化工进展 ›› 2024, Vol. 43 ›› Issue (11): 6039-6048.DOI: 10.16085/j.issn.1000-6613.2023-1811

• 化工过程与装备 • 上一篇    

膜接触器内TETA-DEEA-TMS-H2O相分离捕获剂吸收CO2传质性能

吴大卫1(), 尹一涵2, 曹智勇2, 林海周1, 范永春1, 高红霞2(), 梁志武2   

  1. 1.中国能源建设集团广东省电力设计研究院有限公司,广东 广州 510663
    2.湖南大学二氧化碳捕获与封存国际合作中心,化石能源低碳化高效利用湖南省重点实验室,湖南大学化学化工学院,湖南 长沙 410082
  • 收稿日期:2023-10-16 修回日期:2024-01-12 出版日期:2024-11-15 发布日期:2024-12-07
  • 通讯作者: 高红霞
  • 作者简介:吴大卫(1993—),男,博士,研究方向为二氧化碳捕获技术。E-mail:wudawei@gedi.com.cn
  • 基金资助:
    中国能建广东院院级科技项目(EV11211W)

Experimental study on CO2 mass transfer performance of TETA-DEEA-TMS-H2O phase separation absorbent in hollow fiber membrane contactor

WU Dawei1(), YIN Yihan2, CAO Zhiyong2, LIN Haizhou1, FAN Yongchun1, GAO Hongxia2(), LIANG Zhiwu2   

  1. 1.China Energy Construction Group Guangdong Electric Power Design and Research Institute Co. , Ltd. , Guangzhou 510663, Guangdong, China
    2.Joint International Center for CO2 Capture and Storage (iCCS)/Hunan Provincial Key Laboratory for Cost-effective Utilization of Fossil Fuel Aimed at Reducing CO2 Emissions/College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, China
  • Received:2023-10-16 Revised:2024-01-12 Online:2024-11-15 Published:2024-12-07
  • Contact: GAO Hongxia

摘要:

化学吸收法特别是胺法捕获燃烧后尾气中的CO2目前最具产业化应用前景。然而,传统胺溶液[以30%单乙醇胺(MEA)为基准]存在再生能耗高等难题,在填料塔内吸收CO2可能会存在液泛、发泡、夹带等操作运行问题。胺基相分离型CO2吸收剂吸收CO2后,仅需送富CO2相溶液去解吸,有望大幅降低CO2解吸能耗。本文通过高效胺基相分离型捕获剂耦合中空纤维膜接触器强化CO2吸收传质。首先,利用CO2吸收-解吸筛选装置探究了几种吸收剂的CO2吸收-解吸综合性能和分相特性,实验结果表明三乙烯四胺(TETA)-N,N-二乙基乙醇胺(DEEA)-环丁砜(TMS)-水具有较好的分相性能和CO2捕获性能。然后,在中空纤维膜接触器内研究了CO2负载量、TETA浓度、液相进料温度、液体流速、进口气速和CO2分压对TETA-DEEA-TMS-H2O相分离吸收剂CO2吸收通量的影响规律。结果表明:CO2吸收通量随CO2负载量的增加而降低,随液相进料温度、液体流速、进口气速和CO2分压的增大而增大,由于分相原因使CO2吸收通量随TETA浓度的增加呈现先增大后减小的趋势;CO2脱除率与进口气速和CO2分压呈负相关关系。最后,建立了较准确的气相总传质系数KG的预测模型,其绝对平均误差为11.94%。

关键词: 二氧化碳, 相分离型吸收剂, 膜接触器, 吸收-解吸, 传质

Abstract:

Chemical absorption methods, especially the amine method, are currently the most promising for industrialization of CO2 capture in post-combustion exhaust gases. However, traditional amine solutions [based on 30% monoethanolamine (MEA)] have high energy consumption for regeneration, and CO2 absorption in packed towers may have operational problems such as liquid flooding, foaming, and entrainment. The amine-based phase separation CO2 absorbent is expected to significantly reduce CO2 desorption energy consumption, because only the CO2-rich phase solution needs to be sent for desorption. In this paper, the CO2 absorption mass transfer was enhanced by a highly efficient amine-based phase separation absorbent coupled with a hollow fiber membrane contactor. Firstly, the comprehensive CO2 absorption-desorption performance and phase-separation characteristics of several absorbents were investigated by using CO2 absorption-desorption device. The experimental results showed that triethylenetetramine (TETA)-diethylaminoethanol (DEEA)-cyclobutanesulfone (TMS)-water had better phase-separation and CO2 capture performance. Then, the effects of CO2 loading, TETA concentration, liquid phase temperature, liquid flow rate, inlet gas velocity, and CO2 partial pressure on the CO2 absorption flux of TETA-DEEA-TMS-H2O phase separation absorbent were investigated in a hollow fiber membrane contactor. The results showed that the CO2 absorption flux decreased with the increase of the CO2 loading and increases with the increase of the liquid phase temperature, liquid flow rate, inlet gas velocity, and CO2 partial pressure. At the same time, the CO2 absorption flux tended to increase and then decrease with increase of the TETA concentration due to phase separation. The CO2 removal rate had a negative correlation with the inlet gas velocity and CO2 partial pressure. Finally, a more accurate prediction model of the gas-phase total mass transfer coefficient KG was established with an absolute average deviation of 11.94%.

Key words: CO2 capture, membrane contactors, phase separation absorbent, absorption and desorption, mass transfer

中图分类号: 

京ICP备12046843号-2;京公网安备 11010102001994号
版权所有 © 《化工进展》编辑部
地址:北京市东城区青年湖南街13号 邮编:100011
电子信箱:hgjz@cip.com.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn