化工进展 ›› 2024, Vol. 43 ›› Issue (9): 5142-5156.DOI: 10.16085/j.issn.1000-6613.2023-1476
• 材料科学与技术 • 上一篇
楼高波1,2(), 姚潇翎3, 倪静雯1, 傅深渊1,2, 刘丽娜1,2()
收稿日期:
2023-08-23
修回日期:
2023-10-12
出版日期:
2024-09-15
发布日期:
2024-09-30
通讯作者:
刘丽娜
作者简介:
楼高波(1993—),男,博士,讲师,研究方向为复合材料与胶黏剂。E-mail:1142673814@qq.com。
基金资助:
LOU Gaobo1,2(), YAO Xiaoling3, NI Jingwen1, FU Shenyuan1,2, LIU Lina1,2()
Received:
2023-08-23
Revised:
2023-10-12
Online:
2024-09-15
Published:
2024-09-30
Contact:
LIU Lina
摘要:
为了实现环氧树脂(EP)的高性能化,将插层法得到的二维云母纳米片(MNs)与增韧型阻燃剂甲基膦酸-癸二胺离子络合物(MPA-DAD)复合,制备了一种环氧树脂多功能改性材料MNs@MPA-DAD。通过力学、UL-94、极限氧指数(LOI)、热重、锥形量热以及摩擦磨损等测试研究了MNs@MPA-DAD对环氧树脂复合材料的性能影响。结果表明:MPA-DAD中的离子键可充当牺牲键,耗散能量提升韧性。相较于纯EP,添加质量分数8%的MNs@MPA-DAD,环氧树脂复合材料的拉伸和弯曲韧性分别提高了302%和268%。二维的MNs可以作为物理屏障,抑制材料燃烧过程中热量和氧气的传递过程,与MPA-DAD协同发挥阻燃机制。EP/8%MNs@MPA-DAD的极限氧指数由纯EP的20.4%提高至28.9%,残炭率由8.9%提升至14.3%,UL-94测试通过了V-0级别,热释放速率峰值(PHRR)和总热释放(THR)分别降低了34.0%和19.7%。MNs@MPA-DAD能够产生均匀的润滑转移层,减少摩擦热的产生,避免熔化磨损,进而提高环氧树脂的耐磨性。EP/8%MNs@MPA-DAD的磨损面积较纯EP降低了76.6%。
中图分类号:
楼高波, 姚潇翎, 倪静雯, 傅深渊, 刘丽娜. 离子络合物改性二维云母环氧树脂复合材料的制备及性能[J]. 化工进展, 2024, 43(9): 5142-5156.
LOU Gaobo, YAO Xiaoling, NI Jingwen, FU Shenyuan, LIU Lina. Preparation and properties of two-dimensional mica epoxy resin composite modified by ion complex[J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5142-5156.
样品 | E12/g | 双氰胺/g | 2-甲基咪唑/g | 改性剂 |
---|---|---|---|---|
纯EP | 100 | 2.5 | 0.5 | — |
EP/8%MPA-DAD | 100 | 2.5 | 0.5 | 8.9g MPA-DAD |
EP/8%GM@MPA-DAD | 100 | 2.5 | 0.5 | 8.9g GM@MPA-DAD |
EP/8%MNs@MPA-DAD | 100 | 2.5 | 0.5 | 8.9g MNs@MPA-DAD |
表1 不同环氧树脂体系的配比
样品 | E12/g | 双氰胺/g | 2-甲基咪唑/g | 改性剂 |
---|---|---|---|---|
纯EP | 100 | 2.5 | 0.5 | — |
EP/8%MPA-DAD | 100 | 2.5 | 0.5 | 8.9g MPA-DAD |
EP/8%GM@MPA-DAD | 100 | 2.5 | 0.5 | 8.9g GM@MPA-DAD |
EP/8%MNs@MPA-DAD | 100 | 2.5 | 0.5 | 8.9g MNs@MPA-DAD |
样品 | 拉伸强度 /MPa | 拉伸模量 /MPa | 拉伸韧性 /MJ·m-3 | 弯曲强度 /MPa | 弯曲模量 /GPa | 弯曲韧性 /MJ·m-3 | 冲击强度 /kJ·m-2 |
---|---|---|---|---|---|---|---|
纯EP | 46.40±1.28 | 2522±56 | 0.42±0.08 | 69.13±2.11 | 2.71±0.13 | 1.11±0.09 | 6.01±1.40 |
EP/8%MPA-DAD | 54.91±2.21 | 1875±102 | 4.69±0.18 | 82.61±2.37 | 2.30±0.09 | 7.89±0.18 | 10.24±1.73 |
EP/8%GM@MPA-DAD | 50.84±1.92 | 1827±78 | 1.21±0.13 | 82.67±1.98 | 2.37±0.08 | 6.14±0.11 | 10.58±2.13 |
EP/8%MNs@MPA-DAD | 52.13±1.74 | 1939±95 | 1.69±0.09 | 80.14±2.08 | 2.27±0.05 | 4.08±0.13 | 9.42±1.34 |
表2 纯EP及其复合材料的力学性能
样品 | 拉伸强度 /MPa | 拉伸模量 /MPa | 拉伸韧性 /MJ·m-3 | 弯曲强度 /MPa | 弯曲模量 /GPa | 弯曲韧性 /MJ·m-3 | 冲击强度 /kJ·m-2 |
---|---|---|---|---|---|---|---|
纯EP | 46.40±1.28 | 2522±56 | 0.42±0.08 | 69.13±2.11 | 2.71±0.13 | 1.11±0.09 | 6.01±1.40 |
EP/8%MPA-DAD | 54.91±2.21 | 1875±102 | 4.69±0.18 | 82.61±2.37 | 2.30±0.09 | 7.89±0.18 | 10.24±1.73 |
EP/8%GM@MPA-DAD | 50.84±1.92 | 1827±78 | 1.21±0.13 | 82.67±1.98 | 2.37±0.08 | 6.14±0.11 | 10.58±2.13 |
EP/8%MNs@MPA-DAD | 52.13±1.74 | 1939±95 | 1.69±0.09 | 80.14±2.08 | 2.27±0.05 | 4.08±0.13 | 9.42±1.34 |
样品 | Tonset/℃ | Tmax/℃ | Yc/% |
---|---|---|---|
纯EP | 375.0 | 437.7 | 8.9 |
EP/8%MPA-DAD | 311.8 | 394.3 | 13.0 |
EP/8%GM@MPA-DAD | 309.7 | 394.8 | 13.4 |
EP/8%MNs@MPA-DAD | 321.2 | 399.3 | 14.3 |
表3 纯EP及其复合材料的TGA数据
样品 | Tonset/℃ | Tmax/℃ | Yc/% |
---|---|---|---|
纯EP | 375.0 | 437.7 | 8.9 |
EP/8%MPA-DAD | 311.8 | 394.3 | 13.0 |
EP/8%GM@MPA-DAD | 309.7 | 394.8 | 13.4 |
EP/8%MNs@MPA-DAD | 321.2 | 399.3 | 14.3 |
样品 | UL-94 | LOI/% | ||
---|---|---|---|---|
(t1/t2)/s | 熔滴 | 等级 | ||
纯EP | >30 | 有 | NR | 20.4±0.3 |
EP/8%MPA-DAD | 4.9/1.1 | 无 | V-0 | 29.0±0.3 |
EP/8%GM@MPA-DAD | 7.5/2.1 | 无 | V-0 | 28.6±0.3 |
EP/8%MNs@MPA-DAD | 5.3/2.1 | 无 | V-0 | 28.9±0.3 |
表4 环氧树脂复合材料的LOI和UL-94测试结果
样品 | UL-94 | LOI/% | ||
---|---|---|---|---|
(t1/t2)/s | 熔滴 | 等级 | ||
纯EP | >30 | 有 | NR | 20.4±0.3 |
EP/8%MPA-DAD | 4.9/1.1 | 无 | V-0 | 29.0±0.3 |
EP/8%GM@MPA-DAD | 7.5/2.1 | 无 | V-0 | 28.6±0.3 |
EP/8%MNs@MPA-DAD | 5.3/2.1 | 无 | V-0 | 28.9±0.3 |
样品 | TTI/s | TPHRR/s | PHRR/kW·m-2 | THR/MJ·m-2 | PSPR/m2·s-1 | TSP/m2 | FIGRA/kW·m-2·s-1 |
---|---|---|---|---|---|---|---|
纯EP | 62±2 | 139±4 | 1095±29 | 117.6±2.2 | 0.24±0.013 | 23.1±2.3 | 7.9 |
EP/8%MPA-DAD | 54±2 | 109±3 | 746±27 | 88.4±1.5 | 0.22±0.008 | 22.7±1.1 | 6.8 |
EP/8%GM@MPA-DAD | 53±3 | 120±3 | 783±24 | 98.0±2.0 | 0.22±0.010 | 21.6±2.0 | 6.5 |
EP/8%MNs@MPA-DAD | 53±1 | 143±4 | 723±19 | 94.4±1.7 | 0.22±0.011 | 22.3±1.7 | 5.1 |
表5 纯EP及其复合材料的锥形量热测试数据
样品 | TTI/s | TPHRR/s | PHRR/kW·m-2 | THR/MJ·m-2 | PSPR/m2·s-1 | TSP/m2 | FIGRA/kW·m-2·s-1 |
---|---|---|---|---|---|---|---|
纯EP | 62±2 | 139±4 | 1095±29 | 117.6±2.2 | 0.24±0.013 | 23.1±2.3 | 7.9 |
EP/8%MPA-DAD | 54±2 | 109±3 | 746±27 | 88.4±1.5 | 0.22±0.008 | 22.7±1.1 | 6.8 |
EP/8%GM@MPA-DAD | 53±3 | 120±3 | 783±24 | 98.0±2.0 | 0.22±0.010 | 21.6±2.0 | 6.5 |
EP/8%MNs@MPA-DAD | 53±1 | 143±4 | 723±19 | 94.4±1.7 | 0.22±0.011 | 22.3±1.7 | 5.1 |
1 | 陈子豪, 阮英波, 杨杰. 环氧树脂增韧方法及机理研究进展[J]. 热固性树脂, 2022, 37(1): 64-69. |
CHEN Zihao, RUAN Yingbo, YANG Jie. Research progress on toughening methods and mechanism of epoxy resin[J]. Thermosetting Resin, 2022, 37(1): 64-69. | |
2 | LOU Gaobo, MA Zhewen, DAI Jinfeng, et al. Fully biobased surface-functionalized microcrystalline cellulose via green self-assembly toward fire-retardant, strong, and tough epoxy biocomposites[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(40): 13595-13605. |
3 | XIANG Qing, QIANG Yujie, GUO Lei. Designing a novel GO@AAP reinforced epoxy coating for achieving the long-term corrosion protection of steel substrate[J]. Progress in Organic Coatings, 2023, 174: 107293. |
4 | LOU Gaobo, LI Qing, JIN Qian, et al. Preparation of environment-friendly solid epoxy resin with high-toughness via one-step banburying[J]. RSC advances, 2022, 12(26): 16615-16623. |
5 | YANG Jiayao, HE Xingwei, WANG Hengxu, et al. High-toughness, environment-friendly solid epoxy resins: Preparation, mechanical performance, curing behavior, and thermal properties[J]. Journal of Applied Polymer Science, 2020, 137(17): 48596. |
6 | 楼高波, 姚潇翎, 周亮, 等. 固态环氧树脂的一步密炼增韧[J]. 热固性树脂, 2023, 38(1): 12-16. |
LOU Gaobo, YAO Xiaoling, ZHOU Lianget al. One-step banburying toughening of solid epoxy resin[J]. Thermosetting Resin, 2023, 38(1): 12-16. | |
7 | YANG Yunxian, WANG Deyi, JIAN Rongkun, et al. Chemical structure construction of DOPO-containing compounds for flame retardancy of epoxy resin: A review[J]. Progress in Organic Coatings, 2023, 175: 107316. |
8 | 楼高波, 张恒, 饶青青, 等. 生物基阻燃剂在环氧树脂中的应用研究进展[J]. 林业工程学报, 2023, 8(5): 13-26. |
LOU Gaobo, ZHANG Heng, RAO Qingqing, et al. Recent advances of application of bio-based flame retardant in epoxy resin[J]. Journal of Forestry Engineering, 2023, (5): 13-26. | |
9 | Bello SA, Agunsoye JO, Hassan SB, et al. Epoxy resin based composites, mechanical and tribological properties: A review[J]. Tribology in Industry, 2015, 37(4): 500-524. |
10 | YANG Jiayao, WANG Hengxu, LIU Xiaohuan, et al. A nano-TiO2/regenerated cellulose biohybrid enables simultaneously improved strength and toughness of solid epoxy resins[J]. Composites Science and Technology, 2021, 212: 108884. |
11 | NASCIMENTO Caio R F, SILVA Adriana A, SOARES Bluma G. Epoxy networks modified with functionalized liquid polyisoprene rubbers with enhanced toughness and stiffness[J]. Journal of Thermal Analysis and Calorimetry, 2023, 148(1): 69-77. |
12 | ZHANG Lili, ZHANG Xinghua, WEI Xinghai, et al. Hydroxyl-functionalized block co-polyimide enables simultaneously improved toughness and strength of tetrafunctional epoxy resin[J]. Composites Science and Technology, 2022, 230: 109787. |
13 | THIRUNAVUKKARASU Naveen, BHUVANESWARI GUNASEKARAN Harini, PENG Shuqiang, et al. Study on the interface toughening of particle/fibre reinforced epoxy composites with molecularly designed core-shell particles and various interface 3D models[J]. Materials & Design, 2023, 225: 111510. |
14 | DOMUN Nadiim, HADAVINIA Homayoun, ZHANG Tao, et al. Improving the fracture toughness properties of epoxy using graphene nanoplatelets at low filler content[J]. Nanocomposites, 2017, 3(3): 85-96. |
15 | HUO Siqi, SONG Pingan, YU Bin, et al. Phosphorus-containing flame retardant epoxy thermosets: Recent advances and future perspectives[J]. Progress in Polymer Science, 2021, 114: 101366. |
16 | BIFULCO Aurelio, AVOLIO Roberto, LEHNER Sandro, et al. In situ P-modified hybrid silica-epoxy nanocomposites via a green hydrolytic sol-gel route for flame-retardant applications[J]. ACS Applied Nano Materials, 2023, 6(9): 7422-7435. |
17 | YIN Lian, GONG Kaili, ZHOU Keqing, et al. Flame-retardant activity of ternary integrated modified boron nitride nanosheets to epoxy resin[J]. Journal of Colloid and Interface Science, 2022, 608: 853-863. |
18 | ZHOU Zili, QIAN Jian, ZHANG Jian, et al. Phosphorus and bromine modified epoxy resin with enhanced cryogenic mechanical properties and liquid oxygen compatibility simultaneously[J]. Polymer Testing, 2021, 94: 107051. |
19 | JIANG Guangyong, XIAO Yuling, QIAN Ziyan, et al. A novel phosphorus-, nitrogen- and sulfur-containing macromolecule flame retardant for constructing high-performance epoxy resin composites[J]. Chemical Engineering Journal, 2023, 451: 137823. |
20 | 陈九龙, 王双, 杜晓声. 二维纳米材料改性环氧树脂的研究进展[J]. 材料导报, 2021, 35(17): 17210-17217. |
CHEN Jiulong, WANG Shuang, DU Xiaosheng. Advances in epoxy/two-dimensional nanomaterial composites[J]. Materials Reports, 2021, 35(17): 17210-17217. | |
21 | SHEN Xiaojun, PEI Xianqiang, FU Shaoyun, et al. Significantly modified tribological performance of epoxy nanocomposites at very low graphene oxide content[J]. Polymer, 2013, 54(3): 1234-1242. |
22 | UPADHYAY R K, KUMAR A. Epoxy-graphene-MoS2 composites with improved tribological behavior under dry sliding contact[J]. Tribology International, 2019, 130: 106-118. |
23 | HUANG Zhiping, ZHAO Wenjie, ZHAO Wenchao, et al. Tribological and anti-corrosion performance of epoxy resin composite coatings reinforced with differently sized cubic boron nitride (CBN) particles[J]. Friction, 2021, 9(1): 104-118. |
24 | ZOU Bin, QIU Shuilai, QIAN Ziyan, et al. Phosphorus/nitrogen-codoped molybdenum disulfide/cobalt borate nanostructures for flame-retardant and tribological applications[J]. ACS Applied Nano Materials, 2021, 4(10): 10495-10504. |
25 | WANG Pengji, LIAO Duijun, HU Xiaoping, et al. Facile fabrication of biobased PNC-containing nano-layered hybrid: Preparation, growth mechanism and its efficient fire retardancy in epoxy[J]. Polymer Degradation and Stability, 2019, 159: 153-162. |
26 | LOU Gaobo, RAO Qingqing, LI Qing, et al. Novel ionic complex with flame retardancy and ultrastrong toughening effect on epoxy resin[J]. Chemical Engineering Journal, 2023, 455: 139334. |
27 | PAN Xiaofeng, GAO Huailing, LU Yang, et al. Transforming ground mica into high-performance biomimetic polymeric mica film[J]. Nature Communications, 2018, 9: 2974. |
28 | DING Jiheng, ZHAO Hongran, YU Haibin. Superior to graphene: Super-anticorrosive natural mica nanosheets[J]. Nanoscale, 2020, 12(30): 16253-16261. |
29 | YAN Yuanwei, CHEN Li, JIAN Rongkun, et al. Intumescence: An effect way to flame retardance and smoke suppression for polystryene[J]. Polymer Degradation and Stability, 2012, 97(8): 1423-1431. |
30 | ZHU Zongmin, SHANG Ke, WANG Luoxin, et al. Synthesis of an effective bio-based flame-retardant curing agent and its application in epoxy resin: Curing behavior, thermal stability and flame retardancy[J]. Polymer Degradation and Stability, 2019, 167: 179-188. |
31 | FANG Fang, HUO Siqi, SHEN Haifeng, et al. A bio-based ionic complex with different oxidation states of phosphorus for reducing flammability and smoke release of epoxy resins[J]. Composites Communications, 2020, 17: 104-108. |
32 | LI Wenxiong, ZHANG Haijun, HU Xiaoping, et al. Highly efficient replacement of traditional intumescent flame retardants in polypropylene by manganese ions doped melamine phytate nanosheets[J]. Journal of Hazardous Materials, 2020, 398: 123001. |
[1] | 慕铭, 赵伟伟, 陈光孟, 刘小青. 基于激光诱导石墨烯的应变传感器研究进展[J]. 化工进展, 2024, 43(9): 4970-4979. |
[2] | 申纯宇, 李翠利, 汤建伟, 刘咏, 刘鹏飞, 丁俊祥, 申博, 王保明. 纳米氢氧化镁制备及其阻燃应用进展[J]. 化工进展, 2024, 43(9): 4980-4995. |
[3] | 李镇武, 蒲迪, 熊亚春, 吴定莹, 金诚, 郭拥军. 驱油用纳米材料在提高采收率方面研究进展[J]. 化工进展, 2024, 43(9): 5035-5048. |
[4] | 刘丽, 冯博, 文洋, 古启雄. 硅基介孔材料的合成、功能化及对金属的吸附研究进展[J]. 化工进展, 2024, 43(9): 5063-5078. |
[5] | 李美萱, 成建凤, 黄国勇, 徐盛明, 郁丰善, 翁雅青, 曹才放, 温嘉玮, 王俊莲, 王春霞, 顾斌涛, 张袁华, 刘斌, 王才平, 潘剑明, 徐泽良, 王翀, 王珂. 高电压镍锰酸锂正极材料的合成与电化学机理[J]. 化工进展, 2024, 43(9): 5086-5094. |
[6] | 任国瑜, 妥云, 郑文杰, 谯泽庭, 任壮壮, 赵娅莉, 尚军飞, 陈晓东, 高祥虎. 超疏水纳米涂层技术研究进展及应用[J]. 化工进展, 2024, 43(8): 4450-4463. |
[7] | 孙忻茹, 张秋怡, 卓建坤, 杨润, 姚强. CaCl2复合热化学储热材料的研究进展[J]. 化工进展, 2024, 43(8): 4506-4515. |
[8] | 石佳博, 张宇轩, 陈雪峰, 谭蕉君. 单宁酸-纳米协同改性胶原纤维多孔材料的制备及其油水分离性能[J]. 化工进展, 2024, 43(8): 4624-4629. |
[9] | 黄鸿, 欧阳浩民, 杨依静, 李昌霖, 陈烁娜. 硫化零价铁-微生物复合吸附剂对磷酸三(2-氯乙基)酯的吸附-降解机制[J]. 化工进展, 2024, 43(8): 4704-4713. |
[10] | 王丽娜, 武金升. 共价有机框架材料的合成与应用研究进展[J]. 化工进展, 2024, 43(7): 3834-3856. |
[11] | 杨光, 姜瑞婷, 张玥, 符子剑, 刘伟. 五氧化二钒/碳纳米复合材料在超级电容器中的应用[J]. 化工进展, 2024, 43(7): 3857-3871. |
[12] | 赵伟刚, 张倩倩, 蓝钰玲, 闫雯, 周晓剑, 范毜仔, 杜官本. 真空绝热板芯材的研究进展与展望[J]. 化工进展, 2024, 43(7): 3910-3922. |
[13] | 江慧珍, 罗凯, 王艳, 费华, 吴登科, 叶卓铖, 曹雄金. 废弃生物质复合相变材料的构建与应用[J]. 化工进展, 2024, 43(7): 3934-3945. |
[14] | 杜倩, 侯明, 高冀芸, 杨黎, 鲁元佳, 郭胜惠. f-Ti3C2T x /ZIF-8异质结构增强NO2气体传感器的敏感性能[J]. 化工进展, 2024, 43(7): 3946-3954. |
[15] | 张世蕊, 范朕连, 宋慧平, 张丽娜, 高宏宇, 程淑艳, 程芳琴. 粉煤灰负载光催化材料的研究进展[J]. 化工进展, 2024, 43(7): 4043-4058. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |