化工进展 ›› 2025, Vol. 44 ›› Issue (1): 192-201.DOI: 10.16085/j.issn.1000-6613.2024-0024
张强1(), 孙楠1, 郑俊杰2, 吴强1, 刘传海1, 李元吉1
收稿日期:
2024-01-04
修回日期:
2024-05-16
出版日期:
2025-01-15
发布日期:
2025-02-13
通讯作者:
张强
作者简介:
张强(1986—),教授,博士生导师,从事瓦斯灾害防治与利用、水合物技术应用研究。E-mail:zq3946630@163.com。
基金资助:
ZHANG Qiang1(), SUN Nan1, ZHENG Junjie2, WU Qiang1, LIU Chuanhai1, LI Yuanji1
Received:
2024-01-04
Revised:
2024-05-16
Online:
2025-01-15
Published:
2025-02-13
Contact:
ZHANG Qiang
摘要:
水合物法在分离瓦斯混合气体方面具有清洁、高效、安全的优势,为突破水合物储气效率的瓶颈问题,在磁力搅拌体系中考察了水合物法分离30% CH4/70% N2混合气(摩尔分数)的动力学规律与储气效率。四氢呋喃(THF)、环戊烷(CP)与四丁基溴化铵(TBAB)、四丁基氟化铵(TBAF)二元混合体系作为水合物形成热力学促进剂,0.06% L-色氨酸(Trp)作为动力学促进剂。结果表明:与THF或CP单一添加的实验体系相比,THF-TBAF或CP-TBAB、CP-TBAF体系均能延续水合物形成、提高储气量、降低形成速率,其中CP-TBAF改善效果最为明显,3h内的储气量提高了1.33倍,而水合物初期形成速率下降3倍以上。THF-TBAB-Trp、THF-TBAF-Trp体系增大了N2在水合物相的储集量,使CH4/N2的分离效果低于THF-Trp体系;CP与TBAB或TBAF在瓦斯水合分离过程中具有耦合促进作用,CP-TBAF使水合物储气量、分离因子、CH4回收率等关键指标全面提升,其中平均CH4回收率最高可达68.5%,CP-TBAF组合为突破瓦斯水合分离效率提供了参考。
中图分类号:
张强, 孙楠, 郑俊杰, 吴强, 刘传海, 李元吉. 混合热力学促进剂对水合物法分离回收瓦斯的影响[J]. 化工进展, 2025, 44(1): 192-201.
ZHANG Qiang, SUN Nan, ZHENG Junjie, WU Qiang, LIU Chuanhai, LI Yuanji. Effect of mixed thermodynamic promoters on kinetic and recovery study of hydration separation coal mine gas[J]. Chemical Industry and Engineering Progress, 2025, 44(1): 192-201.
混合热力学促进剂体系 | 相平衡条件 | ∆p/MPa | |
---|---|---|---|
peq/MPa | T/K | ||
(30%CH4/70%N2)THF-TBAB | 0.57 | 282.87 | 2.43 |
(30%CH4/70%N2)THF-TBAF | 0.57 | 282.9 | 2.43 |
(30%CH4/70%N2)CP-TBAB | 0.47 | 283.8 | 2.53 |
(30%CH4/70%N2)CP-TBAF | 0.42 | 284.49 | 2.58 |
表1 混合热力学促进剂体系生成水合物的相平衡数据表
混合热力学促进剂体系 | 相平衡条件 | ∆p/MPa | |
---|---|---|---|
peq/MPa | T/K | ||
(30%CH4/70%N2)THF-TBAB | 0.57 | 282.87 | 2.43 |
(30%CH4/70%N2)THF-TBAF | 0.57 | 282.9 | 2.43 |
(30%CH4/70%N2)CP-TBAB | 0.47 | 283.8 | 2.53 |
(30%CH4/70%N2)CP-TBAF | 0.42 | 284.49 | 2.58 |
实验 编号 | 添加剂及 摩尔分数 | 诱导时间 IT/min | t90/min | IT时刻气体消耗量/mmol·mol-1 | IT+3h时刻气体消耗量/mmol·mol-1 | 初始水合物生长速率NR30 /mmol·mol-1·h-1 | 水合物相中CH4摩尔分数/% | 分离因子 | CH4回收率/% |
---|---|---|---|---|---|---|---|---|---|
A-1 | THF(5.56%)-Trp(0.06%) | 2.70 | 54.67 | 0.19 | 26.00 | 0.68 | 54.68 | 6.61 | 67.65 |
A-2 | 1.30 | 55.00 | 0.16 | 25.23 | 0.65 | 53.50 | 6.01 | 66.36 | |
A-3 | 1.70 | 40.67 | 0.08 | 30.05 | 0.79 | 49.12 | 4.80 | 67.08 | |
均值 | 1.9(±0.72) | 50.11(±8.18) | 0.14(±0.06) | 27.09(±2.59) | 0.71(±0.07) | 52.43(±2.93) | 5.81(±0.92) | 67.03(±0.65) | |
A-4 | THF(5.56%)-TBAB(0.3%)-Trp(0.06%) | 2.30 | 476.00 | 0.02 | 17.50 | 0.21 | 40.72 | 2.23 | 50.96 |
A-5 | 2.30 | 450.67 | 0.02 | 17.46 | 0.20 | 43.25 | 2.63 | 52.68 | |
A-6 | 4.00 | 479.00 | 0.06 | 17.79 | 0.19 | 44.61 | 2.82 | 51.56 | |
均值 | 2.87(±0.98) | 468.56(±15.56) | 0.03(±0.02) | 17.58(±0.18) | 0.2(±0.01) | 42.86(±1.97) | 2.56(±0.3) | 51.73(±0.87) | |
A-7 | THF(5.56%)-TBAF(0.3%)-Trp(0.06%) | 11.00 | 277.00 | 0.04 | 24.65 | 0.15 | 37.25 | 1.89 | 56.68 |
A-8 | 16.70 | 271.67 | 0.05 | 29.36 | 0.30 | 37.02 | 1.97 | 61.55 | |
A-9 | 16.70 | 209.00 | 0.02 | 31.17 | 0.19 | 36.75 | 1.91 | 60.93 | |
均值 | 14.8(±3.29) | 252.56(±37.82) | 0.04(±0.02) | 28.39(±3.37) | 0.21(±0.08) | 37.01(±0.25) | 1.92(±0.04) | 59.72(±2.65) | |
B-1 | CP(5.56%)-Trp(0.06%) | 16.30 | 61.67 | 0.03 | 9.56 | 0.29 | 77.57 | 12.62 | 39.18 |
B-2 | 14.70 | 65.00 | 0.01 | 12.06 | 0.21 | 65.97 | 6.91 | 40.36 | |
B-3 | 12.00 | 68.33 | 0.06 | 10.65 | 0.17 | 72.63 | 10.02 | 42.40 | |
均值 | 14.33(±2.17) | 65(±3.33) | 0.03(±0.03) | 10.76(±1.25) | 0.22(±0.06) | 72.06(±5.82) | 9.85(±2.86) | 40.65(±1.63) | |
B-4 | CP(5.56%)-TBAB(0.3%)-Trp(0.06%) | 36.70 | 384.33 | 0.01 | 10.77 | 0.05 | 64.04 | 9.32 | 62.10 |
B-5 | 27.00 | 409.33 | 0.02 | 10.59 | 0.06 | 63.26 | 9.23 | 63.32 | |
B-6 | 29.30 | 436.00 | 0.02 | 9.93 | 0.03 | 62.04 | 8.81 | 63.97 | |
均值 | 31.00(±5.07) | 409.89(±25.84) | 0.02(±0.01) | 10.43(±0.44) | 0.05(±0.02) | 63.11(±1.01) | 9.12(±0.27) | 63.13(±0.95) | |
B-7 | CP(5.56%)-TBAF(0.3%)-Trp(0.06%) | 11.00 | 423.00 | 0.01 | 15.11 | 0.00 | 70.32 | 15.25 | 68.23 |
B-8 | 16.70 | 641.00 | 0.02 | 16.45 | 0.14 | 65.32 | 12.36 | 70.12 | |
B-9 | 16.70 | 467.67 | 0.01 | 10.62 | 0.06 | 63.36 | 10.24 | 67.15 | |
均值 | 14.8(±3.29) | 510.56(±115.15) | 0.01(±0.01) | 14.06(±3.05) | 0.07(±0.07) | 66.33(±3.59) | 12.62(±2.51) | 68.5(±1.50) | |
C | 纯水 | — | — | — | — | — | — | — | — |
表2 在283.2K和3.0MPa(初始压力)条件下不同体系中水合物形成动力学参数、耗气量、水合分离结果参数的实验结果
实验 编号 | 添加剂及 摩尔分数 | 诱导时间 IT/min | t90/min | IT时刻气体消耗量/mmol·mol-1 | IT+3h时刻气体消耗量/mmol·mol-1 | 初始水合物生长速率NR30 /mmol·mol-1·h-1 | 水合物相中CH4摩尔分数/% | 分离因子 | CH4回收率/% |
---|---|---|---|---|---|---|---|---|---|
A-1 | THF(5.56%)-Trp(0.06%) | 2.70 | 54.67 | 0.19 | 26.00 | 0.68 | 54.68 | 6.61 | 67.65 |
A-2 | 1.30 | 55.00 | 0.16 | 25.23 | 0.65 | 53.50 | 6.01 | 66.36 | |
A-3 | 1.70 | 40.67 | 0.08 | 30.05 | 0.79 | 49.12 | 4.80 | 67.08 | |
均值 | 1.9(±0.72) | 50.11(±8.18) | 0.14(±0.06) | 27.09(±2.59) | 0.71(±0.07) | 52.43(±2.93) | 5.81(±0.92) | 67.03(±0.65) | |
A-4 | THF(5.56%)-TBAB(0.3%)-Trp(0.06%) | 2.30 | 476.00 | 0.02 | 17.50 | 0.21 | 40.72 | 2.23 | 50.96 |
A-5 | 2.30 | 450.67 | 0.02 | 17.46 | 0.20 | 43.25 | 2.63 | 52.68 | |
A-6 | 4.00 | 479.00 | 0.06 | 17.79 | 0.19 | 44.61 | 2.82 | 51.56 | |
均值 | 2.87(±0.98) | 468.56(±15.56) | 0.03(±0.02) | 17.58(±0.18) | 0.2(±0.01) | 42.86(±1.97) | 2.56(±0.3) | 51.73(±0.87) | |
A-7 | THF(5.56%)-TBAF(0.3%)-Trp(0.06%) | 11.00 | 277.00 | 0.04 | 24.65 | 0.15 | 37.25 | 1.89 | 56.68 |
A-8 | 16.70 | 271.67 | 0.05 | 29.36 | 0.30 | 37.02 | 1.97 | 61.55 | |
A-9 | 16.70 | 209.00 | 0.02 | 31.17 | 0.19 | 36.75 | 1.91 | 60.93 | |
均值 | 14.8(±3.29) | 252.56(±37.82) | 0.04(±0.02) | 28.39(±3.37) | 0.21(±0.08) | 37.01(±0.25) | 1.92(±0.04) | 59.72(±2.65) | |
B-1 | CP(5.56%)-Trp(0.06%) | 16.30 | 61.67 | 0.03 | 9.56 | 0.29 | 77.57 | 12.62 | 39.18 |
B-2 | 14.70 | 65.00 | 0.01 | 12.06 | 0.21 | 65.97 | 6.91 | 40.36 | |
B-3 | 12.00 | 68.33 | 0.06 | 10.65 | 0.17 | 72.63 | 10.02 | 42.40 | |
均值 | 14.33(±2.17) | 65(±3.33) | 0.03(±0.03) | 10.76(±1.25) | 0.22(±0.06) | 72.06(±5.82) | 9.85(±2.86) | 40.65(±1.63) | |
B-4 | CP(5.56%)-TBAB(0.3%)-Trp(0.06%) | 36.70 | 384.33 | 0.01 | 10.77 | 0.05 | 64.04 | 9.32 | 62.10 |
B-5 | 27.00 | 409.33 | 0.02 | 10.59 | 0.06 | 63.26 | 9.23 | 63.32 | |
B-6 | 29.30 | 436.00 | 0.02 | 9.93 | 0.03 | 62.04 | 8.81 | 63.97 | |
均值 | 31.00(±5.07) | 409.89(±25.84) | 0.02(±0.01) | 10.43(±0.44) | 0.05(±0.02) | 63.11(±1.01) | 9.12(±0.27) | 63.13(±0.95) | |
B-7 | CP(5.56%)-TBAF(0.3%)-Trp(0.06%) | 11.00 | 423.00 | 0.01 | 15.11 | 0.00 | 70.32 | 15.25 | 68.23 |
B-8 | 16.70 | 641.00 | 0.02 | 16.45 | 0.14 | 65.32 | 12.36 | 70.12 | |
B-9 | 16.70 | 467.67 | 0.01 | 10.62 | 0.06 | 63.36 | 10.24 | 67.15 | |
均值 | 14.8(±3.29) | 510.56(±115.15) | 0.01(±0.01) | 14.06(±3.05) | 0.07(±0.07) | 66.33(±3.59) | 12.62(±2.51) | 68.5(±1.50) | |
C | 纯水 | — | — | — | — | — | — | — | — |
1 | EDENHOFER O, MADRUGA R P, SOKONA Y, et al. Climate change 2014: mitigation of climate change[M]. Cambridge (UK): Cambridge University Press, 2015: 46-48. |
2 | 桑树勋, 袁亮, 刘世奇, 等. 碳中和地质技术及其煤炭低碳化应用前瞻[J]. 煤炭学报, 2022, 47(4): 1430-1451. |
SANG Shuxun, YUAN Liang, LIU Shiqi, et al. Geological technology for carbon neutrality and its application prospect for low carbon coal exploitation and utilization[J]. Journal of China Coal Society, 2022, 47(4): 1430-1451. | |
3 | 游小叶. 与瓦斯共——舞产学研联动, 谱瓦斯治理利用新曲[J]. 中国高新科技, 2022(3): 5-10. |
YOU Xiaoye. Dancing with gas—Industry-academia-research linkage, a new song of gas treatment and utilization [J] China High-Tech, 2022(3): 5-10. | |
4 | 黄中伟, 李国富, 杨睿月, 等. 我国煤层气开发技术现状与发展趋势[J]. 煤炭学报, 2022, 47(9): 3212-3238. |
HUANG Zhongwei, LI Guofu, YANG Ruiyue, et al. Review and development trends of coalbed methane exploitation technology in China[J]. Journal of China Coal Society, 2022, 47(9): 3212-3238. | |
5 | 吴强, 张保勇. THF-SDS对矿井瓦斯水合分离影响研究[J]. 中国矿业大学学报, 2010, 39(4): 484-489. |
WU Qiang, ZHANG Baoyong. The effect of THF-SDS on separation of methane-hydrate from mine gas[J]. Journal of China University of Mining & Technology, 2010, 39(4): 484-489. | |
6 | ZHANG Qiang, WU Qiang, ZHANG Hui, et al. Effect of montmorillonite on hydrate-based methane separation from mine gas[J]. Journal of Central South University, 2018, 25(1): 38-50. |
7 | 魏纳, 白睿玲, 周守为, 等. 碳达峰目标下中国深海天然气水合物开发战略[J]. 天然气工业, 2022, 42(2): 156-165. |
WEI Na, BAI Ruiling, ZHOU Shouwei, et al. China’s deepwater gas hydrate development strategies under the goal of carbon peak[J]. Natural Gas Industry, 2022, 42(2): 156-165. | |
8 | 李占东, 干毕成, 李中, 等. 天然气水合物降压开采与出砂实验研究[J]. 中国矿业大学学报, 2020, 49(6): 1128-1136. |
LI Zhandong, GAN Bicheng, LI Zhong, et al. An experimental study of natural gas hydrates sand production using depressurization[J]. Journal of China University of Mining & Technology, 2020, 49(6): 1128-1136. | |
9 | 曹代勇, 李靖, 王丹, 等. 青海木里煤田天然气水合物稳定带研究[J]. 中国矿业大学学报, 2013, 42(1): 76-82. |
CAO Daiyong, LI Jing, WANG Dan, et al. Study of the gas hydrate stability zone in Muri Coalfield, Qinghai Province, China[J]. Journal of China University of Mining & Technology, 2013, 42(1): 76-82. | |
10 | LI Haoyang, LI Xiaosen, YU Yisong, et al. Morphologies, kinetics and structures of methane hydrate in the system containing tetrahydrofuran and cyclopentane[J]. Fuel, 2023, 340: 127585. |
11 | FU Juan, MO Jiamei, LIU Shijun, et al. Thermodynamic characteristics of methane hydrate formation in high-pressure microcalorimeter under different reaction kinetics[J]. Fuel, 2023, 332: 126072. |
12 | ZHANG Qiang, ZHENG Junjie, ZHANG Baoyong, et al. Coal mine gas separation of methane via clathrate hydrate process aided by tetrahydrofuran and amino acids[J]. Applied Energy, 2021, 287: 116576. |
13 | ZHENG Junjie, ZHANG Baoyong, WU Qiang, et al. Kinetic evaluation of cyclopentane as a promoter for CO2 capture via a clathrate process employing different contact modes[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(9): 11913-11921. |
14 | ZHONG Dongliang, DARABOINA Nagu, ENGLEZOS Peter. Recovery of CH4 from coal mine model gas mixture (CH4/N2) by hydrate crystallization in the presence of cyclopentane[J]. Fuel, 2013, 106: 425-430. |
15 | SUN Qiang, GUO Xuqiang, LIU Aixian, et al. Experimental study on the separation of CH4 and N2 via hydrate formation in TBAB solution[J]. Industrial & Engineering Chemistry Research, 2011, 50(4): 2284-2288. |
16 | ZHONG Dongliang, ENGLEZOS Peter. Methane separation from coal mine methane gas by tetra-n-butyl ammonium bromide semiclathrate hydrate formation[J]. Energy & Fuels, 2012, 26(4): 2098-2106. |
17 | ZHENG Junjie, BHATNAGAR Krittika, KHURANA Maninder, et al. Semiclathrate based CO2 capture from fuel gas mixture at ambient temperature: Effect of concentrations of tetra-n-butylammonium fluoride (TBAF) and kinetic additives[J]. Applied Energy, 2018, 217: 377-389. |
18 | MOHAMMADI Abolfazl. The roles TBAF and SDS on the kinetics of methane hydrate formation as a cold storage material[J]. Journal of Molecular Liquids, 2020, 309: 113175. |
19 | VELUSWAMY Hari Prakash, LEE Pei Yit, PREMASINGHE Kulesha, et al. Effect of biofriendly amino acids on the kinetics of methane hydrate formation and dissociation[J]. Industrial & Engineering Chemistry Research, 2017, 56(21): 6145-6154. |
20 | 何京玲, 诸林. SDS和THF对水合物法捕集模拟烟气中CO2的影响[J]. 石油与天然气化工, 2019, 48(2): 63-69. |
HE Jingling, ZHU Lin. Effect of SDS and THF on CO2 captured from simulated flue gas by hydrate based gas separation[J]. Chemical Engineering of Oil & Gas, 2019, 48(2): 63-69. | |
21 | LI Xiaosen, XU Chungang, CHEN Zhaoyang, et al. Synergic effect of cyclopentane and tetra-n-butyl ammonium bromide on hydrate-based carbon dioxide separation from fuel gas mixture by measurements of gas uptake and X-ray diffraction patterns[J]. International Journal of Hydrogen Energy, 2012, 37(1): 720-727. |
22 | LI Xiaosen, XU Chungang, CHEN Zhaoyang, et al. Hydrate-based pre-combustion carbon dioxide capture process in the system with tetra-n-butyl ammonium bromide solution in the presence of cyclopentane[J]. Energy, 2011, 36(3): 1394-1403. |
23 | YANG Mingjun, ZHOU Hang, WANG Pengfei, et al. Effects of additives on continuous hydrate-based flue gas separation[J]. Applied Energy, 2018, 221: 374-385. |
24 | 王银, 赵建忠, 高强, 等. L-色氨酸+四氢呋喃体系下水合物法分离煤层气研究[J]. 化学工程, 2022, 50(5): 17-21, 24. |
WANG Yin, ZHAO Jianzhong, GAO Qiang, et al. Separation of coalbed methane by hydrates method in L-tryptophan+tetrahydrofuran system[J]. Chemical Engineering (China), 2022, 50(5): 17-21, 24. | |
25 | 吕秋楠, 李小森, 李刚, 等. 水合物法分离低浓度煤层气中的甲烷[J]. 过程工程学报, 2019, 19(6): 1129-1134. |
Qiunan LYU, LI Xiaosen, LI Gang, et al. Separation of methane from low concentration coal bed methane by hydrate-based process[J]. The Chinese Journal of Process Engineering, 2019, 19(6): 1129-1134. | |
26 | 王燕鸿, 姚凯, 郎雪梅, 等. 高含水油包水乳液的水合物储气性能研究[J]. 化工学报, 2021, 72(9): 4872-4880. |
WANG Yanhong, YAO Kai, LANG Xuemei, et al. Investigation on hydrate-based methane storage properties in water-in-oil emulsion with high water content[J]. CIESC Journal, 2021, 72(9): 4872-4880. | |
27 | VELUSWAMY Hari Prakash, KUMAR Rajnish, LINGA Praveen. Hydrogen storage in clathrate hydrates: Current state of the art and future directions[J]. Applied Energy, 2014, 122: 112-132. |
28 | GAIKWAD Namrata, BHATTACHARJEE Gaurav, SANGWAI Jitendra S, et al. Kinetic and morphology study of equimolar CO2-CH4 hydrate formation in the presence of cyclooctane and L-tryptophan[J]. Energy & Fuels, 2021, 35(1): 636-648. |
29 | BABU Ponnivalavan, KUMAR Rajnish, LINGA Praveen. A new porous material to enhance the kinetics of clathrate process: Application to precombustion carbon dioxide capture[J]. Environmental Science & Technology, 2013, 47(22): 13191-13198. |
30 | LINGA Praveen, ADEYEMO Adebola, ENGLEZOS Peter. Medium-pressure clathrate hydrate/membrane hybrid process for postcombustion capture of carbon dioxide[J]. Environmental Science & Technology, 2008, 42(1): 315-320. |
31 | 徐纯刚, 李小森, 陈朝阳. 水合物法分离二氧化碳的研究现状[J]. 化工进展, 2011, 30(4): 701-708. |
XU Chungang, LI Xiaosen, CHEN Zhaoyang. Research on hydrate-based carbon dioxide separation[J]. Chemical Industry and Engineering Progress, 2011, 30(4): 701-708. | |
32 | FAN Shuanshi, LI Shifeng, WANG Jingqu, et al. Efficient capture of CO2 from simulated flue gas by formation of TBAB or TBAF semiclathrate hydrates[J]. Energy & Fuels, 2009, 23(8): 4202-4208. |
33 | SÁNCHEZ-MORA María F, GALICIA-LUNA Luis A, Alfredo PIMENTEL-RODAS, et al. Experimental determination of gas hydrates dissociation conditions in CO2/N2+ethanol/1-propanol/TBAB/TBAF+water systems[J]. Journal of Chemical & Engineering Data, 2019, 64(2): 763-770. |
34 | SLOAN E Dendy. Introductory overview: Hydrate knowledge development[J]. American Mineralogist, 2004, 89(8/9): 1155-1161. |
35 | ZHANG Jibao, LI Yan, YIN Zhenyuan, et al. Coupling amino acid L-Val with THF for superior hydrogen hydrate kinetics: Implication for hydrate-based hydrogen storage[J]. Chemical Engineering Journal, 2023, 467: 143459. |
36 | LIU Xuejian, LI Yan, CHEN Guangjin, et al. Coupling amino acid with THF for the synergistic promotion of CO2 hydrate micro kinetics: Implication for hydrate-based CO2 sequestration[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(15): 6057-6069. |
37 | ZHANG Qiang, ZHENG Junjie, ZHANG Baoyong, et al. Kinetic evaluation of hydrate-based coalbed methane recovery process promoted by structure II thermodynamic promoters and amino acids[J]. Energy, 2023, 274: 127322. |
38 | SUN Qiang, AZAMAT Amankulov, CHEN Bo, et al. The effects of alkyl polyglucosides on the formation of CH4 hydrate and separation of CH4/N2 via hydrates formation[J]. Separation Science and Technology, 2020, 55(1): 81-87. |
[1] | 李琢宇, 余美琪, 陈孝彦, 胡若晖, 王庆宏, 陈春茂, 詹亚力. 炼油废催化剂吸附去除水中硝基苯的特性与机制[J]. 化工进展, 2025, 44(2): 1076-1087. |
[2] | 李依梦, 陈运全, 何畅, 张冰剑, 陈清林. 基于物理信息神经网络的甲烷无氧芳构化反应的正反问题[J]. 化工进展, 2024, 43(9): 4817-4823. |
[3] | 何海霞, 万亚萌, 李帆帆, 牛心雨, 张静雯, 李涛, 任保增. 盐酸萘甲唑啉在甲醇-乙酸乙酯体系中的动力学及结晶工艺[J]. 化工进展, 2024, 43(8): 4230-4245. |
[4] | 殷晨阳, 刘永峰, 陈睿哲, 张璐, 宋金瓯, 刘海峰. 基于量子化学计算的正己烷热解反应动力学模拟[J]. 化工进展, 2024, 43(8): 4273-4282. |
[5] | 谢娟, 贺文, 赵勖丞, 李帅辉, 卢真真, 丁哲宇. 分子动力学模拟在沥青体系中的应用研究进展[J]. 化工进展, 2024, 43(8): 4432-4449. |
[6] | 刘玉灿, 高中鲁, 徐心怡, 纪现国, 张岩, 孙洪伟, 王港. 钙改性水葫芦基生物炭吸附水中敌草隆的效能与机理[J]. 化工进展, 2024, 43(8): 4630-4641. |
[7] | 曾武清, 王予, 卜庆国, 马硕, 白东明, 张宗建, 张鹏, 马丹丹, 王圣博, 王润其, 武丽雯, 刘晨, 马洪亭. 陈腐垃圾掺烧对垃圾炉焚烧特性的影响[J]. 化工进展, 2024, 43(8): 4642-4653. |
[8] | 怀立业, 仲兆平, 杨宇轩. 脱硫石膏转化α-半水石膏的特征及机理:实验与模拟[J]. 化工进展, 2024, 43(8): 4694-4703. |
[9] | 丁路, 王培尧, 孔令学, 白进, 于广锁, 李文, 王辅臣. 煤气化过程反应模型研究进展[J]. 化工进展, 2024, 43(7): 3593-3612. |
[10] | 曹景沛, 姚乃瑜, 庞新博, 赵小燕, 赵静平, 蔡士杰, 徐敏, 冯晓博, 伊凤娇. 煤热解研究进展及其发展历程[J]. 化工进展, 2024, 43(7): 3620-3636. |
[11] | 顾颂琦, 孙凡飞, 韦尧, 宋兴飞, 南兵, 李丽娜, 黄宇营. 时间分辨热化学原位XAFS方法[J]. 化工进展, 2024, 43(7): 3747-3755. |
[12] | 张昊, 陆小明. 纳米钛酸钡前体热分解反应动力学及颗粒演化机理[J]. 化工进展, 2024, 43(7): 3987-3995. |
[13] | 张东旭, 刘成, 宋乐春, 黄启玉, 王唯. 乳状液体系中气体水合物成核过程研究进展[J]. 化工进展, 2024, 43(6): 3007-3020. |
[14] | 马栋, 解桂林, 田治华, 王勤辉, 张建国, 宋慧林, 钟晋. 流化床中煤气化细渣高温还原磷石膏过程[J]. 化工进展, 2024, 43(6): 3479-3491. |
[15] | 江安迪, 丁雪兴, 王世鹏, 丁俊华, 力宁. 超临界CO2干气密封热动力学性能研究进展[J]. 化工进展, 2024, 43(5): 2354-2369. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 15
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |