1 |
RENNERT Kevin, ERRICKSON Frank, PREST Brian C, et al. Comprehensive evidence implies a higher social cost of CO2 [J]. Nature, 2022, 610(7933): 687-692.
|
2 |
NGUYEN Kaven, ILIUTA Ion, BOUGIE Francis, et al. Techno-economic assessment of enzymatic CO2 capture in hollow fiber membrane contactors with immobilized carbonic anhydrase[J]. Separation and Purification Technology, 2023, 307: 122702.
|
3 |
PASHAEI Hassan, MASHHADIMOSLEM Hossein, GHAEMI Ahad. Modeling and optimization of CO2 mass transfer flux into Pz-KOH-CO2 system using RSM and ANN[J]. Scientific Reports, 2023, 13(1): 4011.
|
4 |
ZHOU Haicheng, XU Xin, CHEN Xiaochun, et al. Novel ionic liquids phase change solvents for CO2 capture[J]. International Journal of Greenhouse Gas Control, 2020, 98: 103068.
|
5 |
LING Hao, LIU Sen, GAO Hongxia, et al. Solubility of N2O, equilibrium solubility, mass transfer study and modeling of CO2 absorption into aqueous monoethanolamine (MEA)/1-dimethylamino-2-propanol (1DMA2P) solution for post-combustion CO2 capture[J]. Separation and Purification Technology, 2020, 232: 115957.
|
6 |
VAEZI Mohammadhossein, SANAEEPUR Hamidreza, AMOOGHIN Abtin Ebadi, et al. Modeling of CO2 absorption in a membrane contactor containing 3-diethylaminopropylamine (DEAPA) solvent[J]. International Journal of Greenhouse Gas Control, 2023, 127: 103938.
|
7 |
WANG Jian, YUAN Xin, ZHAO Hongkun, et al. Thermophysical properties of switchable-hydrophilicity solvent systems: N,N-Dipropyl-1-propanamine, water and carbon dioxide[J]. The Journal of Chemical Thermodynamics, 2020, 143: 106049.
|
8 |
JIN Xianhang, FANG Jiawei, MA Qian, et al. Effect of amine properties on developing CO2 phase change absorbents by means of cosolvent effect[J]. Separation and Purification Technology, 2022, 289: 120630.
|
9 |
NOZAEIM Ali Asghar, MORTAHEB Hamid Reza, TAVASOLI Ahmad, et al. CO2 absorption/desorption rates in aqueous DEEA/MDEA and sulfolane-contained hybrid solutions: Effects of physical properties and reaction rate[J]. Environmental Science and Pollution Research, 2022, 29(25): 38633-38644.
|
10 |
ZHANG Shihan, SHEN Yao, WANG Lidong, et al. Phase change solvents for post-combustion CO2 capture: Principle, advances, and challenges[J]. Applied Energy, 2019, 239: 876-897.
|
11 |
QIU Yijiao, LU Houfang, ZHU Yingming, et al. Phase-change CO2 absorption using novel 3-dimethylaminopropylamine with primary and tertiary amino groups[J]. Industrial & Engineering Chemistry Research, 2020, 59(19): 8902-8910.
|
12 |
LV Juan, LIU Sen, LING Hao, et al. Development of a promising biphasic absorbent for postcombustion CO2 capture: Sulfolane+2-(methylamino) ethanol+H2O[J]. Industrial & Engineering Chemistry Research, 2020, 59(32): 14496-14506.
|
13 |
LI Xiaoshan, LIU Ji, JIANG Wufeng, et al. Low energy-consuming CO2 capture by phase change absorbents of amine/alcohol/H2O[J]. Separation and Purification Technology, 2021, 275: 119181.
|
14 |
JI Guozhao, YANG Hang, MEMON Muhammad Zaki, et al. Recent advances on kinetics of carbon dioxide capture using solid sorbents at elevated temperatures[J]. Applied Energy, 2020, 267: 114874.
|
15 |
YE Qing, WANG Xinlei, LU Yongqi. Screening and evaluation of novel biphasic solvents for energy-efficient post-combustion CO2 capture[J]. International Journal of Greenhouse Gas Control, 2015, 39: 205-214.
|
16 |
WANG Lidong, ZHANG Yifeng, WANG Rujie, et al. Advanced monoethanolamine absorption using sulfolane as a phase splitter for CO2 capture[J]. Environmental Science & Technology, 2018, 52(24): 14556-14563.
|
17 |
LUO Weiliang, GUO Dongfang, ZHENG Jinhong, et al. CO2 absorption using biphasic solvent: Blends of diethylenetriamine, sulfolane, and water[J]. International Journal of Greenhouse Gas Control, 2016, 53: 141-148.
|
18 |
LU Jiangang, ZHENG Youfei, CHENG Mindong, et al. Effects of activators on mass-transfer enhancement in a hollow fiber contactor using activated alkanolamine solutions[J]. Journal of Membrane Science, 2007, 289(1/2): 138-149.
|
19 |
MANSOURIZADEH A, ISMAIL A F. Hollow fiber gas-liquid membrane contactors for acid gas capture: A review[J]. Journal of Hazardous Materials, 2009, 171(1/2/3): 38-53.
|
20 |
FU Kun, ZHENG Mingzhen, FU Dong. Low partial pressure CO2 capture in packed tower by EHA+Diglyme water-lean absorbent[J]. Energy, 2023, 266: 126530.
|
21 |
WANG Jia, LIU Li, WANG Li’ao, et al. Volatile methyl siloxane separation from biogas using hollow fiber membrane contactor with polyethylene glycol dimethyl ether: A numerical and experimental study[J]. Process Safety and Environmental Protection, 2023, 171: 250-259.
|
22 |
YIN Yihan, CAO Zhiyong, GAO Hongxia, et al. Experimental measurement and modeling prediction of mass transfer in a hollow fiber membrane contactor using tertiary amine solutions for CO2 absorption[J]. Industrial & Engineering Chemistry Research, 2022, 61(27): 9632-9643.
|
23 |
MOHAMMADI SAADAT Meisam, NOROUZBAHARI Somayeh, ESMAEILI Majid. CO2/N2 separation by glycerol aqueous solution in a hollow fiber membrane contactor module: CFD simulation and experimental validation[J]. Fuel, 2022, 323: 124370.
|
24 |
LIU Sen, LING Hao, LV Juan, et al. New insights and assessment of primary alkanolamine/sulfolane biphasic solutions for post-combustion CO2 capture: Absorption, desorption, phase separation, and technological process[J]. Industrial & Engineering Chemistry Research, 2019, 58(44): 20461-20471.
|
25 |
GAO Ge, GAO Hongxia, LIANG Zhiwu. Mass transfer performance and correlations for CO2 absorption into aqueous blended PG/MEA in PTFE membrane contactor[J]. Journal of Chemical Technology & Biotechnology, 2020, 95(1): 27-39.
|
26 |
CAO Fan, GAO Hongxia, GAO Ge, et al. Mass transfer performance and correlation for CO2 absorption into aqueous 1-Dimethylamino-2-propanol (1DMA2P) solution in a PTFE hollow fiber membrane contactor[J]. Chemical Engineering and Processing-Process Intensification, 2019, 136: 226-233.
|
27 |
YU Yanan, SHEN Yao, ZHOU Xiaowei, et al. Relationship between tertiary amine’s physical property and biphasic solvent’s CO2 absorption performance: Quantum calculation and experimental demonstration[J]. Chemical Engineering Journal, 2022, 428: 131241.
|
28 |
吕超, 张习文, 金理健, 等. 新型两相吸收剂-离子液体系统高效捕获CO2 [J]. 化工进展, 2023, 42(6): 3226-3232.
|
|
Chao LYU, ZHANG Xiwen, JIN Lijian, et al. Efficient capture of CO2 by a new biphasic solvent-ionic liquid system[J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3226-3232.
|
29 |
SCHOLES Colin A, SHEN Shufeng. Mass transfer correlations for membrane gas-solvent contactors undergoing carbon dioxide desorption[J]. Chinese Journal of Chemical Engineering, 2018, 26(11): 2337-2343.
|
30 |
HALIM H N A, SHARIFF A M, BUSTAM M A. High pressure CO2 absorption from natural gas using piperazine promoted 2-amino-2-methyl-1-propanol in a packed absorption column[J]. Separation and Purification Technology, 2015, 152: 87-93.
|
31 |
XU Bin, GAO Hongxia, LUO Xiao, et al. Mass transfer performance of CO2 absorption into aqueous DEEA in packed columns[J]. International Journal of Greenhouse Gas Control, 2016, 51: 11-17.
|
32 |
晏水平, 余歌, 浦吉成, 等. 沼气中CO2化学吸收传质性能分析与传质系数建模[J]. 农业机械学报, 2018, 49(7): 311-318.
|
|
YAN Shuiping, YU Ge, PU Jicheng, et al. Mass transfer performance and modeling of CO2 chemical absorption from simulated biogas[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(7): 311-318.
|
33 |
ZHANG Xu, FU Kaiyun, LIANG Zhiwu, et al. Experimental studies of regeneration heat duty for CO2 desorption from diethylenetriamine (DETA) solution in a stripper column packed with Dixon ring random packing[J]. Fuel, 2014, 136: 261-267.
|
34 |
AROONWILAS Adisorn, TONTIWACHWUTHIKUL Paitoon. Mass transfer coefficients and correlation for CO2 absorption into 2-amino-2-methyl-1-propanol (AMP) using structured packing[J]. Industrial & Engineering Chemistry Research, 1998, 37(2): 569-575.
|