化工进展 ›› 2025, Vol. 44 ›› Issue (3): 1183-1193.DOI: 10.16085/j.issn.1000-6613.2024-0352
收稿日期:2024-03-04
修回日期:2024-04-24
出版日期:2025-03-25
发布日期:2025-04-16
通讯作者:
李志勤
作者简介:邱泽刚(1981—),男,教授,从事能源化工领域研究。E-mail:qiuzegang@xsyu.edu.cn。
基金资助:
QIU Zegang(
), SHI Yafei, LI Zhiqin(
)
Received:2024-03-04
Revised:2024-04-24
Online:2025-03-25
Published:2025-04-16
Contact:
LI Zhiqin
摘要:
木质生物质含有芳香环结构,但是其含氧量高。生物质衍生芳香族含氧化合物高值化利用的关键问题是其C— O键的活化断裂。生物质衍生芳香族含氧化合物中的C— O键有多种类型,主要包括连接芳环碳与羟基氧的Caryl— O(H)键、醚键Caryl— O— CH3、芳环侧链中的C
中图分类号:
邱泽刚, 石亚斐, 李志勤. 生物质衍生芳香族含氧化合物中C—O键断裂研究进展[J]. 化工进展, 2025, 44(3): 1183-1193.
QIU Zegang, SHI Yafei, LI Zhiqin. Cleavage of C— O bonds in biomass-derived aromatic oxygenates[J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1183-1193.
| 1 | LIN Longfei, HAN Xue, HAN Buxing, et al. Emerging heterogeneous catalysts for biomass conversion: Studies of the reaction mechanism[J]. Chemical Society Reviews, 2021, 50(20): 11270-11292. |
| 2 | 练彩霞, 李凝, 蒋武, 等. 生物质油催化加氢脱氧(HDO)反应机理及催化剂研究进展[J]. 化工进展, 2020, 39(S1): 153-162. |
| LIAN Caixia, LI Ning, JIANG Wu, et al. Research progress on reaction mechanism and catalysts for catalytic hydrodeoxygenation (HDO) of biomass oil[J]. Chemical Industry and Engineering Progress, 2020, 39(S1): 153-162. | |
| 3 | QUESTELL-SANTIAGO Ydna M, GALKIN Maxim V, BARTA Katalin, et al. Stabilization strategies in biomass depolymerization using chemical functionalization[J]. Nature Reviews Chemistry, 2020, 4(6): 311-330. |
| 4 | ABU-OMAR Mahdi M, BARTA Katalin, BECKHAM Gregg T, et al. Guidelines for performing lignin-first biorefining[J]. Energy & Environmental Science, 2021, 14(1): 262-292. |
| 5 | SHAN AHAMED Tharifkhan, ANTO Susaimanickam, MATHIMANI Thangavel, et al. Upgrading of bio-oil from thermochemical conversion of various biomass—Mechanism, challenges and opportunities[J]. Fuel, 2021, 287: 119329. |
| 6 | ZHANG Mingyuan, HU Yulin, WANG Haoyu, et al. A review of bio-oil upgrading by catalytic hydrotreatment: Advances, challenges, and prospects[J]. Molecular Catalysis, 2021, 504: 111438. |
| 7 | WANG Xinchao, ARAI Masahiko, WU Qifan, et al. Hydrodeoxygenation of lignin-derived phenolics—A review on the active sites of supported metal catalysts[J]. Green Chemistry, 2020, 22(23): 8140-8168. |
| 8 | QIU Zegang, LI Zongxuan, MA Shaobo, et al. Zeolite imidazolate framework/g-C3N4 derived Co nanoparticles embedded in nitrogen doped carbon for efficient hydrogenation of phenol[J]. New Journal of Chemistry, 2022, 46(48): 23312-23320. |
| 9 | QIU Zegang, HE Xiaoxia, MA Shaobo, et al. Ni nanoparticles embedded in nitrogen doped carbon derived from metal-organic frameworks for the efficient hydrogenation of vanillin to vanillyl alcohol[J]. New Journal of Chemistry, 2022, 46(21): 10347-10356. |
| 10 | LI Zhiqin, WANG Ying, YIN Chanjuan, et al. Selective breaking of C—O bonds in hydrodeoxygenation of 4-methylphenol over CoMoS/ZrO2 [J]. Journal of Fuel Chemistry and Technology, 2021, 49(4): 522-528. |
| 11 | XIONG Zhe, GUO Junhao, CHAIWAT Weerawut, et al. Assessing the chemical composition of heavy components in bio-oils from the pyrolysis of cellulose, hemicellulose and lignin at slow and fast heating rates[J]. Fuel Processing Technology, 2020, 199: 106299. |
| 12 | SHU Riyang, LI Rongxuan, LIN Biqin, et al. A review on the catalytic hydrodeoxygenation of lignin-derived phenolic compounds and the conversion of raw lignin to hydrocarbon liquid fuels[J]. Biomass and Bioenergy, 2020, 132: 105432. |
| 13 | 邱泽刚, 尹婵娟, 李志勤, 等. 酚类加氢脱氧催化剂研究进展[J]. 化工进展, 2019, 38(8): 3658-3669. |
| QIU Zegang, YIN Chanjuan, LI Zhiqin, et al. Recent advances in hydrodeoxygenation catalysts for phenols[J]. Chemical Industry and Engineering Progress, 2019, 38(8): 3658-3669. | |
| 14 | LI Hu, RIISAGER Anders, SARAVANAMURUGAN Shunmugavel, et al. Carbon-increasing catalytic strategies for upgrading biomass into energy-intensive fuels and chemicals[J]. ACS Catalysis, 2018, 8(1): 148-187. |
| 15 | QIU Zegang, WANG Ying, DI Yali, et al. One-step conversion of lignin-derived alkylphenols to light arenes by co-breaking of C—O and C—C bonds[J]. New Journal of Chemistry, 2022, 46(6): 2710-2721. |
| 16 | DE SOUZA Priscilla M, RABELO-NETO Raimundo C, BORGES Luiz E P, et al. Effect of zirconia morphology on hydrodeoxygenation of phenol over Pd/ZrO2 [J]. ACS Catalysis, 2015, 5(12): 7385-7398. |
| 17 | NIE Lei, RESASCO Daniel E. Kinetics and mechanism of m-cresol hydrodeoxygenation on a Pt/SiO2 catalyst[J]. Journal of Catalysis, 2014, 317: 22-29. |
| 18 | PRABHUDESAI Vallabh S, GURRALA Lakshmiprasad, VINU Ravikrishnan. Catalytic hydrodeoxygenation of lignin-derived oxygenates: Catalysis, mechanism, and effect of process conditions[J]. Energy & Fuels, 2022, 36(3): 1155-1188. |
| 19 | VIJAYAKUMAR Gunasekaran, PANDURANGAN Arumugam. Up-gradation of α-tetralone to jet-fuel range hydrocarbons by vapour phase hydrodeoxygenation over Pd Ni/SBA-16 catalysts[J]. Energy, 2017, 140: 1158-1172. |
| 20 | JIN Wei, Laura PASTOR-PÉREZ, SHEN Dekui, et al. Catalytic upgrading of biomass model compounds: Novel approaches and lessons learnt from traditional hydrodeoxygenation—A review[J]. ChemCatChem, 2019, 11(3): 924-960. |
| 21 | ROBINSON Allison M, HENSLEY Jesse E, Will MEDLIN J. Bifunctional catalysts for upgrading of biomass-derived oxygenates: A review[J]. ACS Catalysis, 2016, 6(8): 5026-5043. |
| 22 | HAN Qiao, REHMAN Mooeez Ur, WANG Junhu, et al. The synergistic effect between Ni sites and Ni-Fe alloy sites on hydrodeoxygenation of lignin-derived phenols[J]. Applied Catalysis B: Environmental, 2019, 253: 348-358. |
| 23 | YANG Jiangqian, HE Ying, HE Jiang, et al. Enhanced catalytic performance through in situ encapsulation of ultrafine Ru clusters within a high-aluminum zeolite[J]. ACS Catalysis, 2022, 12(3): 1847-1856. |
| 24 | CHEN Shanshuai, WANG Weichen, LI Xue, et al. Regulating the nanoscale intimacy of metal and acidic sites in Ru/γ-Al2O3 for the selective conversions of lignin-derived phenols to jet fuels[J]. Journal of Energy Chemistry, 2022, 66: 576-586. |
| 25 | WANG Huarui, WANG Shenao, GUO Longhui, et al. Hierarchical ZSM-5 supported Ni catalysts for hydrodeoxygenation of phenolics: Effect of reactant volumes and substituents[J]. Chemical Engineering Journal, 2023, 455: 140647. |
| 26 | DUAN Haohong, DONG Juncai, GU Xianrui, et al. Hydrodeoxygenation of water-insoluble bio-oil to alkanes using a highly dispersed Pd-Mo catalyst[J]. Nature Communications, 2017, 8(1): 591. |
| 27 | WANG Hui, ZHAO Wenru, REHMAN Mooeez Ur, et al. Copper phyllosilicate nanotube catalysts for the chemosynthesis of cyclohexane via hydrodeoxygenation of phenol[J]. ACS Catalysis, 2022, 12(8): 4724-4736. |
| 28 | HERRERA C, GHAMPSON I T, CRUCES K, et al. Valorization of biomass derivatives through the conversion of phenol over silica-supported Mo-Re oxide catalysts[J]. Fuel, 2020, 259: 116245. |
| 29 | ZHANG Jianghao, LI Junrui, SUDDUTH Berlin, et al. Enhanced selective hydrogenolysis of phenolic C—O bonds over graphene-covered Fe-Co alloy catalysts[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(26): 8588-8596. |
| 30 | ABREU TELES Camila, CIOTONEA Carmen, LE VALANT Anthony, et al. Optimization of catalyst activity and stability in the m-cresol hydrodeoxygenation through Ni particle size control[J]. Applied Catalysis B: Environmental, 2023, 338: 123030. |
| 31 | CUI Beilei, WANG Hua, HAN Jinyu, et al. Crystal-phase-depended strong metal-support interactions enhancing hydrodeoxygenation of m-cresol on Ni/TiO2 catalysts[J]. Journal of Catalysis, 2022, 413: 880-890. |
| 32 | ZHANG Jimei, SHI Yanchun, WU Bi, et al. Highly stable and selective catalysts for m-cresol hydrogenolysis to aromatics[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(25): 9382-9393. |
| 33 | ZHOU Wei, ZHANG Tianyu, YANG Feifei. Facile synthesis of highly defective MoS x O y catalysts by oxygen etching-reduction for efficient m-cresol hydrodeoxygenation[J]. Industrial & Engineering Chemistry Research, 2023, 62(27): 10409-10418. |
| 34 | ZHANG Yijin, LIU Tangkang, JIA Hongyan, et al. Brønsted acid-enhanced CoMoS catalysts for hydrodeoxygenation reactions[J]. Catalysis Science & Technology, 2022, 12(11): 3426-3430. |
| 35 | ZHANG Jianghao, SUN Junming, WANG Yong. Recent advances in the selective catalytic hydrodeoxygenation of lignin-derived oxygenates to arenes[J]. Green Chemistry, 2020, 22(4): 1072-1098. |
| 36 | ZHANG Jimei, DUAN Feng, XIE Yongbing, et al. Encapsulated Ni nanoparticles within silicalite-1 crystals for upgrading phenolic compounds to arenes[J]. Industrial & Engineering Chemistry Research, 2021, 60(38): 13790-13801. |
| 37 | WANG Xiaofei, ZHOU Wei, WANG Yue, et al. Synergistic effect for selective hydrodeoxygenation of anisole over Cu-ReO x /SiO2 [J]. Catalysis Today, 2021, 365: 223-234. |
| 38 | JIANG Sinan, JI Na, DIAO Xinyong, et al. Vacancy engineering in transition metal sulfide and oxide catalysts for hydrodeoxygenation of lignin-derived oxygenates[J]. ChemSusChem, 2021, 14(20): 4377-4396. |
| 39 | YANG Wenjuan, ZHU Yongfa, YOU Fei, et al. Insights into the surface-defect dependence of molecular oxygen activation over birnessite-type MnO2 [J]. Applied Catalysis B: Environmental, 2018, 233: 184-193. |
| 40 | WANG Xiaofei, FENG Shixiang, WANG Yue, et al. Enhanced hydrodeoxygenation of lignin-derived anisole to arenes catalyzed by Mn-doped Cu/Al2O3 [J]. Green Energy & Environment, 2023, 8(3): 927-937. |
| 41 | ZHANG Jianghao, SUN Junming, KOVARIK Libor, et al. Surface engineering of earth-abundant Fe catalysts for selective hydrodeoxygenation of phenolics in liquid phase[J]. Chemical Science, 2020, 11(23): 5874-5880. |
| 42 | ZHANG Jianghao, SUDDUTH Berlin, SUN Junming, et al. Elucidating the active site and the role of alkali metals in selective hydrodeoxygenation of phenols over iron-carbide-based catalyst[J]. ChemSusChem, 2021, 14(20): 4546-4555. |
| 43 | WANG Xiaofei, HAN Xiaoxue, KANG Li, et al. Regulating electronic environment on alkali metal-doped Cu@NS-SiO2 for selective anisole hydrodeoxygenation[J]. Green Chemical Engineering, 2023, 4(3): 294-302. |
| 44 | Hadi ALI, VANDEVYVERE Tom, LAUWAERT Jeroen, et al. Enhancing the anisole hydrodeoxygenation activity over Ni/Nb2O5- x by tuning the oxophilicity of the support[J]. Catalysis Science & Technology, 2023, 13(4): 1140-1153. |
| 45 | VANDEVYVERE Tom, SABBE Maarten K, MENDES Pedro S F, et al. NiCu-based catalysts for the low-temperature hydrodeoxygenation of anisole: Effect of the metal ratio on SiO2 and γ-Al2O3 supports[J]. Green Carbon, 2023, 1(2): 170-184. |
| 46 | CAI Zhe, WANG Fumin, ZHANG Xubin, et al. Selective hydrodeoxygenation of guaiacol to phenolics over activated carbon supported molybdenum catalysts[J]. Molecular Catalysis, 2017, 441: 28-34. |
| 47 | ZHANG Yaowen, FAN Guoli, YANG Lan, et al. Cooperative effects between Ni-Mo alloy sites and defective structures over hierarchical Ni-Mo bimetallic catalysts enable the enhanced hydrodeoxygenation activity[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(34): 11604-11615. |
| 48 | LI Rongxuan, QIU Jiajian, CHEN Hongquan, et al. Hydrodeoxygenation of phenolic compounds and raw lignin-oil over bimetallic RuNi catalyst: An experimental and modeling study focusing on adsorption properties[J]. Fuel, 2020, 281: 118758. |
| 49 | ZHANG Xing, WU Jingfeng, LI Tian, et al. Selective hydrodeoxygenation of lignin-derived phenolics to cycloalkanes over highly stable NiAl2O4 spinel-supported bifunctional catalysts[J]. Chemical Engineering Journal, 2022, 429: 132181. |
| 50 | SHU Riyang, LI Rongxuan, LIN Biqin, et al. High dispersed Ru/SiO2-ZrO2 catalyst prepared by polyol reduction method and its catalytic applications in the hydrodeoxygenation of phenolic compounds and pyrolysis lignin-oil[J]. Fuel, 2020, 265: 116962. |
| 51 | HU Lin, WEI Xianyong, and ZONG Zhiming. Ru/Hβ catalyst prepared by the deposition-precipitation method for enhancing hydrodeoxygenation ability of guaiacol and lignin-derived bio-oil to produce hydrocarbons[J]. Journal of the Energy Institute, 2021, 97: 48-57. |
| 52 | YANG Zhi, LUO Bowen, SHU Riyang, et al. Synergistic effect of active metal-acid sites on hydrodeoxygenation of lignin-derived phenolic compounds under mild conditions using Ru/C-HPW catalyst[J]. Fuel, 2022, 319: 123617. |
| 53 | ZHONG Zhuojie, LI Junxuan, JIAN Minyin, et al. Hydrodeoxygenation of lignin-derived phenolic compounds over Ru/TiO2 catalyst: Effect of TiO2 morphology[J]. Fuel, 2023, 333: 126241. |
| 54 | CHEN Qiang, CAI Chiliu, ZHANG Xinghua, et al. Amorphous FeNi-ZrO2-catalyzed hydrodeoxygenation of lignin-derived phenolic compounds to naphthenic fuel[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(25): 9335-9345. |
| 55 | XIANG Liang, FAN Guoli, YANG Lan, et al. Structure-tunable pompon-like RuCo catalysts: Insight into the roles of atomically dispersed Ru-Co sites and crystallographic structures for guaiacol hydrodeoxygenation[J]. Journal of Catalysis, 2021, 398: 76-88. |
| 56 | VERMA Anand Mohan, KISHORE Nanda. Gas phase conversion of eugenol into various hydrocarbons and platform chemicals[J]. RSC Advances, 2017, 7(5): 2527-2543. |
| 57 | Ana BJELIĆ, GRILC Miha, LIKOZAR Blaž. Catalytic hydrogenation and hydrodeoxygenation of lignin-derived model compound eugenol over Ru/C: Intrinsic microkinetics and transport phenomena[J]. Chemical Engineering Journal, 2018, 333: 240-259. |
| 58 | LI Zhiqin, LI Zongxuan, WU Meng, et al. Selective hydrodeoxygenation of lignin-derived eugenol to propylcyclohexane over triazine polymer derived Co/NC-T catalyst[J]. Molecular Catalysis, 2024, 557: 113987. |
| 59 | SHU Riyang, ZHONG Zhuojie, YOU Hongyun, et al. Hydrodeoxygenation of lignin-derived phenolic compounds over Ru/TiO2-CeO2 catalyst prepared by photochemical reduction method[J]. Journal of the Energy Institute, 2021, 99: 1-8. |
| 60 | LI Xiangping, YIN Han, ZHANG Jianguang, et al. Effect of organic template removal approaches on physiochemical characterization of Ni/Al-SBA-15 and eugenol hydrodeoxygenation[J]. Journal of Solid State Chemistry, 2020, 282: 121063. |
| 61 | LI Xiangping, CHEN Lei, CHEN Guanyi, et al. The relationship between acidity, dispersion of nickel, and performance of Ni/Al-SBA-15 catalyst on eugenol hydrodeoxygenation[J]. Renewable Energy, 2020, 149: 609-616. |
| 62 | KIM Hyungjoo, YANG Seungdo, Yong Hyun LIM, et al. Upgrading bio-oil model compound over bifunctional Ru/HZSM-5 catalysts in biphasic system: Complete hydrodeoxygenation of vanillin[J]. Journal of Hazardous Materials, 2022, 423: 126525. |
| 63 | SUN Mengya, ZHANG Yanfei, LIU Wang, et al. Synergy of metallic Pt and oxygen vacancy sites in Pt-WO3- x catalysts for efficiently promoting vanillin hydrodeoxygenation to methylcyclohexane[J]. Green Chemistry, 2022, 24(24): 9489-9495. |
| 64 | WANG Liang, ZHANG Jian, YI Xianfeng, et al. Mesoporous ZSM-5 zeolite-supported Ru nanoparticles as highly efficient catalysts for upgrading phenolic biomolecules[J]. ACS Catalysis, 2015, 5(5): 2727-2734. |
| 65 | YUE Xiaokang, ZHANG Shuai, SHANG Ningzhao, et al. Porous organic polymer supported PdAg bimetallic catalyst for the hydrodeoxygenation of lignin-derived species[J]. Renewable Energy, 2020, 149: 600-608. |
| 66 | ALIJANI Shahram, CAPELLI Sofia, EVANGELISTI Claudio, et al. Influence of carbon support properties in the hydrodeoxygenation of vanillin as lignin model compound[J]. Catalysis Today, 2021, 367: 220-227. |
| 67 | ARORA Shalini, GUPTA Neeraj, SINGH Vasundhara. Improved Pd/Ru metal supported graphene oxide nano-catalysts for hydrodeoxygenation (HDO) of vanillyl alcohol, vanillin and lignin[J]. Green Chemistry, 2020, 22(6): 2018-2027. |
| 68 | YUE Xiaokang, ZHANG Lihong, SUN Lixia, et al. Highly efficient hydrodeoxygenation of lignin-derivatives over Ni-based catalyst[J]. Applied Catalysis B: Environmental, 2021, 293: 120243. |
| 69 | ZHANG Longkang, SHANG Ningzhao, GAO Shutao, et al. Atomically dispersed Co catalyst for efficient hydrodeoxygenation of lignin-derived species and hydrogenation of nitro-aromatics[J]. ACS Catalysis, 2020, 10(15): 8672-8682. |
| 70 | ZHAI Yingying, CHU Minzhe, SHANG Ningzhao, et al. Bimetal Co8Ni2 catalyst supported on chitin-derived N-containing carbon for upgrade of biofuels[J]. Applied Surface Science, 2020, 506: 144681. |
| 71 | VERMA Deepak, INSYANI Rizki, CAHYADI Handi Setiadi, et al. Ga-doped Cu/H-nanozeolite-Y catalyst for selective hydrogenation and hydrodeoxygenation of lignin-derived chemicals[J]. Green Chemistry, 2018, 20(14): 3253-3270. |
| 72 | MUKHERJEE Deboshree, SINGURU Ramana, VENKATASWAMY Perala, et al. Ceria promoted Cu-Ni/SiO2 catalyst for selective hydrodeoxygenation of vanillin[J]. ACS Omega, 2019, 4(3): 4770-4778. |
| 73 | QIU Zegang, HE Xiaoxia, LI Zhiqin, et al. CoZn/N-Doped porous carbon derived from bimetallic zeolite imidazolate framework/g-C3N4 for efficient hydrodeoxygenation of vanillin[J]. Catalysis Science & Technology, 2022, 12(16): 5178-5188. |
| 74 | WANG Min, LIU Meijiang, LI Hongji, et al. Dealkylation of lignin to phenol via oxidation-hydrogenation strategy[J]. ACS Catalysis, 2018, 8(8): 6837-6843. |
| 75 | WONG Sie Shing, SHU Riyang, ZHANG Jiaguang, et al. Downstream processing of lignin derived feedstock into end products[J]. Chemical Society Reviews, 2020, 49(15): 5510-5560. |
| 76 | LI Changzhi, ZHAO Xiaochen, WANG Aiqin, et al. Catalytic transformation of lignin for the production of chemicals and fuels[J]. Chemical Reviews, 2015, 115(21): 11559-11624. |
| 77 | LI Zhiyu, JIANG Enchen, XU Xiwei, et al. Hydrodeoxygenation of phenols, acids, and ketones as model bio-oil for hydrocarbon fuel over Ni-based catalysts modified by Al, La and Ga[J]. Renewable Energy, 2020, 146: 1991-2007. |
| 78 | JI Na, WANG Xingyu, WEIDENTHALER Claudia, et al. Iron(II) disulfides as precursors of highly selective catalysts for hydrodeoxygenation of dibenzyl ether into toluene[J]. ChemCatChem, 2015, 7(6): 960-966. |
| 79 | DIAO Xinyong, JI Na, LI Xinxin, et al. Fabricating high temperature stable Mo-Co9S8/Al2O3 catalyst for selective hydrodeoxygenation of lignin to arenes[J]. Applied Catalysis B: Environmental, 2022, 305: 121067. |
| 80 | JI Na, WANG Zhenjiao, DIAO Xinyong, et al. Highly selective demethylation of anisole to phenol over H4Nb2O7 modified MoS2 catalyst[J]. Catalysis Science & Technology, 2021, 11(3): 800-809. |
| 81 | JI Na, ALEMAYEHU Alazar, LI Hanyang, et al. Enhanced demethylation of aromatic ether to phenol over NiAl hydrotalcite-derived nickel sulfide catalyst[J]. Molecular Catalysis, 2023, 538: 113016. |
| 82 | XU Kaiyang, CHEN Yu, YANG Hua, et al. Partial hydrogenation of anisole to cyclohexanone in water medium catalyzed by atomically dispersed Pd anchored in the micropores of zeolite[J]. Applied Catalysis B: Environmental, 2024, 341: 123244. |
| 83 | CAO Zhengwen, ENGELHARDT Jan, DIERKS Michael, et al. Catalysis meets nonthermal separation for the production of (alkyl)phenols and hydrocarbons from pyrolysis oil[J]. Angewandte Chemie International Edition, 2017, 56(9): 2334-2339. |
| 84 | LI Congcong, NAKAGAWA Yoshinao, TAMURA Masazumi, et al. Hydrodeoxygenation of guaiacol to phenol over ceria-supported iron catalysts[J]. ACS Catalysis, 2020, 10(24): 14624-14639. |
| 85 | MAO Jingbo, ZHOU Jinxia, XIA Zhi, et al. Anatase TiO2 activated by gold nanoparticles for selective hydrodeoxygenation of guaiacol to phenolics[J]. ACS Catalysis, 2017, 7(1): 695-705. |
| 86 | WANG Xinchao, WANG Zhuangqing, ZHOU Leilei, et al. Efficient hydrodeoxygenation of guaiacol to phenol over Ru/Ti-SiO2 catalysts: The significance of defect-rich TiO x species[J]. Green Chemistry, 2022, 24(15): 5822-5834. |
| 87 | LIU Xiaohao, XU Lujiang, XU Guangyue, et al. Selective hydrodeoxygenation of lignin-derived phenols to cyclohexanols or cyclohexanes over magnetic CoN x @NC catalysts under mild conditions[J]. ACS Catalysis, 2016, 6(11): 7611-7620. |
| 88 | MORE Ganesh Sunil, SINGH Bhupendra Pratap, Rajaram BAL, et al. Fine-tuning of Ni/NiO over H-NbO x for enhanced eugenol hydrogenation through enhanced oxygen vacancies and synergistic participation of active sites[J]. Inorganic Chemistry, 2023, 62(32): 13069-13080. |
| [1] | 廖旭, 王玮, 黄文婷, 熊文涛, 王泽宇, 覃佐东, 林金清. 生物质基催化剂在二氧化碳转化为环状碳酸酯中的研究进展[J]. 化工进展, 2025, 44(2): 834-846. |
| [2] | 方碧瑶, 邱健豪, 李伊馨, 姚建峰. 木质纤维素基生物质炭改性半导体及其光催化应用[J]. 化工进展, 2025, 44(2): 957-970. |
| [3] | 祁帅杰, 黄亚继, 徐鹏程, 齐景伟, 李志远, 时浩, 赵佳琪, 高嘉炜, 刘俊, 张煜尧. 废弃木质建筑模板与典型生物质热解产物分布及特性对比[J]. 化工进展, 2025, 44(2): 1120-1128. |
| [4] | 宋顺明, 张敬雯, 张良清, 邱佳容, 陈剑锋, 曾宪海. 生物质基多元醇催化转化制备二醇[J]. 化工进展, 2025, 44(1): 228-252. |
| [5] | 李帅哲, 聂懿宸, PHIDSAVARD Keomeesay, 顾雯, 张伟, 刘娜, 徐高翔, 刘莹, 李兴勇, 陈玉保. 非贵金属催化生物质加氢脱氧制备烃基生物燃料的研究进展[J]. 化工进展, 2024, 43(S1): 225-242. |
| [6] | 韩洪晶, 车宇, 田宇轩, 王海英, 张亚男, 陈彦广. 木质素催化氢解催化剂及溶剂的研究进展[J]. 化工进展, 2024, 43(S1): 315-324. |
| [7] | 何世坤, 张荣花, 李昊阳, 潘晖, 冯君锋. 脱铝分子筛固体酸催化葡萄糖制备5-羟甲基糠醛[J]. 化工进展, 2024, 43(S1): 374-381. |
| [8] | 李新月, 李振京, 韩沂杭, 郭永强, 闫瑜, 哈力米热·卡热木拉提, 赵会吉, 柴永明, 刘东, 殷长龙. 油脂加氢脱氧生产绿色柴油催化剂的研究进展[J]. 化工进展, 2024, 43(S1): 351-364. |
| [9] | 刘振涛, 梅金林, 王春雅, 段爱军, 巩雁军, 徐春明, 王喜龙. 一步法加氢制生物航煤催化剂研究进展[J]. 化工进展, 2024, 43(9): 4909-4924. |
| [10] | 胡婷霞, 赵立欣, 姚宗路, 霍丽丽, 贾吉秀, 谢腾. 双金属催化剂在生物质焦油催化蒸汽重整领域的研究进展[J]. 化工进展, 2024, 43(8): 4354-4365. |
| [11] | 石佳博, 张宇轩, 陈雪峰, 谭蕉君. 单宁酸-纳米协同改性胶原纤维多孔材料的制备及其油水分离性能[J]. 化工进展, 2024, 43(8): 4624-4629. |
| [12] | 张子杭, 王树荣. 生物质热解转化与产物低碳利用研究进展[J]. 化工进展, 2024, 43(7): 3692-3708. |
| [13] | 王颖杰, 祝新利. 溶胶-凝胶法制备高分散Ni-Cu/SiO2 促进间甲酚直接脱氧制甲苯[J]. 化工进展, 2024, 43(7): 3824-3833. |
| [14] | 赵伟刚, 张倩倩, 蓝钰玲, 闫雯, 周晓剑, 范毜仔, 杜官本. 真空绝热板芯材的研究进展与展望[J]. 化工进展, 2024, 43(7): 3910-3922. |
| [15] | 江慧珍, 罗凯, 王艳, 费华, 吴登科, 叶卓铖, 曹雄金. 废弃生物质复合相变材料的构建与应用[J]. 化工进展, 2024, 43(7): 3934-3945. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |