1 |
张征, 曹慧. 北京市汽车工业与城市环境关系的实证研究[J]. 中国软科学, 2004(11): 57-61.
|
|
ZHANG Zheng, CAO Hui. Empirical analysis of relationship between auto industry and environment of Beijing city[J]. China Soft Science, 2004(11): 57-61.
|
2 |
中华人民共和国生态环境部. 中国移动源环境管理年报(2023年)[R/OL]. (2023-12-07). .
|
|
Ministry of Ecology and Environment of the People’s Republic of China. China Mobile Environmental Management Annual Report (2023)[R/OL]. (2023-12-07). .
|
3 |
谢杰光, 匡亚川. 纳米TiO2光催化技术及其在降解汽车尾气中的应用[J]. 材料导报, 2012, 26(15): 141-145.
|
|
XIE Jieguang, KUANG Yachuan. Photocatalysis technology of nano-TiO2 and its application in photodegradation of automobile exhaust[J]. Materials Review, 2012, 26(15): 141-145.
|
4 |
梁玉荣. 光催化降解汽车尾气路面材料应用研究[J]. 公路, 2020, 65(2): 279-282.
|
|
LIANG Yurong. Study on application of photocatalytic degradation of automobile exhaust pavement materials[J]. Highway, 2020, 65(2): 279-282.
|
5 |
朱食丰, 王功勋, 邓静, 等. 纳米TiO2分散性对水泥水化和性能的影响[J]. 建筑材料学报, 2022, 25(8): 843-852.
|
|
ZHU Shifeng, WANG Gongxun, DENG Jing, et al. Effect of nano-TiO2 dispersibility on the mechanics, hydration degree and microscopic properties of cement paste[J]. Journal of Building Materials, 2022, 25(8): 843-852.
|
6 |
李剑飞, 刘黎萍, 孙立军. 纳米二氧化钛对汽车尾气中碳氢化合物HC分解效果研究[J]. 公路工程, 2010, 35(2): 151-155.
|
|
LI Jianfei, LIU Liping, SUN Lijun. Research on the decomposition efficiency of decomposition of hydrocarbon in exhaust gas from vehicles by nanometer titanium dioxide[J]. Highway Engineering, 2010, 35(2): 151-155.
|
7 |
董祥. 胶粉负载型路面尾气降解复合材料的路用性能[J]. 建筑材料学报, 2011, 14(6): 781-786.
|
|
DONG Xiang. Pavement performances of composite material with rubber powder loading photocatalyst for pavement automobile exhaust degradation[J]. Journal of Building Materials, 2011, 14(6): 781-786.
|
8 |
梅军鹏, 徐智东, 李海南, 等. 蒸汽养护条件下纳米TiO2对粉煤灰-水泥体系早期力学性能的影响[J]. 建筑材料学报, 2021, 24(4): 694-700.
|
|
MEI Junpeng, XU Zhidong, LI Hainan, et al. Influence of nano-TiO2 on the early mechanical properties of fly ash-cement system under steam curing[J]. Journal of Building Materials, 2021, 24(4): 694-700.
|
9 |
胡建荣, 张益, 张文刚. 光催化分解汽车尾气型沥青混合料研究[J]. 郑州大学学报(工学版), 2013, 34(3): 90-93.
|
|
HU Jianrong, ZHANG Yi, ZHANG Wengang. Research on asphalt mixture with function of automobile exhaust photoeatalytic[J]. Journal of Zhengzhou University (Engineering Science), 2013, 34(3): 90-93.
|
10 |
何军辉, 姚武. 沸石及水泥基材料二次负载TiO2的光催化性能[J]. 建筑材料学报, 2020, 23(1): 35-39.
|
|
HE Junhui, YAO Wu. Photocatalytic performance of twice loading TiO2 with zeolite and cementitious materials[J]. Journal of Building Materials, 2020, 23(1): 35-39.
|
11 |
CUI Yanjuan, ZHANG Jinshui, ZHANG Guigang, et al. Synthesis of bulk and nanoporous carbon nitride polymers from ammonium thiocyanate for photocatalytic hydrogen evolution[J]. Journal of Materials Chemistry, 2011, 21(34): 13032-13039.
|
12 |
TANG Mengling, AO Yanhui, WANG Chao, et al. Facile synthesis of dual Z-scheme g-C3N4/Ag3PO4/AgI composite photocatalysts with enhanced performance for the degradation of a typical neonicotinoid pesticide[J]. Applied Catalysis B: Environmental, 2020, 268: 118395.
|
13 |
HE Fei, ZHU Bicheng, CHENG Bei, et al. 2D/2D/0D TiO2/C3N4/T3C2 MXene composite S-scheme photocatalyst with enhanced CO2 reduction activity[J]. Applied Catalysis B: Environmental, 2020, 272: 119006.
|
14 |
谢磊, 刘帅, 孙有为, 等. 石墨相氮化碳光催化剂的研究进展[J]. 石油化工高等学校学报, 2021, 34(6): 27-34.
|
|
XIE Lei, LIU Shuai, SUN Youwei, et al. Research progress of graphite phase carbon nitride photocatalysts[J]. Journal of Petrochemical Universities, 2021, 34(6): 27-34.
|
15 |
马元功, 魏定邦, 赵静卓, 等. 硼掺杂石墨相氮化碳及其光催化性能研究[J]. 化工新型材料, 2019, 47(6): 204-210.
|
|
MA Yuangong, WEI Dingbang, ZHAO Jingzhuo, et al. Study on B-g-C3N4 and its photocatalytic property[J]. New Chemical Materials, 2019, 47(6): 204-210.
|
16 |
GUO Hai, NIU Chenggang, FENG Chengyang, et al. Steering exciton dissociation and charge migration in green synthetic oxygen-substituted ultrathin porous graphitic carbon nitride for boosted photocatalytic reactive oxygen species generation[J]. Chemical Engineering Journal, 2020, 385: 123919.
|
17 |
NAGAJYOTHI P C, PANDURANGAN M, VATTIKUTI S V P, et al. Enhanced photocatalytic activity of Ag/g-C3N4 composite[J]. Separation and Purification Technology, 2017, 188: 228-237.
|
18 |
孙少峰, 涂琴, 张丽. CeO2/g-C3N4复合光催化剂的制备及其性能研究[J]. 水处理技术, 2021, 47(4): 52-55.
|
|
SUN Shaofeng, TU Qin, ZHANG Li. Study on the preparation and performance of CeO2/g-C3N4 composite photocatalyst[J]. Technology of Water Treatment, 2021, 47(4): 52-55.
|
19 |
胡明玉, 周侠, 鄢升, 等. 硅藻土/泥炭藓基负载g-C3N4-TiO2的光催化调湿性能[J]. 建筑材料学报, 2021, 24(6): 1234-1241.
|
|
HU Mingyu, ZHOU Xia, YAN Sheng, et al. Photocatalytic humidity-controlling performance of g-C3N4-TiO2 loaded on diatomite/sphagnum composite[J]. Journal of Building Materials, 2021, 24(6): 1234-1241.
|
20 |
POON C S, CHEUNG E. NO removal efficiency of photocatalytic paving blocks prepared with recycled materials[J]. Construction and Building Materials, 2007, 21(8): 1746-1753.
|
21 |
张瑜都, 孔文琼, 赵建昌, 等. g-C3N4光催化混凝土对NO降解性能研究[J]. 混凝土与水泥制品, 2021(3): 7-10.
|
|
ZHANG Yudu, KONG Wenqiong, ZHAO Jianchang, et al. Photocatalytic concrete loaded with g-C3N4 and its degradation performance of NO[J]. China Concrete and Cement Products, 2021(3): 7-10.
|
22 |
鲁浈浈, 刘栋, 张琪, 等. 负载氮化碳光催化混凝土的制备及性能表征[J]. 建筑材料学报, 2019, 22(4): 559-566, 583.
|
|
LU Zhenzhen, LIU Dong, ZHANG Qi, et al. Preparation and characterization of photocatalytic concrete loaded with carbon nitride[J]. Journal of Building Materials, 2019, 22(4): 559-566, 583.
|
23 |
HONG Jindui, XIA Xiaoyang, WANG Yongsheng, et al. Mesoporous carbon nitride with in situ sulfur doping for enhanced photocatalytic hydrogen evolution from water under visible light[J]. Journal of Materials Chemistry, 2012, 22(30): 15006-15012.
|
24 |
周晓兵, 丁思晴, 高莉宁, 等. 掺杂改性石墨相氮化碳水泥基复合材料的光催化作用研究[J]. 公路, 2022, 67(10): 368-373.
|
|
ZHOU Xiaobing, DING Siqing, GAO Lining, et al. Study on photocatalytic effect of doped modified graphite phase carbon nitride cement-based composites[J]. Highway, 2022, 67(10): 368-373.
|
25 |
HE Rui, HUANG Xin, ZHANG Jiansong, et al. Preparation and evaluation of exhaust-purifying cement concrete employing titanium dioxide[J]. Materials, 2019, 12(13): 2182.
|
26 |
汪超, 张同生, 谢晓庚, 等. 基于骨料球形度的透水混凝土配合比设计方法[J]. 建筑材料学报, 2022, 25(3): 235-241.
|
|
WANG Chao, ZHANG Tongsheng, XIE Xiaogeng, et al. Mix proportion design method of pervious concrete based on aggregate sphericity[J]. Journal of Building Materials, 2022, 25(3): 235-241.
|
27 |
WANG Xinchen, MAEDA Kazuhiko, THOMAS Arne, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nature Materials, 2009, 8(1): 76-80.
|
28 |
叶青. 纳米SiO2与硅粉的火山灰活性的比较[J]. 混凝土, 2001(3): 19-22.
|
|
YE Qing. Research on the comparison of pozzolanic activity between nano SiO2 and silica fume[J]. Concrete, 2001(3): 19-22.
|
29 |
贺晓宇. 基于氮化碳的光催化水泥混凝土制备与性能研究[J]. 公路, 2020, 65(10): 292-296.
|
|
HE Xiaoyu. Preparation and properties of photocatalytic cement concrete based on carbon nitride[J]. Highway, 2020, 65(10): 292-296.
|
30 |
XIA Xiang, XIE Cong, XU Baogang, et al. Role of B-doping in g-C3N4 nanosheets for enhanced photocatalytic NO removal and H2 generation[J]. Journal of Industrial and Engineering Chemistry, 2022, 105: 303-312.
|