |
杨晓璇, 陶功权, 温泽峰. 车轮非圆化信号平滑处理方法及其对多边形磨耗预测的影响研究[J/OL]. 西南交通大学学报, 2024. (2024-06-20). .
|
|
YANG Xiaoxuan, TAO Gongquan, WEN Zefeng. Research on smoothing method of wheel non-circularity signal and its influence on polygon wear prediction[J/OL]. China Industrial Economics, 2024. (2024-06-20). .
|