化工进展 ›› 2025, Vol. 44 ›› Issue (3): 1505-1519.DOI: 10.16085/j.issn.1000-6613.2024-0456
曹涌钢1(
), 张子龙1, 李泽皓2, 李泽佑2, 谷音3, 薛葵1, 王佳亮1, 黄伟1,3(
)
收稿日期:2024-03-20
修回日期:2024-06-19
出版日期:2025-03-25
发布日期:2025-04-15
通讯作者:
黄伟
作者简介:曹涌钢(2000—),男,硕士研究生,研究方向为固体废弃物处理。E-mail:910987093@qq.com。
基金资助:
CAO Yonggang1(
), ZHANG Zilong1, LI Zehao2, LI Zeyou2, GU Yin3, XUE Kui1, WANG Jialiang1, HUANG Wei1,3(
)
Received:2024-03-20
Revised:2024-06-19
Online:2025-03-25
Published:2025-04-15
Contact:
HUANG Wei
摘要:
伴随着工业的快速发展,工业副产石膏的排放量激增,目前其以堆积填埋为主的处理方式不仅浪费了大量资源,还严重污染了生态环境。因此,大规模消纳工业副产石膏迫在眉睫。石膏物相中,α型半水石膏具有优异的性能,广泛应用于各种实际工程。利用工业副产石膏制备α型半水石膏,实现石膏的高附加值利用,具有巨大的应用价值。其中,工业副产石膏的预处理方式、α型半水石膏的制备方法及其晶型调控,是制备α型半水石膏的重要影响因素。基于此,本文针对国内外α型半水石膏的工业化来源及其制备的关键技术展开了综述:归纳了物理法及化学法等预处理方式对工业副产石膏净化与提纯的影响;讨论了α型半水石膏的结晶机理,对比分析与评估了不同的制备方法;梳理了搅拌、球磨等晶型调控方法,重点分析了转晶剂对α型半水石膏晶型的影响,并指出其转晶机制。
中图分类号:
曹涌钢, 张子龙, 李泽皓, 李泽佑, 谷音, 薛葵, 王佳亮, 黄伟. 工业副产石膏制备α型半水石膏的研究进展[J]. 化工进展, 2025, 44(3): 1505-1519.
CAO Yonggang, ZHANG Zilong, LI Zehao, LI Zeyou, GU Yin, XUE Kui, WANG Jialiang, HUANG Wei. Research progress on preparation of α-hemihydrate gypsum from industrial by-product gypsum[J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1505-1519.
| 工业副产石膏 | SO3 | CaO | Fe2O3 | SiO2 | Al2O3 | MgO | P2O5 | F | Na2O | K2O | 结晶水 | 其他 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 脱硫石膏[ | 42.30 | 36.21 | 0.32 | 0.65 | 0.25 | 0.10 | — | — | — | 0.03 | 19.62 | 0.52 |
| 脱硫石膏[ | 41.92 | 31.51 | 0.32 | 2.69 | 0.35 | 0.06 | — | — | 0.03 | 0.05 | 17.30 | — |
| 脱硫石膏[ | 42.63 | 36.87 | 0.31 | 0.73 | 0.31 | 0.11 | — | — | — | 0.04 | 14.95 | — |
| 磷石膏[ | 40.86 | 29.82 | 0.14 | 9.43 | 0.24 | 0.06 | 1.17 | 0.52 | — | — | — | — |
| 磷石膏[ | 41.39 | 30.32 | 0.15 | 6.41 | 0.47 | 0.04 | 0.58 | 0.36 | 0.07 | 0.05 | 20.16 | — |
| 磷石膏[ | 36.96 | 26.77 | 0.12 | 13.90 | 0.68 | 0.69 | 1.58 | 0.52 | — | 0.15 | 18.89 | 0.01 |
| 钛石膏[ | 38.16 | 34.49 | 11.44 | 3.27 | 1.10 | 0.29 | 0.03 | — | — | 0.21 | — | — |
| 钛石膏[ | 38.82 | 28.30 | 18.11 | 4.20 | 1.99 | 1.52 | — | — | 1.41 | — | — | 2.22 |
| 氟石膏[ | 47.81 | 44.49 | 0.68 | 0.66 | 0.56 | 0.31 | — | 3.53 | 1.88 | — | — | — |
| 柠檬石膏[ | 44.71 | 31.06 | 0.15 | 1.88 | 1.03 | 0.17 | — | — | — | 0.08 | 19.50 | — |
| 芒硝石膏[ | 38.36 | 29.78 | 2.66 | 17.09 | 5.45 | 3.56 | — | — | 0.59 | 1.16 | — | 1.35 |
| 盐石膏[ | 55.45 | 40.64 | 0.01 | 0.35 | 0.01 | 0.61 | — | — | 0.88 | 0.06 | — | — |
| 硼石膏[ | 32.17 | 37.33 | 1.08 | 13.13 | 2.39 | 3.10 | — | — | — | — | — | — |
表1 不同工业副产石膏的主要化学组分(质量分数,%)
| 工业副产石膏 | SO3 | CaO | Fe2O3 | SiO2 | Al2O3 | MgO | P2O5 | F | Na2O | K2O | 结晶水 | 其他 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 脱硫石膏[ | 42.30 | 36.21 | 0.32 | 0.65 | 0.25 | 0.10 | — | — | — | 0.03 | 19.62 | 0.52 |
| 脱硫石膏[ | 41.92 | 31.51 | 0.32 | 2.69 | 0.35 | 0.06 | — | — | 0.03 | 0.05 | 17.30 | — |
| 脱硫石膏[ | 42.63 | 36.87 | 0.31 | 0.73 | 0.31 | 0.11 | — | — | — | 0.04 | 14.95 | — |
| 磷石膏[ | 40.86 | 29.82 | 0.14 | 9.43 | 0.24 | 0.06 | 1.17 | 0.52 | — | — | — | — |
| 磷石膏[ | 41.39 | 30.32 | 0.15 | 6.41 | 0.47 | 0.04 | 0.58 | 0.36 | 0.07 | 0.05 | 20.16 | — |
| 磷石膏[ | 36.96 | 26.77 | 0.12 | 13.90 | 0.68 | 0.69 | 1.58 | 0.52 | — | 0.15 | 18.89 | 0.01 |
| 钛石膏[ | 38.16 | 34.49 | 11.44 | 3.27 | 1.10 | 0.29 | 0.03 | — | — | 0.21 | — | — |
| 钛石膏[ | 38.82 | 28.30 | 18.11 | 4.20 | 1.99 | 1.52 | — | — | 1.41 | — | — | 2.22 |
| 氟石膏[ | 47.81 | 44.49 | 0.68 | 0.66 | 0.56 | 0.31 | — | 3.53 | 1.88 | — | — | — |
| 柠檬石膏[ | 44.71 | 31.06 | 0.15 | 1.88 | 1.03 | 0.17 | — | — | — | 0.08 | 19.50 | — |
| 芒硝石膏[ | 38.36 | 29.78 | 2.66 | 17.09 | 5.45 | 3.56 | — | — | 0.59 | 1.16 | — | 1.35 |
| 盐石膏[ | 55.45 | 40.64 | 0.01 | 0.35 | 0.01 | 0.61 | — | — | 0.88 | 0.06 | — | — |
| 硼石膏[ | 32.17 | 37.33 | 1.08 | 13.13 | 2.39 | 3.10 | — | — | — | — | — | — |
| 杂质种类 | 存在形式 | 危害 |
|---|---|---|
| 磷类[ | H3PO4、H2PO4-、HPO2-、Ca3(PO4)2 | 延长凝结时间,降低产物强度 |
| 氟类[ | NaF、CaF2、Na2SiF6 | 可溶性氟会减小凝结时间并降低产物强度,难溶氟对石膏无影响 |
| 有机物类[ | C5H10O3、C2H3SN、C6H14O、C7H16O2 | 削弱晶体间的结合,降低产物强度 |
| 其他[ | 碱金属盐杂质 | 引发粉化、泛霜 |
表2 工业副产石膏的杂质及危害
| 杂质种类 | 存在形式 | 危害 |
|---|---|---|
| 磷类[ | H3PO4、H2PO4-、HPO2-、Ca3(PO4)2 | 延长凝结时间,降低产物强度 |
| 氟类[ | NaF、CaF2、Na2SiF6 | 可溶性氟会减小凝结时间并降低产物强度,难溶氟对石膏无影响 |
| 有机物类[ | C5H10O3、C2H3SN、C6H14O、C7H16O2 | 削弱晶体间的结合,降低产物强度 |
| 其他[ | 碱金属盐杂质 | 引发粉化、泛霜 |
| 63 | QIN Ji, HE Xing, CHANG Ying. Dispersibility and crystallinity of α-hemihydrate gypsum prepared by lactic acid gypsum[J]. Journal of Ceramics, 2021, 42(6): 969-976. |
| 64 | 李德星, 郭荣鑫, 林志伟, 等. 常压微波醇水法制备α半水硫酸钙晶须的研究[J]. 非金属矿, 2022, 45(1): 46-50, 55. |
| LI Dexing, GUO Rongxin, LIN Zhiwei, et al. Study on preparation of α-calcium sulfate hemihydrate whiskers by atmospheric microwave glycerol water method[J]. Non-Metallic Mines, 2022, 45(1): 46-50, 55. | |
| 65 | LIU Shuaifeng, ASSELIN Edouard, LI Zhibao. Preparation of α-high-strength hemihydrate from flue gas desulfurization gypsum in AlCl3-MgCl2 solution at atmospheric pressure[J]. Industrial & Engineering Chemistry Research, 2022, 61(37): 14110-14120. |
| 66 | SIRIMAHASAL Thanakit, KALHONG Yutthana, SIMASATITKUL Lida, et al. Modification and scale-up process of citrogypsum to α-calcium sulfate hemihydrate over sodium chloride solution[J]. Materials Science Forum, 2020, 990: 55-60. |
| 67 | WANG Wei, XIA Baolin, SUO Xinyan, et al. Facile preparation of α-calcium sulfate hemihydrate whisker from by-product gypsum in chloride-free salt solution system[J]. Journal of Environmental Chemical Engineering, 2023, 11(5): 110385. |
| 68 | GUAN Baohong, YANG Li, FU Hailu, et al. α-Calcium sulfate hemihydrate preparation from FGD gypsum in recycling mixed salt solutions[J]. Chemical Engineering Journal, 2011, 174(1): 296-303. |
| 69 | CHEN Long, YANG Lin, CAO Jianxin. Utilization of phosphogypsum to synthesize α-hemihydrate gypsum in H3PO4-H2O solution[J]. Construction and Building Materials, 2023, 368: 130453. |
| 70 | LIN Yan, SUN Hongjuan, PENG Tongjiang, et al. A simple and efficient method for preparing high-purity α-CaSO4·0.5H2O whiskers with phosphogypsum[J]. Materials, 2022, 15(11): 4028. |
| 71 | YIN Shishi, YANG Liuchun. α or β?—Hemihydrates transformed from dihydrate calcium sulfate in a salt-mediated glycerol-water solution[J]. Journal of Crystal Growth, 2020, 550: 125885. |
| 72 | 怀立业, 仲兆平, 杨宇轩. 脱硫石膏转化α-半水石膏的特征及机理:实验与模拟[J]. 化工进展, 2024, 43(8): 4694-4703. |
| HUAI Liye, ZHONG Zhaoping, YANG Yuxuan. Characteristics and mechanism of desulfurization gypsum to α-hemihydrate gypsum: Experiments and simulations[J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4694-4703. | |
| 73 | 董一苇, 徐祖顺, 杨婷婷, 等. 化学石膏制备α-半水石膏的研究进展[J]. 材料导报, 2021, 35(S2): 241-247. |
| DONG Yiwei, XU Zushun, YANG Tingting, et al. Research progress in preparation of α-hemihydrate gypsum from chemical gypsum[J]. Materials Reports, 2021, 35(S2): 241-247. | |
| 74 | AAKRITI, MAITI Soumitra, JAIN Neeraj, et al. A comprehensive review of flue gas desulphurized gypsum: Production, properties, and applications[J]. Construction and Building Materials, 2023, 393: 131918. |
| 75 | FU Hailu, JIA Caiyun, CHEN Qiaoshan, et al. Effect of particle size on the transformation kinetics of flue gas desulfurization gypsum to α-calcium sulfate hemihydrate under hydrothermal conditions[J]. Particuology, 2018, 40: 98-104. |
| 76 | 梁现红, 谭琦, 张传祥, 等. 大长径比硫酸钙晶须的制备及形貌研究[J]. 矿产保护与利用, 2017, 37(6): 87-92, 96. |
| LIANG Xianhong, TAN Qi, ZHANG Chuanxiang, et al. Study on the preparation and morphology of large aspect ratio calcium sulfate whisker[J]. Conservation and Utilization of Mineral Resources, 2017, 37(6): 87-92, 96. | |
| 77 | 禹鹤, 汤建伟, 王保明, 等. 基于响应面法的半水硫酸钙晶须制备工艺优化[J]. 人工晶体学报, 2016, 45(2): 447-453. |
| YU He, TANG Jianwei, WANG Baoming, et al. Optimization of processing conditions for preparation of calcium sulfate hemihydrate whisker based on response surface methodology[J]. Journal of Synthetic Crystals, 2016, 45(2): 447-453. | |
| 78 | YANG Lin, CAO Jianxin, LUO Tong. Effect of Mg2+, Al3+, and Fe3+ ions on crystallization of type α hemi-hydrated calcium sulfate under simulated conditions of hemi-hydrate process of phosphoric acid[J]. Journal of Crystal Growth, 2018, 486: 30-37. |
| 79 | WANG Xiao, JIN Biao, FAN Mengke, et al. A feasible route for preparation of calcium sulfate whiskers from FGD gypsum via filtrate recycle under hydro-thermal conditions[J]. Processes, 2023, 11(6): 1809. |
| 80 | 汪潇, 金彪, 张小婷, 等. 氯盐体系下阳离子对脱硫石膏晶须水热结晶的影响及其机理[J]. 化工进展, 2022, 41(7): 3957-3965. |
| WANG Xiao, JIN Biao, ZHANG Xiaoting, et al. Effect of cation on hydrothermal crystallization of desulfurized gypsum whiskers in chloride system and its mechanism[J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3957-3965. | |
| 81 | FAN Hao, SONG Xingfu, LIU Tianjie, et al. Effect of Al3+ on crystal morphology and size of calcium sulfate hemihydrate: Experimental and molecular dynamics simulation study[J]. Journal of Crystal Growth, 2018, 495: 29-36. |
| 82 | 杨娜, 肖汉宁, 郭文明. 添加剂辅助水热法制备硫酸钙晶须及生长机理研究[J]. 硅酸盐学报, 2014, 42(4): 539-544. |
| YANG Na, XIAO Hanning, GUO Wenming. Additives-assisted hydrothermal synthesis of calcium sulfate whisker and its growth mechanism[J]. Journal of the Chinese Ceramic Society, 2014, 42(4): 539-544. | |
| 83 | 汪潇, 金彪, 王宇斌, 等. 阴离子在脱硫石膏晶须水热结晶中的作用机理[J]. 高等学校化学学报, 2020, 41(3): 473-480. |
| WANG Xiao, JIN Biao, WANG Yubin, et al. Interaction mechanism of anions in hydrothermal crystallization of desulfurization gypsum whiskers[J]. Chemical Journal of Chinese Universities, 2020, 41(3): 473-480. | |
| 84 | 汪潇, 曹博伦, 金彪, 等. 添加剂调控半水石膏晶体生长研究进展[J]. 硅酸盐学报, 2020, 48(1): 94-103. |
| WANG Xiao, CAO Bolun, JIN Biao, et al. Using additives to control crystal growth of hemihydrate gypsum—A short review[J]. Journal of the Chinese Ceramic Society, 2020, 48(1): 94-103. | |
| 85 | GUAN Qingjun, HU Yuehua, TANG Honghu, et al. Preparation of α-CaSO4·½H2O with tunable morphology from flue gas desulphurization gypsum using malic acid as modifier: A theoretical and experimental study[J]. Journal of Colloid and Interface Science, 2018, 530: 292-301. |
| 86 | LI Lixia, HAO Haiqing, YUAN Zhitao. Effect of additives on the morphologies of hydrothermal products prepared from semi-dry desulfurization residues[J]. Crystals, 2018, 8(11): 417. |
| 87 | 杨林, 刘亚明, 周杰, 等. 磷石膏制备α型高强石膏转晶剂的研究[J]. 非金属矿, 2014, 37(1): 22-24. |
| YANG Lin, LIU Yaming, ZHOU Jie, et al. Study on medium crystal agent in preparation of α-high strength gypsum with phosphogypsum[J]. Non-Metallic Mines, 2014, 37(1): 22-24. | |
| 88 | 李德星. 常压微波辐照醇水体系中磷石膏制备半水硫酸钙晶须的研究[D]. 昆明: 昆明理工大学, 2022. |
| 1 | TAO Jun, WU Linhong, GU Wei, et al. Effects of continuous application flue-gas desulfurization gypsum and brackish ice on soil chemical properties and maize growth in a saline soil in coastal area of China[J]. Soil Science and Plant Nutrition, 2018, 65: 82-89. |
| 2 | WANG Yugang, WANG Zhufeng, LIANG Feng, et al. Application of flue gas desulfurization gypsum improves multiple functions of saline-sodic soils across China[J]. Chemosphere, 2021, 277: 130345. |
| 3 | ROSALES J, PÉREZ S M, CABRERA M, et al. Treated phosphogypsum as an alternative set regulator and mineral addition in cement production[J]. Journal of Cleaner Production, 2020, 244: 118752. |
| 4 | WEI Jucai, GU Yueyuan, Hang LYU, et al. A zero-emission method for recycling phosphogypsum using Na2SO4 electrolysis: Preliminary study[J]. Separation and Purification Technology, 2021, 259: 118168. |
| 5 | DUAN Zhengyang, LI Jianxi, LI Tianguo, et al. Influence of crystal modifier on the preparation of α-hemihydrate gypsum from phosphogypsum[J]. Construction and Building Materials, 2017, 133: 323-329. |
| 6 | ZHANG Jixiu, ZHANG Ye, LIU Jikang, et al. Study on the properties of gypsum-based self-leveling mortar using molybdenum tailings[J]. IOP Conference Series: Earth and Environmental Science, 2019, 330(4): 042002. |
| 7 | TRAN Dieu Linh, HONG Anh Phuong Nguyen, NGUYEN Ngoc Hoi, et al. α-Calcium sulfate hemihydrate bioceramic prepared via salt solution method to enhance bone regenerative efficiency[J]. Journal of Industrial and Engineering Chemistry, 2023, 120: 293-301. |
| 8 | 孙振平, 金惠玲, 杨海静, 等. 工业副产石膏制备高强石膏的方法及其应用技术[J]. 混凝土世界, 2024(1): 74-81. |
| SUN Zhenping, JIN Huiling, YANG Haijing, et al. Method for preparing high-strength gypsum from industrial by-product gypsum and application technology of high-strength gypsum[J]. China Concrete, 2024(1): 74-81. | |
| 9 | ZHOU Xiaohan, TANG Wenjing, HE Minqiang, et al. Combined removal of SO3 and HCl by modified Ca(OH)2 from coal-fired flue gas[J]. Science of the Total Environment, 2023, 857: 159466. |
| 10 | LIU Sen, LIU Wei, JIAO Fen, et al. Production and resource utilization of flue gas desulfurized gypsum in China—A review[J]. Environmental Pollution, 2021, 288: 117799. |
| 11 | PANTINI S, GIURATO M, RIGAMONTI L. A LCA study to investigate resource-efficient strategies for managing post-consumer gypsum waste in Lombardy region (Italy)[J]. Resources, Conservation and Recycling, 2019, 147: 157-168. |
| 12 | PEDREÑO-ROJAS M A, FOŘT J, ČERNÝ R, et al. Life cycle assessment of natural and recycled gypsum production in the Spanish context[J]. Journal of Cleaner Production, 2020, 253: 120056. |
| 13 | KORALEGEDARA Nadeesha H, PINTO Patricio X, DIONYSIOU Dionysios D, et al. Recent advances in flue gas desulfurization gypsum processes and applications—A review[J]. Journal of Environmental Management, 2019, 251: 109572. |
| 14 | FU Biao, LIU Guijian, MIAN Md Manik, et al. Characteristics and speciation of heavy metals in fly ash and FGD gypsum from Chinese coal-fired power plants[J]. Fuel, 2019, 251: 593-602. |
| 15 | 杨凤玲, 乔国鑫, 杨普, 等. 脱硫石膏制备α-半水石膏研究进展及应用[J]. 无机盐工业, 2024, 56(2): 11-20, 29. |
| YANG Fengling, QIAO Guoxin, YANG Pu, et al. Research progress and application of α-hemihydrate gypsum preparation from desulfurization gypsum[J]. Inorganic Chemicals Industry, 2024, 56(2): 11-20, 29. | |
| 16 | AMRANI Mustapha, TAHA Yassine, KCHIKACH Azzouz, et al. Phosphogypsum recycling: New horizons for a more sustainable road material application[J]. Journal of Building Engineering, 2020, 30: 101267. |
| 17 | JIANG Guanzhao, WU Aixiang, WANG Yiming, et al. The rheological behavior of paste prepared from hemihydrate phosphogypsum and tailing[J]. Construction and Building Materials, 2019, 229: 116870. |
| 18 | GUAN Qingjun, SUI Ying, ZHANG Fang, et al. Preparation of α-calcium sulfate hemihydrate from industrial by-product gypsum: A review[J]. Physicochemical Problems of Mineral Processing, 2021, 57(1): 168-181. |
| 19 | 张峻, 解维闵, 董雄波, 等. 磷石膏材料化综合利用研究进展[J]. 材料导报, 2023, 37(16): 163-174. |
| ZHANG Jun, XIE Weimin, DONG Xiongbo, et al. Research progress on comprehensive utilization of phosphogypsum for materials: A review[J]. Materials Reports, 2023, 37(16): 163-174. | |
| 20 | HE Shaokun, YANG Lin, HU Guotao, et al. Deep removal of phosphate impurities in phosphogypsum by two-step crystal transformation for use as Portland cement retarder[J]. Journal of Building Engineering, 2023, 79: 107831. |
| 21 | LU Wenda, MA Baoguo, SU Ying, et al. Preparation of α-hemihydrate gypsum from phosphogypsum in recycling CaCl2 solution[J]. Construction and Building Materials, 2019, 214: 399-412. |
| 22 | YIN Xia, MA Liping, LI Kai, et al. Preparation of phosphogypsum-based cemented paste backfill and its environmental impact based on multi-source industrial solid waste[J]. Construction and Building Materials, 2023, 404: 133314. |
| 23 | VILLALÓN FORNÉS Ignacio, Danutė VAIČIUKYNIENĖ, Dalia NIZEVIČIENĖ, et al. A method to prepare a high-strength building material from press-formed phosphogypsum purified with waste zeolite[J]. Journal of Building Engineering, 2021, 34: 101919. |
| 24 | 向仁科, 石宗利. 石膏基自流平材料的性能研究[J]. 新型建筑材料, 2022, 49(6): 28-31. |
| XIANG Renke, SHI Zongli. Study on properties of gypsum-based self-leveling material[J]. New Building Materials, 2022, 49(6): 28-31. | |
| 25 | XU Zhuoyue, WANG Xiao, JIN Biao, et al. Influence of crystal-transforming agent on the performance and mechanism of α-high-strength gypsum prepared from FGD gypsum[J]. Particuology, 2024, 87: 37-45. |
| 26 | CHEN Shiying, YUAN Hao. Characterization and optimization of eco-friendly cementitious materials based on titanium gypsum, fly ash, and calcium carbide residue[J]. Construction and Building Materials, 2022, 349: 128635. |
| 27 | GUAN Qingjun, TANG Honghu, SUN Wei, et al. Insight into influence of glycerol on preparing α-CaSO4·1/2H2O from flue gas desulfurization gypsum in glycerol-water solutions with succinic acid and NaCl[J]. Industrial & Engineering Chemistry Research, 2017, 56(35): 9831-9838. |
| 28 | JIANG Guangming, WANG Hao, CHEN Qiaoshan, et al. Preparation of alpha-calcium sulfate hemihydrate from FGD gypsum in chloride-free Ca(NO3)2 solution under mild conditions[J]. Fuel, 2016, 174: 235-241. |
| 29 | GUAN Qingjun, SUN Wei, HU Yuehua, et al. A facile method of transforming FGD gypsum to α-CaSO4·0.5H2O whiskers with cetyltrimethylammonium bromide (CTAB) and KCl in glycerol-water solution[J]. Scientific Reports, 2017, 7(1): 7085. |
| 30 | MA Baoguo, LU Wenda, SU Ying, et al. Synthesis of α-hemihydrate gypsum from cleaner phosphogypsum[J]. Journal of Cleaner Production, 2018, 195: 396-405. |
| 31 | MI Yang, CHEN Deyu, HE Yulong, et al. Morphology-controlled preparation of α-calcium sulfate hemihydrate from phosphogypsum by semi-liquid method[J]. Crystal Research and Technology, 2018, 53(1): 1700162. |
| 32 | 马磊, 盛余, 周骏宏, 等. 钛石膏综合利用及硫钙分离新工艺研究[J]. 无机盐工业, 2022, 54(7): 124-128. |
| 88 | LI Dexing. Preparation of hemihydrate calcium sulfate whiskers from phosphogypsum under atmospheric pressure microwave irradiation in glycerol water system[D]. Kunming: Kunming University of Science and Technology, 2022. |
| 89 | 江瀚宁, 李玉平, 王志云, 等. 硫酸铝、草酸钾及其共混物对α-半水石膏制备及性能的影响[J]. 无机盐工业, 2022, 54(10): 121-126. |
| JIANG Hanning, LI Yuping, WANG Zhiyun, et al. Effect of potassium oxalate and aluminum sulfate and their compounds on preparation and properties of α-hemihydrate gypsum[J]. Inorganic Chemicals Industry, 2022, 54(10): 121-126. | |
| 90 | 黎明川, 韦家崭, 陈平, 等. 转晶剂与蒸压参数对磷石膏制备α半水石膏的影响[J]. 无机盐工业, 2022, 54(8): 132-137. |
| LI Mingchuan, WEI Jiazhan, CHEN Ping, et al. Effect of crystal modifier and autoclave parameters on preparation of α-hemihydrate gypsum from phosphogypsum[J]. Inorganic Chemicals Industry, 2022, 54(8): 132-137. | |
| 32 | MA Lei, SHENG Yu, ZHOU Junhong, et al. Study on new process of comprehensive utilization and separation of sulfur and calcium of titanium gypsum[J]. Inorganic Chemicals Industry, 2022, 54(7): 124-128. |
| 33 | HE Hang, WANG Yuli, WANG Junjie, et al. Comparative study on modifications of pH-adjusted fluorogypsum by potassium carbonate and potassium bicarbonate[J]. Construction and Building Materials, 2023, 376: 131069. |
| 34 | 李莹. 工业副产石膏蒸压微晶法制备α型高强石膏及机理研究[D]. 北京: 北京科技大学, 2023. |
| LI Ying. Study on preparation and mechanism of α high-strength gypsum from industrial by-product gypsum by autoclaved microcrystalline method[D]. Beijing: University of Science and Technology Beijing, 2023. | |
| 35 | 陈青果, 刘德智, 汪初雷, 等. Ⅱ型无水芒硝石膏制备工艺研究[J]. 化工矿物与加工, 2023, 52(4): 63-69. |
| CHEN Qingguo, LIU Dezhi, WANG Chulei, et al. Study on the preparation of type Ⅱ anhydrous glauberite gypsum[J]. Industrial Minerals & Processing, 2023, 52(4): 63-69. | |
| 36 | 李志新, 徐开东, 冯浩强, 等. 玻璃纤维和硅酸钠复合对盐石膏性能的影响[J]. 硅酸盐通报, 2020, 39(4): 1243-1247. |
| LI Zhixin, XU Kaidong, FENG Haoqiang, et al. Influence of glass fiber and sodium silicate composite on the properties of salt-gypsum[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(4): 1243-1247. | |
| 37 | SEVIM Umur Korkut, OZTURK Murat, ONTURK Sadettin, et al. Utilization of boron waste borogypsum in mortar[J]. Journal of Building Engineering, 2019, 22: 496-503. |
| 38 | QI Huahui, TANG Dongjie, MA Baoguo, et al. Influence of H3PO4 and H2PO4 on the performance of PCE in hemihydrate gypsum pastes[J]. Construction and Building Materials, 2023, 394: 132062. |
| 39 | ZHOU Yanan, SHI Ying, ZHU Quanqi. Control of fluoride pollution in cemented phosphogypsum backfill by citric acid pretreatment[J]. Materials, 2023, 16(19): 6493. |
| 40 | 黄照昊, 罗康碧, 李沪萍. 磷石膏中杂质种类及除杂方法研究综述[J]. 硅酸盐通报, 2016, 35(5): 1504-1508. |
| HUANG Zhaohao, LUO Kangbi, LI Huping. Types of impurity in phosphogypsum and the method of removing impurity research review[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(5): 1504-1508. | |
| 41 | 刘猛, 王庆, 朱晨, 等. 水洗和粉磨预处理前后煅烧磷石膏的性能变化及应用[J]. 材料导报, 2022, 36(S1): 267-271. |
| LIU Meng, WANG Qing, ZHU Chen, et al. Performance changes and application of calcined phosphogypsum before and after water washing and grinding pretreatment[J]. Materials Reports, 2022, 36(S1): 267-271. | |
| 42 | LIU Dongmei, WANG Qing, XU Gang, et al. Effect of modifiers on crystalizing habit and mechanical strength of α-hemihydrate gypsum prepared from PG by an autoclaved method[J]. Construction and Building Materials, 2023, 366: 130114. |
| 43 | 郭国清, 马高飞, 李志刚, 等. 磷石膏无害化处理的方法: CN112978781A[P]. 2021-06-18. |
| GUO Guoqing, MA Gaofei, LI Zhigang, et al. Method of harmless treatment of phosphogypsum: CN112978781A[P]. 2021-06-18. | |
| 44 | DU Mingxia, WANG Jinming, DONG Faqin, et al. The study on the effect of flotation purification on the performance of α-hemihydrate gypsum prepared from phosphogypsum[J]. Scientific Reports, 2022, 12(1): 95. |
| 45 | QI Mengyao, PENG Weijun, WANG Wei, et al. Simple and efficient method for purification and recovery of gypsum from phosphogypsum: Reverse-direct flotation and mechanism[J]. Journal of Molecular Liquids, 2023, 371: 121111. |
| 46 | 何响, 阳勇. 磷石膏制备硫酸钙晶须的研究现状[J]. 磷肥与复肥, 2023, 38(5): 29-32. |
| HE Xiang, YANG Yong. Research status of preparation of calcium sulfate whisker from phosphogypsum[J]. Phosphate & Compound Fertilizer, 2023, 38(5): 29-32. | |
| 47 | CHEN Shun, CHEN Jizhan, HE Xingyang, et al. Micromicelle-mechanical coupling method for high-efficiency phosphorus removal and whiteness improvement of phosphogypsum[J]. Construction and Building Materials, 2022, 354: 129220. |
| 48 | JIAO Jiawei, SHEN Xuepeng, DING Hao, et al. Study on the hydration and properties of multiphase phosphogypsum synergistically activated by sodium sulfate and calcium sulfate whisker[J]. Construction and Building Materials, 2022, 355: 129225. |
| 49 | 顾青山, 林喜华, 赵士豪, 等. 不同预处理工艺对磷石膏性能的影响[J]. 无机盐工业, 2022, 54(4): 17-23. |
| GU Qingshan, LIN Xihua, ZHAO Shihao, et al. Effect of different pretreatment processes on properties of phosphogypsum[J]. Inorganic Chemicals Industry, 2022, 54(4): 17-23. | |
| 50 | CAO Wenxiang, YI Wei, PENG Jiahui, et al. Recycling of phosphogypsum to prepare gypsum plaster: Effect of calcination temperature[J]. Journal of Building Engineering, 2022, 45: 103511. |
| 51 | GUAN Qingjun, SUN Wei, GUAN Changping, et al. Promotion of conversion activity of flue gas desulfurization gypsum into α-hemihydrate gypsum by calcination-hydration treatment[J]. Journal of Central South University, 2019, 26(12): 3213-3224. |
| 52 | LI Xianbo, ZHANG Qin, KE Baolin, et al. Insight into the effect of maleic acid on the preparation of α-hemihydrate gypsum from phosphogypsum in Na2SO4 solution[J]. Journal of Crystal Growth, 2018, 493: 34-40. |
| 53 | VILLALÓN FORNÉS Ignacio, Viktoras DOROŠEVAS, Danutė VAIČIUKYNIENĖ, et al. The investigation of phosphogypsum specimens processed by press-forming method[J]. Waste and Biomass Valorization, 2021, 12(3): 1539-1551. |
| 54 | WANG Jinming, DONG Faqin, WANG Zhaojia, et al. A novel method for purification of phosphogypsum[J]. Physicochemical Problems of Mineral Processing, 2020, 56(5): 975-983. |
| 55 | WU Fenghui, CHEN Bangjin, QU Guangfei, et al. Harmless treatment technology of phosphogypsum: Directional stabilization of toxic and harmful substances[J]. Journal of Environmental Management, 2022, 311: 114827. |
| 56 | 汪初雷, 任浩荣, 刘德智, 等. 钛石膏除杂制备高强石膏及回收铁的工艺[J]. 化工矿物与加工, 2022, 51(5): 44-48. |
| WANG Chulei, REN Haorong, LIU Dezhi, et al. Preparation of high strength gypsum and iron recovery by removal of impurities from titanium gypsum[J]. Industrial Minerals & Processing, 2022, 51(5): 44-48. | |
| 57 | CAI Qiang, JIANG Jun, MA Bing, et al. Efficient removal of phosphate impurities in waste phosphogypsum for the production of cement[J]. Science of the Total Environment, 2021, 780: 146600. |
| 58 | YANG Baojun, DONG Yinzhe, WANG Bai nian, et al. A mild alcohol-salt route to synthesize α-hemihydrate gypsum microrods from flue gas desulfurization gypsum in large scale[J]. Materials Research Express, 2019, 6(4): 045507. |
| 59 | 桂苗苗, 丛钢. 脱硫石膏蒸压法制α半水石膏的研究[J]. 重庆建筑大学学报, 2001, 23(1): 62-65, 81. |
| GUI Miaomiao, CONG Gang. Study on the α-hemihydrate gypsum made by desulphogypsum through autoclave process[J]. Journal of Chongqing Jianzhu University, 2001, 23(1): 62-65, 81. | |
| 60 | LI Ying, NI Wen, DUAN Pengxuan, et al. Experimental study and mechanism analysis of preparation of α-calcium sulfate hemihydrate from FGD gypsum with dynamic method[J]. Materials, 2022, 15(9): 3382. |
| 61 | 陈金文, 易芸, 张慧, 等. 蒸压参数与杂质对磷石膏制备α-半水石膏的影响[J]. 无机盐工业, 2022, 54(3): 91-96. |
| CHEN Jinwen, YI Yun, ZHANG Hui, et al. Effect of autoclave parameters and impurities on preparation of α-hemihydrate gypsum from phosphogypsum[J]. Inorganic Chemicals Industry, 2022, 54(3): 91-96. | |
| 62 | JIANG Nan, ZHANG Chao, XUE Caihong, et al. In situ synthesis of hydrophobic calcium sulfate hemihydrate whiskers[J]. Materials Research Express, 2018, 5(7): 075004. |
| 63 | 秦吉, 何星, 常鹰. 乳酸石膏制备α-半水石膏的分散性与结晶性工艺研究[J]. 陶瓷学报, 2021, 42(6): 969-976. |
| [1] | 胡盼盼, 肖梦瑶, 王娜, 史吉平, 刘莉. 多酶协同预处理厨余垃圾技术优化[J]. 化工进展, 2025, 44(2): 1138-1146. |
| [2] | 郑钧译, 李明, 朱倍弘, 苏畅, 郭思含, 于麒麟, 张耀斌. 餐厨垃圾体系下的丁酸发酵强化[J]. 化工进展, 2024, 43(S1): 597-603. |
| [3] | 卞维柏, 张睿轩, 潘建明. 无机金属锂离子筛材料制备方法研究进展[J]. 化工进展, 2024, 43(8): 4173-4186. |
| [4] | 谢国平, 谭雪松, 刘鹏, 苗长林, 许光文, 庄新姝. 基于生物基衍生有机溶剂的木质纤维素预处理研究进展[J]. 化工进展, 2024, 43(6): 3347-3358. |
| [5] | 黄坤, 许明, 吴秀娟, 裴思佳, 刘大伟, 马晓迅, 徐龙. 生物质活性炭的制备与微结构特性调控研究进展[J]. 化工进展, 2024, 43(5): 2475-2493. |
| [6] | 刘昊东, 张鹏飞, 黄钰期. 三元锂电池热失控射流可视化及速度场测试[J]. 化工进展, 2024, 43(2): 703-712. |
| [7] | 高海港, 安高军, 鲁长波, 李艳香, 张玉明, 李望良. 可纺中间相沥青的研究进展[J]. 化工进展, 2024, 43(2): 1001-1012. |
| [8] | 李由, 吴越, 钟禹, 林琦璇, 任俊莉. 酸性熔盐水合物预处理麦秆高效制备木糖及其对酶解效率的影响[J]. 化工进展, 2023, 42(9): 4974-4983. |
| [9] | 陈怡欣, 甄摇摇, 陈瑞浩, 吴继伟, 潘丽美, 姚翀, 罗杰, 卢春山, 丰枫, 王清涛, 张群峰, 李小年. 铂基纳米催化剂的制备及在加氢领域的进展[J]. 化工进展, 2023, 42(6): 2904-2915. |
| [10] | 张乐乐, 钱运东, 朱华曈, 冯思龙, 杨秀娜, 于颖, 杨强, 卢浩. 加氢原料煤焦油脱水除盐预处理工艺优化限值[J]. 化工进展, 2023, 42(5): 2298-2305. |
| [11] | 张育新, 王灿, 舒文祥. 二氧化碳的还原及其利用研究进展[J]. 化工进展, 2023, 42(2): 944-956. |
| [12] | 李冬燕, 周剑, 江倩, 苗凯, 倪诗莹, 邹栋. 碳化硅陶瓷膜的制备及其应用进展[J]. 化工进展, 2023, 42(12): 6399-6408. |
| [13] | 李晋, 梁家豪, 马文峰, 郭绍辉, 王庆宏, 陈春茂. 热-碱渣预处理强化炼厂剩余活性污泥厌氧消化性能[J]. 化工进展, 2023, 42(12): 6609-6619. |
| [14] | 杨凯璐, 陈明星, 王新亚, 张威, 肖长发. 染料废水处理用纳滤膜制备及改性研究进展[J]. 化工进展, 2023, 42(10): 5470-5486. |
| [15] | 韩明阳, 乔慧, 付佳铭, 马泽雯, 王妍, 欧阳嘉. 非水溶剂预处理木质纤维原料研究进展[J]. 化工进展, 2022, 41(8): 4086-4097. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |