化工进展 ›› 2024, Vol. 43 ›› Issue (6): 3336-3346.DOI: 10.16085/j.issn.1000-6613.2023-0845
• 资源与环境化工 • 上一篇
王厚然1,2,3,4(), 李德念1,3,4(), 董楠航2, 阳济章1,3,4, 倪轩辕1,3,4, 叶嘉鸿1,3,4, 袁浩然1,3,4(), 陈勇1,3,4
收稿日期:
2023-05-22
修回日期:
2023-07-19
出版日期:
2024-06-15
发布日期:
2024-07-02
通讯作者:
袁浩然
作者简介:
王厚然(1990—),男,硕士研究生,研究方向为废旧锂离子电池资源化利用。E-mail:347619195@qq.com基金资助:
WANG Houran1,2,3,4(), LI Denian1,3,4(), DONG Nanhang2, YANG Jizhang1,3,4, NI Xuanyuan1,3,4, YE Jiahong1,3,4, YUAN Haoran1,3,4(), CHEN Yong1,3,4
Received:
2023-05-22
Revised:
2023-07-19
Online:
2024-06-15
Published:
2024-07-02
Contact:
YUAN Haoran
摘要:
锂电池产业的迅猛发展以及新型储能对锂离子电池需求的进一步增长预期引起了各界对相关资源与环境问题的广泛担忧,因此退役锂离子电池的回收利用已成为当前产业体系中的重要一环。锂离子电池的正极材料是锂电池中最具价值的部分,相比于目前已投入生产的湿法回收与火法回收工艺,针对退役正极材料直接修复的研究目前仍处于起步阶段,因其相比于传统回收方法具有绿色廉价等优势,未来仍然存在可观的开发空间。本文介绍了磷酸铁锂电池与三元锂电池及两种锂离子电池正极材料的主要失效原因,以及针对此两种锂离子电池退役后其正极材料的几种直接修复方法,并对不同直接修复方法存在的问题进行了梳理,进而对正极材料直接修复提出相关建议,以期直接修复可以在锂电行业有更广阔的发展。
中图分类号:
王厚然, 李德念, 董楠航, 阳济章, 倪轩辕, 叶嘉鸿, 袁浩然, 陈勇. 退役磷酸铁锂电池与三元锂电池正极材料直接修复研究进展[J]. 化工进展, 2024, 43(6): 3336-3346.
WANG Houran, LI Denian, DONG Nanhang, YANG Jizhang, NI Xuanyuan, YE Jiahong, YUAN Haoran, CHEN Yong. Advances in direct repair of cathode materials from retired lithium iron phosphate battery and ternary lithium battery[J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3336-3346.
性能 | LFP | NCM |
---|---|---|
化学式 | Li(Ni x Co y Mn1-x-y )O2 | |
晶体结构 | 橄榄石结构 | 层状结构 |
空间点群 | Pmnb | R-3m |
锂离子表观扩散系数/cm2·s-1 | 1.8×10-16~2.2×10-14 | 10-1~10-11 |
理论容量/mAh·g-1 | 170 | 273~285 |
实际容量/mAh·g-1 | 130~140 | 155~220 |
平均电压/V | 3.4 | 3.6 |
循环性/次 | 2000~6000 | 800~2000 |
环保性 | 无毒 | 镍、钴有毒 |
安全性能 | 好 | 中 |
价格/104CNY·t-1 | 15~20 | 15.5~16.5 |
主要应用领域 | 电动汽车及大规模储能 | 电动工具、电动自行车、电动汽车及大规模储能 |
表 1 LFP与NCM基本构成与性能
性能 | LFP | NCM |
---|---|---|
化学式 | Li(Ni x Co y Mn1-x-y )O2 | |
晶体结构 | 橄榄石结构 | 层状结构 |
空间点群 | Pmnb | R-3m |
锂离子表观扩散系数/cm2·s-1 | 1.8×10-16~2.2×10-14 | 10-1~10-11 |
理论容量/mAh·g-1 | 170 | 273~285 |
实际容量/mAh·g-1 | 130~140 | 155~220 |
平均电压/V | 3.4 | 3.6 |
循环性/次 | 2000~6000 | 800~2000 |
环保性 | 无毒 | 镍、钴有毒 |
安全性能 | 好 | 中 |
价格/104CNY·t-1 | 15~20 | 15.5~16.5 |
主要应用领域 | 电动汽车及大规模储能 | 电动工具、电动自行车、电动汽车及大规模储能 |
项目 | LFP电池 | NCM电池 |
---|---|---|
回收方式 | 梯次利用:将剩余容量较高的退役电池在低要求的电池领域进行二次使用 | 拆解回收:对电池进行拆解处理,提取内部可回收金属 |
经济效益 | 回收材料经济效益较差 | 材料含有锂、镍、钴,回收价值高 |
表 2 退役LFP电池与NCM电池常见处理方式
项目 | LFP电池 | NCM电池 |
---|---|---|
回收方式 | 梯次利用:将剩余容量较高的退役电池在低要求的电池领域进行二次使用 | 拆解回收:对电池进行拆解处理,提取内部可回收金属 |
经济效益 | 回收材料经济效益较差 | 材料含有锂、镍、钴,回收价值高 |
正极材料 | 修复方法 | 商业正极材料实际容量/mAh·g-1 | 修复后正极材料最大放电容量/mAh·g-1 | 参考文献 |
---|---|---|---|---|
LFP | 固相烧结法 | 130~140 | 154.3(0.1C) | [ |
150.99(0.2C) | [ | |||
144(0.1C) | [ | |||
139(0.2C) | [ | |||
电化学法 | 159(0.1C) | [ | ||
135.2(1.0C) | [ | |||
水热法 | 144.02(0.1C) | [ | ||
146.2(1.0C) | [ | |||
161.4(0.2C) | [ | |||
162(0.5C) | [ | |||
化学法 | 160.1(0.5C) | [ | ||
NCM | 固相烧结法 | 155~220 | 162(0.1C) | [ |
154.87(0.2C) | [ | |||
189.8(0.1C) | [ | |||
162(0.2C) | [ | |||
水热法 | 145.1(1.0C) | [ | ||
166.1(0.1C) | [ | |||
156.6(0.1C) | [ | |||
共晶法 | 149.3(1.0C) | [ | ||
146.3(1.0C) | [ | |||
160(0.5C) | [ | |||
氧化还原法 | 182.5(1.0C) | [ |
表3 LFP和NCM电池正极材料直接修复方法
正极材料 | 修复方法 | 商业正极材料实际容量/mAh·g-1 | 修复后正极材料最大放电容量/mAh·g-1 | 参考文献 |
---|---|---|---|---|
LFP | 固相烧结法 | 130~140 | 154.3(0.1C) | [ |
150.99(0.2C) | [ | |||
144(0.1C) | [ | |||
139(0.2C) | [ | |||
电化学法 | 159(0.1C) | [ | ||
135.2(1.0C) | [ | |||
水热法 | 144.02(0.1C) | [ | ||
146.2(1.0C) | [ | |||
161.4(0.2C) | [ | |||
162(0.5C) | [ | |||
化学法 | 160.1(0.5C) | [ | ||
NCM | 固相烧结法 | 155~220 | 162(0.1C) | [ |
154.87(0.2C) | [ | |||
189.8(0.1C) | [ | |||
162(0.2C) | [ | |||
水热法 | 145.1(1.0C) | [ | ||
166.1(0.1C) | [ | |||
156.6(0.1C) | [ | |||
共晶法 | 149.3(1.0C) | [ | ||
146.3(1.0C) | [ | |||
160(0.5C) | [ | |||
氧化还原法 | 182.5(1.0C) | [ |
1 | DENG Yuanfu, WAN Lina, XIE Ye, et al. Recent advances in Mn-based oxides as anode materials for lithium ion batteries[J]. RSC Advances, 2014, 4(45): 23914-23935. |
2 | TOBIAS Placke, Kloepsch Richard, Dühnen Simon, et al. Lithium ion, lithium metal, and alternative rechargeable battery technologies: The odyssey for high energy density[J]. Journal of Solid State Electrochemistry, 2017, 21(7): 1939-1964. |
3 | 汪宇, 张禹, 童微雯, 等. 锂离子电池电极中多级孔道结构设计[J]. 化工学报, 2021, 72(12): 6340-6350. |
WANG Yu, ZHANG Yu, TONG Weiwen, et al. Engineering hierarchical pore network for Li-ion battery electrodes[J]. CIESC Journal, 2021, 72(12): 6340-6350. | |
4 | 张翔, 王春雷, 孔继周, 等. 浅析共沉淀法合成锂电池层状Li-Ni-Co-Mn-O正极材料[J]. 化工进展, 2014, 33(11): 2991-2999. |
ZHANG Xiang, WANG Chunlei, KONG Jizhou, et al. A preliminary analysis on the synthesis of layered Li-Ni-Co-Mn-O cathode material by co-precipitation method[J]. Chemical Industry and Engineering Progress, 2014, 33(11): 2991-2999. | |
5 | LI Jiebin, MENG Haijun, PI Zhengjie, et al. Application status and development trends of the lithium primary batteries [J]. Chinese Journal of Power Sources, 2018, 42(5): 725-7. |
6 | 安晓雨, 谭玲生. 空间飞行器用锂离子蓄电池储能电源的研究进展[J]. 电源技术, 2006, 30(1): 70-73. |
AN Xiaoyu, TAN Lingsheng. Development of lithium-ion batteries as new power sources for space application[J]. Chinese Journal of Power Sources, 2006, 30(1): 70-73. | |
7 | ZHOU Dexi. Review on lithium batteries for underwater weapons[J]. Chinese Journal of Power Sources, 2015, 39(4): 846-848. |
8 | LI Yantao, ZHANG Hui, LI Yanjie. Application of lithium batteries in communication base station[J]. Chinese Journal of Power Sources, 2017, 41(2): 202-204. |
9 | ZENG Xiaoqiao, LI Matthew, EL-HADY Deia ABD, et al. Commercialization of lithium battery technologies for electric vehicles[J]. Advanced Energy Materials, 2019, 9(27): 1900161. |
10 | TURCHENIUK K, BONDAREV D, SINGHAL V, et al. Ten years left to redesign lithium-ion batteries reserves of rare metals used in electric-vehicle cells are dwindling, so boost research on iron and silicon alternatives, urge Kostiantyn Turcheniuk and colleagues[J]. Nature, 2018, 559(7715): 467-470. |
11 | 黎华玲, 陈永珍, 宋文吉, 等. 湿法回收退役三元锂离子电池有价金属的研究进展[J]. 化工进展, 2019, 38(2): 921-932. |
LI Hualing, CHEN Yongzhen, SONG Wenji, et al. Research progress on the recovery of valuable metals in retired LiNi x Co y Mn z O2 batteries by wet process[J]. Chemical Industry and Engineering Progress, 2019, 38(2): 921-932. | |
12 | LIU Shuang, XIONG L, HE C. Long cycle life lithium ion battery with lithium nickel cobalt manganese oxide (NCM) cathode[J]. Journal of Power Sources, 2014, 261: 285-291. |
13 | 王官格, 张华宁, 吴彤, 等. 废旧锂离子电池正极材料资源化回收与再生[J]. 化学进展, 2020, 32(12): 2064-2072. |
WANG Guange, ZHANG Huaning, WU Tong, et al. Recycling and regeneration of spent lithium-ion battery cathode materials[J]. Progress in Chemistry, 2020, 32(12): 2064-2072. | |
14 | 焦芬, 史柯, 覃文庆, 等. 废旧镍钴锰电池回收工艺及污染控制概述[J]. 矿冶工程, 2021, 41(5): 153-158. |
JIAO Fen, SHI Ke, QIN Wenqing, et al. A review on recycling of spent NCM batteries and pollution control[J]. Mining and Metallurgical Engineering, 2021, 41(5): 153-158. | |
15 | FAN Ersha, LI Li, WANG Zhenpo, et al. Sustainable recycling technology for Li-ion batteries and beyond: Challenges and future prospects[J]. Chemical Reviews, 2020, 120(14): 7020-7063. |
16 | MEISTER Paul, JIA Haiping, LI Jie, et al. Best practice: Performance and cost evaluation of lithium ion battery active materials with special emphasis on energy efficiency[J]. Chemistry of Materials, 2016, 28(20): 7203-7217. |
17 | 王昊, 霍进达, 曲国瑞, 等. 退役锂电池正极材料资源化回收技术研究进展[J]. 化工进展, 2023, 42(5): 2702-2716. |
WANG Hao, HUO Jinda, QU Guorui, et al. Research progress of positive electrode material recycling technology for retired lithium batteries[J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2702-2716. | |
18 | YANG Yue, OKONKWO Emenike G, HUANG Guoyong, et al. On the sustainability of lithium ion battery industry: A review and perspective[J]. Energy Storage Materials, 2021, 36: 186-212. |
19 | 杨俊峰, 潘寻. “十四五”中国锂动力电池产业关键资源供需分析[J]. 有色金属(冶炼部分), 2021(6): 37-41, 52. |
YANG Junfeng, PAN Xun. Analysis on supply and demand of key resources of lithium power battery industry in China during the 14th five-year plan period[J]. Nonferrous Metals (Extractive Metallurgy), 2021(6): 37-41, 52. | |
20 | 周弋惟, 陈卓, 徐建鸿. 湿法冶金回收废旧锂电池正极材料的研究进展[J]. 化工学报, 2022, 73(1): 85-96. |
ZHOU Yiwei, CHEN Zhuo, XU Jianhong. Progress and prospect of recycling spent lithium battery cathode materials by hydrometallurgy[J]. CIESC Journal, 2022, 73(1): 85-96. | |
21 | 王振华, 彭代冲, 孙克宁. 锂离子电池隔膜材料研究进展[J]. 化工学报, 2018, 69(1): 282-294. |
WANG Zhenhua, PENG Daichong, SUN Kening. Research progress of separator materials for lithium ion batteries[J]. CIESC Journal, 2018, 69(1): 282-294. | |
22 | HENDRICKS Christopher, WILLIARD Nick, MATHEW Sony, et al. A failure modes, mechanisms, and effects analysis (FMMEA) of lithium-ion batteries[J]. Journal of Power Sources, 2015, 297: 113-120. |
23 | NING Gang, HARAN Bala, POPOV Branko N. Capacity fade study of lithium-ion batteries cycled at high discharge rates[J]. Journal of Power Sources, 2003, 117(1/2): 160-169. |
24 | LI Dongjiang, DANILOV Dmitri L, XIE Jie, et al. Degradation mechanisms of C6/LiFePO4 batteries: Experimental analyses of calendar aging[J]. Electrochimica Acta, 2016, 190: 1124-1133. |
25 | 杨苹, 邓丽芬. 退役锂电池梯次利用与再生工艺研究[J]. 中国资源综合利用, 2022, 40(11): 90-93. |
YANG Ping, DENG Lifen. Study on cascade utilization and regeneration process of retired lithium batteries[J]. China Resources Comprehensive Utilization, 2022, 40(11): 90-93. | |
26 | GOODENOUGH John B, PARK Kyu-Sung. The Li-ion rechargeable battery: A perspective[J]. Journal of the American Chemical Society, 2013, 135(4): 1167-1176. |
27 | CHEN Mengyuan, MA Xiaotu, CHEN Bin, et al. Recycling end-of-life electric vehicle lithium-ion batteries[J]. Joule, 2019, 3(11): 2622-2646. |
28 | FAN Min, MENG Qinghai, CHANG Xin, et al. In situ electrochemical regeneration of degraded LiFePO4 electrode with functionalized prelithiation separator[J]. Advanced Energy Materials, 2022, 12(18): 2103630. |
29 | CIEZ Rebecca E, WHITACRE J F. Examining different recycling processes for lithium-ion batteries[J]. Nature Sustainability, 2019, 2(2): 148-156. |
30 | ZHAO Yanlan, YUAN Xingzhong, JIANG Longbo, et al. Regeneration and reutilization of cathode materials from spent lithium-ion batteries[J]. Chemical Engineering Journal, 2020, 383: 123089. |
31 | ARSHAD Faiza, LI Li, AMIN Kamran, et al. A comprehensive review of the advancement in recycling the anode and electrolyte from spent lithium ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(36): 13527-13554. |
32 | EL-SAFTY Sherif A, AWUAL Md R, SHENASHEN M A, et al. Simultaneous optical detection and extraction of cobalt(Ⅱ) from lithium ion batteries using nanocollector monoliths[J]. Sensors and Actuators B: Chemical, 2013, 176: 1015-1025. |
33 | ZHU Ahui, BIAN Xinyu, HAN Weijiang, et al. The application of deep eutectic solvents in lithium-ion battery recycling: A comprehensive review[J]. Resources, Conservation and Recycling, 2023, 188: 106690. |
34 | 王玥, 郑晓洪, 陶天一, 等. 废锂离子电池正极材料中锂元素选择性回收的研究进展[J]. 化工进展, 2022, 41(8): 4530-4543. |
WANG Yue, ZHENG Xiaohong, TAO Tianyi, et al. Review on selective recovery of lithium from cathode materials in spent lithium-ion batteries[J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4530-4543. | |
35 | THOMPSON Dana, HYDE Charlotte, HARTLEY Jennifer M, et al. To shred or not to shred: A comparative techno-economic assessment of lithium ion battery hydrometallurgical recycling retaining value and improving circularity in LIB supply chains[J]. Resources, Conservation and Recycling, 2021, 175: 105741. |
36 | 雷舒雅, 徐睿, 孙伟, 等. 废旧锂离子电池回收利用[J]. 中国有色金属学报, 2021, 31(11): 3303-3319. |
LEI Shuya, XU Rui, SUN Wei, et al. Recycling of spent lithium-ion battery[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(11): 3303-3319. | |
37 | XIAO Jiefeng, LI Jia, XU Zhenming. Challenges to future development of spent lithium ion batteries recovery from environmental and technological perspectives[J]. Environmental Science & Technology, 2020, 54(1): 9-25. |
38 | VIECELI Nathália, NOGUEIRA Carlos A, Carlos GUIMARÃES, et al. Hydrometallurgical recycling of lithium-ion batteries by reductive leaching with sodium metabisulphite[J]. Waste Management, 2018, 71: 350-361. |
39 | 张飞, 陆颖舟. 一步法回收和再生废旧钴酸锂电池中的钴酸锂[J]. 化工进展, 2019, 38(8): 3874-3880. |
ZHANG Fei, LU Yingzhou. One-step recovery and regeneration of LiCoO 2 from the spent lithium cobalt oxide battery[J]. Chemical Industry and Engineering Progress, 2019, 38(8): 3874-3880. | |
40 | 李方昊, 杨建元. 废旧锂电池正极材料回收研究进展[J]. 现代化工, 2021, 41(S1): 90-94. |
LI Fanghao, YANG Jianyuan. Research progress on recovery of cathode materials from spent lithium batteries[J]. Modern Chemical Industry, 2021, 41(S1): 90-94. | |
41 | LI Xuelei, ZHANG Jin, SONG Dawei, et al. Direct regeneration of recycled cathode material mixture from scrapped LiFePO4 batteries[J]. Journal of Power Sources, 2017, 345: 78-84. |
42 | YAO Yonglin, ZHU Meiying, ZHAO Zhuo, et al. Hydrometallurgical processes for recycling spent lithium-ion batteries: A critical review[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(11): 13611-13627. |
43 | 李劲, 邵威, 毛洪仁. 废弃锂离子电池回收处理的污染物分析[J]. 化工进展, 2016, 35(5): 1529-1538. |
LI Jin, SHAO Wei, MAO Hongren. Analysis of pollutants in the recycling of waste lithium batteries[J]. Chemical Industry and Engineering Progress, 2016, 35(5): 1529-153. | |
44 | 张恒, 李海浩, 王梦娇, 等. 退役动力电池材料再生利用综述[J]. 电池, 2022, 52(1): 105-109. |
ZHANG Heng, LI Haihao, WANG Mengjiao, et al. Review on the regeneration and utilization of retired power battery[J]. Battery Bimonthly, 2022, 52(1): 105-109. | |
45 | 叶焕英. 废旧磷酸铁锂电池的回收再生概述[J]. 皮革制作与环保科技, 2021, 2(18): 111-112. |
YE Huanying. Overview of the recycling of waste lithium iron phosphate batteries[J]. Leather Manufacture and Environmental Technology, 2021, 2(18): 111-112. | |
46 | 周伟, 符冬菊, 刘伟峰, 等. 废旧磷酸铁锂动力电池回收利用研究进展[J]. 储能科学与技术, 2022, 11(6): 1854-1864. |
ZHOU Wei, FU Dongju, LIU Weifeng, et al. Research progress on recycling technology of waste lithium iron phosphate power battery[J]. Energy Storage Science and Technology, 2022, 11(6): 1854-1864. | |
47 | TSUTOMU Ohzuku, YOSHINARI Makimura. Layered lithium insertion material of LiNi1/2Mn1/2O2: A possible alternative to LiCoO2 for advanced lithium-ion batteries[J]. Chemistry Letters, 2001, 30(8): 744-745. |
48 | LU Zhonghua, MACNEIL D D, DAHN J R. Layered Li[Ni x Co1–2 x Mn x ]O2 cathode materials for lithium-ion batteries[J]. Electrochemical and Solid-State Letters, 2001, 4(12): A200. |
49 | XU Yongnian, CHUNG Sung-Yoon, BLOKING Jason T, et al. Electronic structure and electrical conductivity of undoped LiFePO4 [J]. Electrochemical and Solid-State Letters, 2004, 7(6): A131. |
50 | 朱广燕, 陈效华, 翟丽娟, 等. 锂离子电池正极材料LiFePO4的研究进展[J]. 电源技术, 2010, 34(11): 1201-1205. |
ZHU Guangyan, CHEN Xiaohua, ZHAI Lijuan, et al. Research progress of LiFePO4 cathode material for lithium-ion batteries[J]. Chinese Journal of Power Sources, 2010, 34(11): 1201-1205. | |
51 | 刘伯峥, 王静波, 曾涛, 等. 磷酸铁锂电池寿命初期与末期安全性差异[J]. 化工学报, 2022, 73(12): 5555-5563. |
LIU Bo Zheng, WANG Jingbo, ZENG Tao, et al. Safety differences of LiFePO4 batteries at the beginning of life and end of life[J]. CIESC Journal, 2022, 73(12): 5555-5563. | |
52 | LIANG Qian, YUE Haifeng, WANG Shaofeng, et al. Recycling and crystal regeneration of commercial used LiFePO4 cathode materials[J]. Electrochimica Acta, 2020, 330: 135323 |
53 | XU Panpan, DAI Qiang, GAO Hongpeng, et al. Efficient direct recycling of lithium-ion battery cathodes by targeted healing[J]. Joule, 2020, 4(12): 2609-2626. |
54 | 李家皓, 韦能, 李金龙, 等. 失效磷酸铁锂电池正极材料的理化性质[J]. 中国粉体技术, 2022, 28(6): 91-98. |
LI Jiahao, WEI Neng, LI Jinlong, et al. Physicochemical properties of cathode materials for failed lithium iron phosphate batteries [J]. China Powder Science and Technology, 2022, 28(6): 91-98. | |
55 | PAN Chengchi, BANKS Craig E, SONG Weixin, et al. Recent development of LiNi x Co y Mn z O2: Impact of micro/nano structures for imparting improvements in lithium batteries[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(1): 108-119. |
56 | ZENG Dongli, CABANA Jordi, Julien BRÉGER, et al. Cation ordering in Li[Ni x Mn x Co1–2 x ]O2-layered cathode materials: A nuclear magnetic resonance (NMR), pair distribution function, X-ray absorption spectroscopy, and electrochemical study[J]. Chemistry of Materials, 2007, 19(25): 6277-6289. |
57 | Jin-Myoung LIM, HWANG Taesoon, KIM Duho, et al. Intrinsic origins of crack generation in Ni-rich LiNi0.8Co0.1Mn0.1O2 layered oxide cathode material[J]. Scientific Reports, 2017, 7: 39669. |
58 | 吴彩云, 冯传启, 张朝峰, 等. 层状镍钴锰酸锂三元正极材料的研究进展[J]. 电池, 2022, 52(1): 3-7. |
WU Caiyun, FENG Chuanqi, ZHANG Chaofeng, et al. Research progress in layered lithium nickel cobalt manganese oxide ternary cathode material[J]. Battery Bimonthly, 2022, 52(1): 3-7. | |
59 | SHA Wuxin, GUO Yaqing, CHENG Danpeng, et al. Degradation mechanism analysis of LiNi0.5Co0.2Mn0.3O2 single crystal cathode materials through machine learning[J]. NPJ Computational Materials, 2022, 8: 223. |
60 | YU Dawei, HUANG Zhu, MAKUZA Brian, et al. Pretreatment options for the recycling of spent lithium-ion batteries: A comprehensive review[J]. Minerals Engineering, 2021, 173: 107218. |
61 | WANG Junxiong, ZHANG Qi, SHENG Jinzhi, et al. Direct and green repairing of degraded LiCoO2 for reuse in lithium-ion batteries[J]. National Science Review, 2022, 9(8): nwac097. |
62 | BAI Yaocai, ESSEHLI Rachid, JAFTA Charl J, et al. Recovery of cathode materials and aluminum foil using a green solvent[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(17): 6048-6055. |
63 | NAYAKA G P, PAI K V, SANTHOSH G, et al. Recovery of cobalt as cobalt oxalate from spent lithium ion batteries by using glycine as leaching agent[J]. Journal of Environmental Chemical Engineering, 2016, 4(2): 2378-2383. |
64 | WANG Mengmeng, TAN Quanyin, LIU Lili, et al. A low-toxicity and high-efficiency deep eutectic solvent for the separation of aluminum foil and cathode materials from spent lithium-ion batteries[J]. Journal of Hazardous Materials, 2019, 380: 120846. |
65 | MAKUZA Brian, TIAN Qinghua, GUO Xueyi, et al. Pyrometallurgical options for recycling spent lithium-ion batteries: A comprehensive review[J]. Journal of Power Sources, 2021, 491: 229622. |
66 | KIM Do-Su, SOHN Jeong-Soo, LEE Churl-Kyoung, et al. Simultaneous separation and renovation of lithium cobalt oxide from the cathode of spent lithium ion rechargeable batteries[J]. Journal of Power Sources, 2004, 132(1/2): 145-149. |
67 | JIN Yachao, ZHANG Tong, ZHANG Mingdao. Advances in intelligent regeneration of cathode materials for sustainable lithium-ion batteries[J]. Advanced Energy Materials, 2022, 12(36): 2201526. |
68 | 张英杰, 宁培超, 杨轩, 等. 废旧三元锂电池回收技术研究新进展[J]. 化工进展, 2020, 39(7): 2828-2840. |
ZHANG Yingjie, NING Peichao, YANG Xuan, et al. Research progress on the recycling technology of spent ternary lithium ion battery[J]. Chemical Industry and Engineering Progress, 2020, 39(7): 2828-2840. | |
69 | XU Bin, DONG Peng, DUAN Jianguo, et al. Regenerating the used LiFePO4 to high performance cathode via mechanochemical activation assisted V5+ doping[J]. Ceramics International, 2019, 45(9): 11792-11801. |
70 | WANG Lihua, LI Jian, ZHOU Hongming, et al. Regeneration cathode material mixture from spent lithium iron phosphate batteries[J]. Journal of Materials Science: Materials in Electronics, 2018, 29(11): 9283-9290 |
71 | SONG X, HU T, LIANG C, et al. Direct regeneration of cathode materials from spent lithium iron phosphate batteries using a solid phase sintering method[J]. RSC Advances, 2017, 7(8): 4783-4790. |
72 | PENG Dezhao, WANG Xiaowei, WANG Shubin, et al. Efficient regeneration of retired LiFePO4 cathode by combining spontaneous and electrically driven processes[J]. Green Chemistry, 2022, 24(11): 4544-4556. |
73 | TANG Xin, WANG Rui, REN Yifei, et al. Effective regeneration of scrapped LiFePO4 material from spent lithium-ion batteries[J]. Journal of Materials Science, 2020, 55(27): 13036-13048. |
74 | JING Qiankun, ZHANG Jialiang, LIU Yubo, et al. Direct regeneration of spent LiFePO4 cathode material by a green and efficient one-step hydrothermal method[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(48): 17622-17628. |
75 | JIANG Zhenyu, SUN Jing, JIA Pingshan, et al. A sustainable strategy for spent Li-ion battery regeneration: Microwave-hydrothermal relithiation complemented with anode-revived graphene to construct a LiFePO4/MWrGO cathode material[J]. Sustainable Energy & Fuels, 2022, 6(9): 2207-2222. |
76 | WU Chen, HU Jieming, YE Lang, et al. Direct regeneration of spent Li-ion battery cathodes via chemical relithiation reaction[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(48): 16384-16393. |
77 | YUE Lingping, LOU Ping, XU Guohua, et al. Regeneration of degraded LiNi0.5Co0.2Mn0.3O2 from spent lithium ion batteries[J]. Ionics, 2020, 26(6): 2757-2761 |
78 | TANG Xiaodong, GUO Qiankun, ZHOU Miaomiao, et al. Direct regeneration of LiNi0.5Co0.2Mn0.3O2 cathode material from spent lithium-ion batteries[J]. Chinese Journal of Chemical Engineering, 2021, 40: 278-286. |
79 | FAN X, TAN C, LI Y, et al. A green, efficient, closed-loop direct regeneration technology for reconstructing of the LiNi0.5Co0.2Mn0.3O2 cathode material from spent lithium-ion batteries [J]. J Hazard Mater, 2021, 410: 124610. |
80 | ZHOU Qinwen, HUANG Zixuan, LIU Jianwen, et al. A closed-loop regeneration of LiNi0.6Co0.2Mn0.2O2 and graphite from spent batteries via efficient lithium supplementation and structural remodelling[J]. Sustainable Energy & Fuels, 2021, 5(19): 4981-4991. |
81 | SHI Yang, CHEN Gen, LIU Fang, et al. Resolving the compositional and structural defects of degraded LiNi x Co y Mn z O2 particles to directly regenerate high-performance lithium-ion battery cathodes[J]. ACS Energy Letters, 2018, 3(7): 1683-1692. |
82 | GUO Yaqing, LIAO Xiaobin, HUANG Pengjie, et al. High reversibility of layered oxide cathode enabled by direct re-generation[J]. Energy Storage Materials, 2021, 43: 348-357. |
83 | XU Panpan, YANG Zhenzhen, YU Xiaolu, et al. Design and optimization of the direct recycling of spent Li-ion battery cathode materials[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(12): 4543-4553. |
84 | SHI Yang, ZHANG Minghao, MENG Ying Shirley, et al. Ambient-pressure relithiation of degraded Li x Ni0.5Co0.2Mn0.3O2 (0<x<1) via eutectic solutions for direct regeneration of lithium-ion battery cathodes[J]. Advanced Energy Materials, 2019, 9(20): 1900454. |
85 | JIANG Guanghui, ZHANG Yannan, MENG Qi, et al. Direct regeneration of LiNi0.5Co0.2Mn0.3O2 cathode from spent lithium-ion batteries by the molten salts method[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(49): 18138-18147. |
86 | QIN Zuoyu, WEN Zuxin, XU Yifei, et al. A ternary molten salt approach for direct regeneration of LiNi0.5Co0.2Mn0.3O2 cathode[J]. Small, 2022, 18(43): 2106719. |
87 | PARK Kyusung, YU Jiuling, COYLE Jaclyn, et al. Direct cathode recycling of end-of-life Li-ion batteries enabled by redox mediation[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(24): 8214-8221. |
88 | CHEN Jiangping, LI Qingwen, SONG Jishun, et al. Environmentally friendly recycling and effective repairing of cathode powders from spent LiFePO4 batteries[J]. Green Chemistry, 2016, 18(8): 2500-2506. |
89 | WU Ling, LI Xinhai, WANG Zhixing, et al. Synthesis and electrochemical properties of metals-doped LiFePO4 prepared from the FeSO4·7H 2 O waste slag[J]. Journal of Power Sources, 2009, 189(1): 681-684. |
90 | GE Yucui, YAN Xuedong, LIU Jing, et al. An optimized Ni doped LiFePO4/C nanocomposite with excellent rate performance[J]. Electrochimica Acta, 2010, 55(20): 5886-5890. |
91 | 袁梅梅, 徐汝辉, 姚耀春. 锂离子电池正极材料LiFePO4的表面碳包覆改性研究进展[J]. 材料导报, 2020, 34(19): 19061-19066. |
YUAN Meimei, XU Ruhui, YAO Yaochun. Research progress on the surface carbon coating modification of LiFePO4 cathode material for lithium ion batteries[J]. Materials Reports, 2020, 34(19): 19061-19066. | |
92 | GANTER Matthew J, LANDI Brian J, BABBITT Callie W, et al. Cathode refunctionalization as a lithium ion battery recycling alternative[J]. Journal of Power Sources, 2014, 256: 274-280. |
93 | WANG Tao, YU Xiaoshuang, FAN Min, et al. Direct regeneration of spent LiFePO4 via a graphite prelithiation strategy[J]. Chemical Communications, 2020, 56(2): 245-248. |
94 | ZHENG Huiyuan, TAN Li, ZHANG Li, et al. Correlation between lithium deposition on graphite electrode and the capacity loss for LiFePO4/graphite cells[J]. Electrochimica Acta, 2015, 173: 323-330. |
95 | MA Jun, WANG Junxiong, JIA Kai, et al. Adaptable eutectic salt for the direct recycling of highly degraded layer cathodes[J]. Journal of the American Chemical Society, 2022, 144(44): 20306-20314. |
96 | 楼平, 徐国华, 岳灵平, 等. 熔盐法再生修复退役三元动力电池正极材料[J]. 储能科学与技术, 2020, 9(3): 848-855. |
LOU Ping, XU Guohua, YUE Lingping, et al. Degraded Li x Ni0.5Co0.2Mn0.3O2(0<x<1) via eutectic solutions for direct regeneration of spent lithium ion battery cathodes[J]. Energy Storage Science and Technology, 2020, 9(3): 848-855. | |
97 | MA Tengfei, GUO Zhaoxin, SHEN Zhen, et al. Molten salt-assisted regeneration and characterization of submicron-sized LiNi0.5Co0.2Mn0.3O2 crystals from spent lithium ion batteries[J]. Journal of Alloys and Compounds, 2020, 848: 156591. |
98 | WANG Tao, LUO Huimin, BAI Yaocai, et al. Direct recycling of spent NCM cathodes through ionothermal lithiation[J]. Advanced Energy Materials, 2020, 10(30): 2001204. |
[1] | 陈科宇, 徐金鑫, 吴桂波, 杨哲, 陈嘉鸿, 陈永利. 绿氨产业现状及发展展望[J]. 化工进展, 2024, 43(5): 2544-2553. |
[2] | 李思, 陶艺月, 肖振翀, 张亮, 李俊, 朱恂, 廖强. 热再生电池堆-二氧化碳电化学还原池系统耦合特性[J]. 化工进展, 2024, 43(5): 2568-2575. |
[3] | 李凌波. 美国石化工业泄漏检测与修复技术进展[J]. 化工进展, 2024, 43(4): 2049-2062. |
[4] | 马文君, 张旭, 刘孟顺, 梁志远. 新兴湿法退役锂电池正极材料回收技术研究进展[J]. 化工进展, 2024, 43(4): 2077-2090. |
[5] | 吴晨赫, 刘彧旻, 杨昕旻, 崔记伟, 姜韶堃, 叶金花, 刘乐全. 粉体光催化全水分解技术研究进展[J]. 化工进展, 2024, 43(4): 1810-1822. |
[6] | 卢志强, 石雨, 陈鹏宇, 张亮, 李俊, 付乾, 朱恂, 廖强. 具有高浓度氨腔室的立式热再生氨电池性能特性[J]. 化工进展, 2024, 43(3): 1224-1231. |
[7] | 楚振普, 陈禹蒙, 李俊国, 孙庆轩, 刘科. 废旧锂离子电池负极石墨循环再生的研究进展[J]. 化工进展, 2024, 43(3): 1524-1534. |
[8] | 彭程, 徐漪琳, 石钰婧, 张玟, 李宇涛, 王皓冉, 张卫, 占绣萍. 生物炭改性及其对除草剂污染水体和土壤修复的研究进展[J]. 化工进展, 2024, 43(2): 1069-1081. |
[9] | 陈国徽, 王君雷, 李世龙, 李金宇, 徐运飞, 罗俊潇, 王昆. 火焰喷雾热解制备锂离子电池三元正极材料研究进展[J]. 化工进展, 2024, 43(2): 971-983. |
[10] | 曾悦, 王月, 张学瑞, 宋玺文, 夏博文, 陈梓颀. 可再生能源合成绿氨研究进展及氢-氨储运经济性分析[J]. 化工进展, 2024, 43(1): 376-389. |
[11] | 卜祥宁, 任玺冰, 童正, 倪梦茜, 倪超, 谢广元. 功率超声对废旧锂离子电池资源化回收利用过程的影响研究进展[J]. 化工进展, 2024, 43(1): 514-528. |
[12] | 马伊, 曹世伟, 王家骏, 林立群, 邢延, 曹腾良, 卢峰, 赵振伦, 张志军. 低共熔溶剂回收废旧锂离子电池正极材料的研究进展[J]. 化工进展, 2023, 42(S1): 219-232. |
[13] | 李洞, 王倩倩, 张亮, 李俊, 付乾, 朱恂, 廖强. 非水系纳米流体热再生液流电池串联堆性能特性[J]. 化工进展, 2023, 42(8): 4238-4246. |
[14] | 杨静, 李博, 李文军, 刘晓娜, 汤刘元, 刘月, 钱天伟. 焦化污染场地中萘降解菌的分离及降解特性[J]. 化工进展, 2023, 42(8): 4351-4361. |
[15] | 姜晶, 陈霄宇, 张瑞妍, 盛光遥. 载锰生物炭制备及其在环境修复中应用研究进展[J]. 化工进展, 2023, 42(8): 4385-4397. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |