化工进展 ›› 2024, Vol. 43 ›› Issue (3): 1275-1292.DOI: 10.16085/j.issn.1000-6613.2023-0493
• 工业催化 • 上一篇
收稿日期:
2023-03-30
修回日期:
2023-06-12
出版日期:
2024-03-10
发布日期:
2024-04-11
通讯作者:
张燕挺
作者简介:
梁燕燕(1986—),女,博士,讲师,研究方向为分子筛合成。E-mail:yyliangyy@163.com。
基金资助:
LIANG Yanyan1(), ZHANG Junliang2, GUO Yunya3, ZHANG Yanting3()
Received:
2023-03-30
Revised:
2023-06-12
Online:
2024-03-10
Published:
2024-04-11
Contact:
ZHANG Yanting
摘要:
分子筛材料作为催化剂或吸附剂已经在石油炼制和精细化工领域中实现广泛应用。近年来,分子筛合成化学研究取得了长足进展,晶种在分子筛合成中的作用成为本领域研究热点。本文将晶种在分子筛合成中的作用概括为5个方面:加快晶化速率、拓宽产物硅铝比范围、调变产物形貌、替代有机模板剂和其他作用,重点聚焦晶种导向特殊形貌分子筛的形成及晶种对有机模板剂的替代作用。从分子筛成核与生长机理出发,剖析了晶种在分子筛合成过程中不同作用的原理,揭示了晶种降低分子筛成核活化能是其发挥多种不同作用的基础。从清洁生产的角度出发,提出晶种在分子筛合成过程中具体的结构变化和晶种替代有机模板剂合成高性能分子筛材料将成为未来研究重点。
中图分类号:
梁燕燕, 张军亮, 郭云鸦, 张燕挺. 晶种在分子筛合成中的作用研究进展[J]. 化工进展, 2024, 43(3): 1275-1292.
LIANG Yanyan, ZHANG Junliang, GUO Yunya, ZHANG Yanting. The role of seed in the synthesis of molecular sieves[J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1275-1292.
参考文献 | 晶种添加量① /% | 晶种添加量② /% | 产物结构 | 作用 |
---|---|---|---|---|
Miyamoto等[ | 33.3 | — | 核壳结构 | 主导 |
Giordano等[ | — | 33.3 | 核壳结构 | 主导 |
Dai等[ | — | 10.0 | 翅片状结构 | 主导 |
Jain等[ | — | 10.0 | 自支撑结构 | 主导 |
Yu等[ | 13.0 | — | 中空结构 | 主导 |
Kegnæs等[ | 约50 | — | 核壳结构 | 主导 |
Guo等[ | — | 50.0 | 纳米片 | 协同 |
Shao等[ | — | 5~25.0 | 纳米片 | 协同 |
表1 添加大量晶种合成特殊形貌分子筛
参考文献 | 晶种添加量① /% | 晶种添加量② /% | 产物结构 | 作用 |
---|---|---|---|---|
Miyamoto等[ | 33.3 | — | 核壳结构 | 主导 |
Giordano等[ | — | 33.3 | 核壳结构 | 主导 |
Dai等[ | — | 10.0 | 翅片状结构 | 主导 |
Jain等[ | — | 10.0 | 自支撑结构 | 主导 |
Yu等[ | 13.0 | — | 中空结构 | 主导 |
Kegnæs等[ | 约50 | — | 核壳结构 | 主导 |
Guo等[ | — | 50.0 | 纳米片 | 协同 |
Shao等[ | — | 5~25.0 | 纳米片 | 协同 |
1 | LI Chengeng, MOLINER M, CORMA A. Building zeolites from precrystallized units: Nanoscale architecture[J]. Angewandte Chemie International Edition, 2018, 57(47): 15330-15353. |
2 | LUAN Huimin, LEI Chi, MA Ye, et al. Alcohol-assisted synthesis of high-silica zeolites in the absence of organic structure-directing agents[J]. Chinese Journal of Catalysis, 2021, 42(4): 563-570. |
3 | DAVIS M E. Zeolites from a materials chemistry perspective[J]. Chemistry of Materials, 2014, 26(1): 239-245. |
4 | HONDA K, YASHIKI A, SADAKANE M, et al. Hydrothermal conversion of FAU and BEA-type zeolites into MAZ-type zeolites in the presence of non-calcined seed crystals[J]. Microporous and Mesoporous Materials, 2014, 196: 254-260. |
5 | HAMIDZADEH M, KOMEILI S, SAEIDI M. Seed-induced synthesis of ZSM-5 aggregates using the silicate-1 as a seed: Characterization and effect of the silicate-1 composition[J]. Microporous and Mesoporous Materials, 2018, 268: 153-161. |
6 | Eng-Poh NG, CHATEIGNER D, BEIN T, et al. Capturing ultrasmall EMT zeolite from template-free systems[J]. Science, 2012, 335(6064): 70-73. |
7 | VALTCHEV V, TOSHEVA L. Porous nanosized particles: Preparation, properties, and applications[J]. Chemical Reviews, 2013, 113(8): 6734-6760. |
8 | LI Shiying, LI Junfen, DONG Mei, et al. Strategies to control zeolite particle morphology[J]. Chemical Society Reviews, 2019, 48(3): 885-907. |
9 | LIU Xiaoliang, WANG Chuanming, ZHOU Jian, et al. Molecular transport in zeolite catalysts: Depicting an integrated picture from macroscopic to microscopic scales[J]. Chemical Society Reviews, 2022, 51(19): 8174-8200. |
10 | 徐如人, 庞文琴, 霍启升, 等. 分子筛与多孔材料化学[M]. 2版. 北京: 科学出版社, 2015: 2-3. |
XU Ruren, PANG Wenqin, HUO Qisheng, et al. Molecular sieves and porous materials chemistry[M]. 2nd ed. Beijing: Science Press, 2015: 2-3. | |
11 | CHMIELEWSKÁ E, CHMIELEWSKÁ E. Natural zeolites as sustainable and environmental inorganic resources over the history to present[J]. General Chemistry, 2019, 5(3): 190001. |
12 | CUNDY C S, COX P A. The hydrothermal synthesis of zeolites: History and development from the earliest days to the present time[J]. Chemical Reviews, 2003, 103(3): 663-702. |
13 | GRAND J, AWALA H, MINTOVA S. Mechanism of zeolites crystal growth: New findings and open questions[J]. CrystEngComm, 2016, 18(5): 650-664. |
14 | DE MOOR P-P E A, BEELEN T P M, KOMANSCHEK B U, et al. Imaging the assembly process of the organic-mediated synthesis of a zeolite[J]. Chemistry—A European Journal, 1999, 5(7): 2083-2088. |
15 | WANG Yanan, LI Xiujie, GAO Yang, et al. Green synthesis route for MCM-49 zeolite using a seed-assisted method by virtue of an ultraphonic aging procedure[J]. Inorganic Chemistry Frontiers, 2021, 8(10): 2575-2583. |
16 | LI Qinghua, CREASER D, STERTE J. An investigation of the nucleation/crystallization kinetics of nanosized colloidal faujasite zeolites[J]. Chemistry of Materials, 2002, 14(3): 1319-1324. |
17 | MINTOVA S, VALTCHEV V, VULTCHEVA E, et al. Crystallization kinetics of zeolite ZSM-5[J]. Zeolites, 1992, 12(2): 210-215. |
18 | KARTHIKA S, RADHAKRISHNAN T K, KALAICHELVI P. A review of classical and nonclassical nucleation theories[J]. Crystal Growth & Design, 2016, 16(11): 6663-6681. |
19 | VALTCHEV V P, BOZHILOV K N. Transmission electron microscopy study of the formation of FAU-type zeolite at room temperature[J]. The Journal of Physical Chemistry B, 2004, 108(40): 15587-15598. |
20 | MOCHIDA I, EGUCHI S, HIRONAKA M, et al. The effects of seeding in the synthesis of zeolite MCM-22 in the presence of hexamethyleneimine[J]. Zeolites, 1997, 18(2-3): 142-151. |
21 | YE Zhaoqi, ZHAO Yang, ZHANG Hongbin, et al. Mesocrystal morphology regulation by “alkali metals ion switch”: Re-examining zeolite nonclassical crystallization in seed-induced process[J]. Journal of Colloid and Interface Science, 2022, 608: 1366-1376. |
22 | IYOKI K, ITABASHI K, OKUBO T. Seed-assisted, one-pot synthesis of hollow zeolite beta without using organic structure-directing agents[J]. Chemistry—An Asian Journal, 2013, 8(7): 1419-1427. |
23 | SHEN Yufeng, LE T T, LI Rui, et al. Optimized synthesis of ZSM-11 catalysts using 1,8-diaminooctane as a structure-directing agent[J]. ChemPhysChem, 2018, 19(4): 529-537. |
24 | MENG Xiangju, XIAO Fengshou. Green routes for synthesis of zeolites[J]. Chemical Reviews, 2014, 114(2): 1521-1543. |
25 | PAN Tao, WU Zhijie, Alex YIP. Advances in the green synthesis of microporous and hierarchical zeolites: A short review[J]. Catalysts, 2019, 9(3): 274. |
26 | LIU Yinghao, ZHANG Qiang, LI Junyan, et al. Protozeolite-seeded synthesis of single-crystalline hierarchical zeolites with facet-shaped mesopores and their catalytic application in methanol-to-propylene conversion[J]. Angewandte Chemie International Edition, 2022, 61(34): e202205716. |
27 | JAIN R, MALLETTE A J, RIMER J D. Controlling nucleation pathways in zeolite crystallization: Seeding conceptual methodologies for advanced materials design[J]. Journal of the American Chemical Society, 2021, 143(51): 21446-21460. |
28 | WANG Shuaiqi, WANG Congxin, LIU Hao, et al. Branched growth of ZSM-12 zeolite on seeds[J]. Microporous and Mesoporous Materials, 2023, 348: 112364. |
29 | AKHGAR S, TOWFIGHI J, HAMIDZADEH M. MTO performance over seed-assisted SAPO-34 zeolites synthesized by reducing template consumption[J]. Journal of Materials Research and Technology, 2020, 9(6): 12126-12136. |
30 | KERR G T. Chemistry of crystalline aluminosilicates. I. Factors affecting the formation of zeolite A[J]. The Journal of Physical Chemistry, 1966, 70(4): 1047-1050. |
31 | KERR G T. Chemistry of crystalline aluminosilicates. IV. Factors affecting the formation of zeolites X and B[J]. The Journal of Physical Chemistry, 1968, 72(4): 1385-1386. |
32 | XIE Bin, ZHANG Haiyan, YANG Chengguang, et al. Seed-directed synthesis of zeolites with enhanced performance in the absence of organic templates[J]. Chemical Communications, 2011, 47(13): 3945-3947. |
33 | KAMIMURA Y, CHAIKITTISILP W, ITABASHI K, et al. Critical factors in the seed-assisted synthesis of zeolite beta and “green beta” from OSDA-free Na+-aluminosilicate gels[J]. Chemistry – an Asian Journal, 2010, 5(10): 2182-2191. |
34 | XU Qinghu, GONG Yanjun, XU Wenjing, et al. Synthesis of high-silica EU-1 zeolite in the presence of hexamethonium ions: A seeded approach for inhibiting ZSM-48[J]. Journal of Colloid and Interface Science, 2011, 358(1): 252-260. |
35 | ITABASHI K, KAMIMURA Y, IYOKI K, et al. A working hypothesis for broadening framework types of zeolites in seed-assisted synthesis without organic structure-directing agent[J]. Journal of the American Chemical Society, 2012, 134(28): 11542-11549. |
36 | LI Qiang, CONG Wenwen, XU Changyou, et al. New insight into the inductive effect of various seeds on the template-free synthesis of ZSM-5 zeolite[J]. CrystEngComm, 2021, 23(48): 8641-8649. |
37 | YU Qingjun, ZHANG Qiang, LIU Jianwei, et al. Inductive effect of various seeds on the organic template-free synthesis of zeolite ZSM-5[J]. CrystEngComm, 2013, 15(38): 7680-7687. |
38 | CHANG Chun-Chih, WANG Zhuopeng, DORNATH P, et al. Rapid synthesis of Sn-beta for the isomerization of cellulosic sugars[J]. RSC Advances, 2012, 2(28): 10475-10477. |
39 | LI Qiang, CONG Wenwen, ZHANG Jianxia, et al. Rapid synthesis of hierarchical nanosized SSZ-13 zeolite with excellent MTO catalytic performance[J]. Microporous and Mesoporous Materials, 2022, 331: 111649. |
40 | MENG Jipeng, LI Chuang, CHEN Xiao, et al. Seed-assisted synthesis of ZSM-48 zeolite with low SiO2/Al2O3 ratio for n-hexadecane hydroisomerization[J]. Microporous and Mesoporous Materials, 2020, 309: 110565. |
41 | MALLETTE A J, SEO Seungwan, RIMER J D. Synthesis strategies and design principles for nanosized and hierarchical zeolites[J]. Nature Synthesis, 2022, 1(7): 521-534. |
42 | ZHANG Hongbin, ZHANG Hongxia, ZHAO Yang, et al. Seeding bundlelike MFI zeolite mesocrystals: A dynamic, nonclassical crystallization via epitaxially anisotropic growth[J]. Chemistry of Materials, 2017, 29(21): 9247-9255. |
43 | ZHANG Hongbin, ZHAO Yang, ZHANG Hongxia, et al. Tailoring zeolite ZSM-5 crystal morphology/porosity through flexible utilization of silicalite-1 seeds as templates: Unusual crystallization pathways in a heterogeneous system[J]. Chemistry—A European Journal, 2016, 22(21): 7141-7151. |
44 | WANG Yeqing, WANG Xiong, WU Qinming, et al. Seed-directed and organotemplate-free synthesis of TON zeolite[J]. Catalysis Today, 2014, 226: 103-108. |
45 | IYOKI K, ITABASHI K, OKUBO T. Progress in seed-assisted synthesis of zeolites without using organic structure-directing agents[J]. Microporous and Mesoporous Materials, 2014, 189: 22-30. |
46 | BIAN Chaoqun, MAO Hui, QIU Jianping, et al. Facile and seed-direct synthesis of pure EUO zeolite with enhanced catalytic performance[J]. Materials Research Express, 2019, 6(9): 095529. |
47 | WANG Yeqing, WU Qinming, MENG Xiangju, et al. Insights into the organotemplate-free synthesis of zeolite catalysts[J]. Engineering, 2017, 3(4): 567-574. |
48 | WU Yajing, REN Xiaoqian, LU Youdong, et al. Crystallization and morphology of zeolite MCM-22 influenced by various conditions in the static hydrothermal synthesis[J]. Microporous and Mesoporous Materials, 2008, 112(1/2/3): 138-146. |
49 | YANG Yichang, MENG Xiangyu, ZHU Longfeng, et al. Rapid synthesis of Si-rich SSZ-13 zeolite under fluoride-free conditions[J]. Inorganic Chemistry, 2022, 61(51): 21115-21122. |
50 | WANG Shuang, ZHOU Lipeng, GAO Beibei, et al. Synthesis of Sn-beta by hydrothermal method: The role of seeds[J]. Microporous and Mesoporous Materials, 2022, 335: 111812. |
51 | LIU Zhendong, WAKIHARA T, OSHIMA K, et al. Widening synthesis bottlenecks: Realization of ultrafast and continuous-flow synthesis of high-silica zeolite SSZ-13 for NO x removal[J]. Angewandte Chemie International Edition, 2015, 54(19): 5683-5687. |
52 | ZHU Jie, LIU Zhendong, IYOKI Kenta, et al. Ultrafast synthesis of high-silica erionite zeolites with improved hydrothermal stability[J]. Chemical Communications, 2017, 53(50): 6796-6799. |
53 | LIU Zhendong, WAKIHARA T, NISHIOKA D, et al. Ultrafast continuous-flow synthesis of crystalline microporous aluminophosphate AlPO4-5[J]. Chemistry of Materials, 2014, 26(7): 2327-2331. |
54 | LIU Zhendong, WAKIHARA T, NOMURA N, et al. Ultrafast and continuous flow synthesis of silicoaluminophosphates[J]. Chemistry of Materials, 2016, 28(13): 4840-4847. |
55 | LIU Zhendong, ZHU Jie, WAKIHARA T, et al. Ultrafast synthesis of zeolites: Breakthrough, progress and perspective[J]. Inorganic Chemistry Frontiers, 2019, 6(1): 14-31. |
56 | ZHU Jie, LIU Zhendong, ENDO A, et al. Ultrafast, OSDA-free synthesis of mordenite zeolite[J]. CrystEngComm, 2017, 19(4): 632-640. |
57 | ZHU Jie, LIU Zhendong, SUKENAGA S, et al. Ultrafast synthesis of *BEA zeolite without the aid of aging pretreatment[J]. Microporous and Mesoporous Materials, 2018, 268: 1-8. |
58 | ZHU Jie, LIU Zhendong, XU Le, et al. Understanding the high hydrothermal stability and NH3-SCR activity of the fast-synthesized ERI zeolite[J]. Journal of Catalysis, 2020, 391: 346-356. |
59 | ZHU Dali, WANG Linying, FAN Dong, et al. A bottom-up strategy for the synthesis of highly siliceous faujasite-type zeolite[J]. Advanced Materials, 2020, 32(26): 2000272. |
60 | SUN Chang, CHEN Wei, WANG Jianyu, et al. An anion-promoted increase of the SiO2/Al2O3 ratio of zeolites[J]. Inorganic Chemistry Frontiers, 2022, 9(6): 1293-1299. |
61 | LI Xiaofeng, LIU Xiaozhen, ZHANG Yanting, et al. Controllable synthesis of EU-1 molecular sieve with high SiO2/Al2O3 ratios in thermodynamic stable Sol system[J]. Journal of Porous Materials, 2016, 23(6): 1557-1565. |
62 | WANG Jie, CAO Shiwei, SUN Yu, et al. β zeolite nanostructures with a high SiO2/Al2O3 ratio for the adsorption of volatile organic compounds[J]. ACS Applied Nano Materials, 2021, 4(12): 13257-13266. |
63 | CHOI Minkee, NA Kyungsu, KIM Jeongnam, et al. Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts[J]. Nature, 2009, 461(7261): 246-249. |
64 | CHEN Lihua, SUN Minghui, WANG Zhao, et al. Hierarchically structured zeolites: From design to application[J]. Chemical Reviews, 2020, 120(20): 11194-11294. |
65 | PENG Peng, GAO Xionghou, YAN Zifeng, et al. Diffusion and catalyst efficiency in hierarchical zeolite catalysts[J]. National Science Review, 2020, 7(11): 1726-1742. |
66 | WANG Xiangyu, MA Ye, WU Qinming, et al. Zeolite nanosheets for catalysis[J]. Chemical Society Reviews, 2022, 51(7): 2431-2443. |
67 | HE Pei, LI Ying, CAI Kai, et al. Nano-assembled mordenite zeolite with tunable morphology for carbonylation of dimethyl ether[J]. ACS Applied Nano Materials, 2020, 3(7): 6460-6468. |
68 | ZHANG Lina, YANG Liu, LIU Runze, et al. Design of plate-like H[Ga]MFI zeolite catalysts for high-performance methanol-to-propylene reaction[J]. Microporous and Mesoporous Materials, 2022, 333: 111767. |
69 | DAI Weijiong, ZHANG Lina, LIU Runze, et al. Plate-like ZSM-5 zeolites as robust catalysts for the cracking of hydrocarbons[J]. ACS Applied Materials & Interfaces, 2022, 14(9): 11415-11424. |
70 | 张燕挺, 党辉, 张妮妮, 等. 表面活性剂-模板化法制备多级孔β沸石及其四氢萘加氢裂化制苯、甲苯、二甲苯的催化性能[J]. 无机化学学报, 2022, 38(7): 1350-1360. |
ZHANG Yanting, DANG Hui, ZHANG Nini, et al. Hierarchical β zeolite by surfactant-templating method: Preparation and catalytic performance in tetralin hydrocracking to benzene, toluene, and xylene[J]. Chinese Journal of Inorganic Chemistry, 2022, 38(7): 1350-1360. | |
71 | DAI Weijiong, KOUVATAS C, TAI Wenshu, et al. Platelike MFI crystals with controlled crystal faces aspect ratio[J]. Journal of the American Chemical Society, 2021, 143(4): 1993-2004. |
72 | DAI Heng, SHEN Yufeng, YANG Taimin, et al. Finned zeolite catalysts[J]. Nature Materials, 2020, 19(10): 1074-1080. |
73 | MIYAMOTO M, ONO S, OUMI Y, et al. Nanoporous ZSM-5 crystals coated with silicalite-1 for enhanced p-xylene separation[J]. ACS Applied Nano Materials, 2019, 2(5): 2642-2650. |
74 | IMYEN T, WANNAPAKDEE W, ITTISANRONNACHAI S, et al. Tailoring hierarchical zeolite composites with two distinct frameworks for fine-tuning the product distribution in benzene alkylation with ethanol[J]. Nanoscale Advances, 2020, 2(10): 4437-4449. |
75 | GIORDANO G, MIGLIORI M, FERRARELLI G, et al. Passivated surface of high aluminum containing ZSM-5 by silicalite-1: Synthesis and application in dehydration reaction[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(15): 4839-4848. |
76 | MASOUMIFARD N, GUILLET-NICOLAS R, KLEITZ F. Synthesis of engineered zeolitic materials: From classical zeolites to hierarchical core-shell materials[J]. Advanced Materials, 2018, 30(16): 1704439. |
77 | ZHANG Jiaxing, REN Limin, ZHOU Ajuan, et al. Tailored synthesis of ZSM-5 nanosheets with controllable b-axis thickness and aspect ratio: Strategy and growth mechanism[J]. Chemistry of Materials, 2022, 34(7): 3217-3226. |
78 | ZHENG Bumei, WAN Yufeng, YANG Weiya, et al. Mechanism of seeding in hydrothermal synthesis of zeolite beta with organic structure-directing agent-free gel[J]. Chinese Journal of Catalysis, 2014, 35(11): 1800-1810. |
79 | BOK T O, ANDRIAKO E P, KNYAZEVA E E, et al. Engineering of zeolite BEA crystal size and morphology via seed-directed steam assisted conversion[J]. RSC Advances, 2020, 10(63): 38505-38514. |
80 | MAJANO G, DARWICHE A, MINTOVA S, et al. Seed-induced crystallization of nanosized Na-ZSM-5 crystals[J]. Industrial & Engineering Chemistry Research, 2009, 48(15): 7084-7091. |
81 | NADA M H, LARSEN S C. Insight into seed-assisted template free synthesis of ZSM-5 zeolites[J]. Microporous and Mesoporous Materials, 2017, 239: 444-452. |
82 | REN Nan, YANG Zhijian, Xinchun LYU, et al. A seed surface crystallization approach for rapid synthesis of submicron ZSM-5 zeolite with controllable crystal size and morphology[J]. Microporous and Mesoporous Materials, 2010, 131(1/2/3): 103-114. |
83 | MI Xiaotong, HOU Zhanggui, LI Xiaoguo, et al. Synergistic effect between organic structure-directing agent and crystal seed toward controlled morphology, and bimodal pore structure of aggregated nanosized ZSM-5[J]. Microporous and Mesoporous Materials, 2020, 302: 110255. |
84 | DAI Chengyi, LI Junjie, ZHANG Anfeng, et al. Precise control of the size of zeolite B-ZSM-5 based on seed surface crystallization[J]. RSC Advances, 2017, 7(60): 37915-37922. |
85 | JAIN R, CHAWLA A, LINARES N, et al. Spontaneous pillaring of pentasil zeolites[J]. Advanced Materials, 2021, 33(22): 2100897. |
86 | GOODARZI F, HERRERO I P, KALANTZOPOULOS G N, et al. Synthesis of mesoporous ZSM-5 zeolite encapsulated in an ultrathin protective shell of silicalite-1 for MTH conversion[J]. Microporous and Mesoporous Materials, 2020, 292: 109730. |
87 | SHAO Xiuli, WANG Siqi, ZHOU Youhui, et al. Synthesis of multilamellar ZSM-5 nanosheets with tailored b-axis thickness[J]. Microporous and Mesoporous Materials, 2022, 345: 112252. |
88 | 吴勤明, 王叶青, 肖丰收, 等. 硅铝沸石分子筛晶化过程再思考[J]. 高等学校化学学报, 2021, 42(1): 8. |
WU Qinming, WANG Yeqing, XIAO Fengshou, et al. Reconsideration of crystallization process for aluminosilicate zeolites[J]. Chemical Journal of Chinese Universities, 2021, 42(1): 8. | |
89 | JI Yanyan, WANG Yeqing, XIE Bin, et al. Zeolite seeds: Third type of structure directing agents in the synthesis of zeolites[J]. Comments on Inorganic Chemistry, 2016, 36(1): 1-16. |
90 | ZHANG Haoyang, WANG Binyu, YAN Wenfu. The structure-directing role of heterologous seeds in the synthesis of zeolite[J]. Green Energy & Environment, 2023. |
91 | C-R BORUNTEA, LUNDEGAARD L F, CORMA A, et al. Crystallization of AEI and AFX zeolites through zeolite-to-zeolite transformations[J]. Microporous and Mesoporous Materials, 2019, 278: 105-114. |
92 | TOMITA J, ELANGOVAN S P, ITABASHI K, et al. OSDA-free synthesis of zeolite beta: Broadening the methodology for a successful use of the product as a seed[J]. Advanced Powder Technology, 2022, 33(9): 103741. |
93 | KAMIMURA Y, TANAHASHI S, ITABASHI K, et al. Crystallization behavior of zeolite beta in OSDA-free, seed-assisted synthesis[J]. The Journal of Physical Chemistry C, 2011, 115(3): 744-750. |
94 | IMAI H, HAYASHIDA N, YOKOI T, et al. Direct crystallization of CHA-type zeolite from amorphous aluminosilicate gel by seed-assisted method in the absence of organic-structure-directing agents[J]. Microporous and Mesoporous Materials, 2014, 196: 341-348. |
95 | INAYAT A, SCHNEIDER C, SCHWIEGER W. Organic-free synthesis of layer-like FAU-type zeolites[J]. Chemical Communications, 2015, 51(2): 279-281. |
96 | AWALA H, J-P GILSON, RETOUX R, et al. Template-free nanosized faujasite-type zeolites[J]. Nature Materials, 2015, 14(4): 447-451. |
97 | DAI Shujie, TAN Yangchun, YANG Yuhan, et al. Organotemplate-free synthesis of Al-rich ZSM-35 and ZSM-22 zeolites with the addition of ZSM-57 zeolite seeds[J]. CrystEngComm, 2022, 24(39): 6987-6995. |
98 | YASHIKI A, HONDA K, FUJIMOTO A, et al. Hydrothermal conversion of FAU zeolite into LEV zeolite in the presence of non-calcined seed crystals[J]. Journal of Crystal Growth, 2011, 325(1): 96-100. |
99 | OGAWA A, IYOKI K, KAMIMURA Y, et al. Seed-directed, rapid synthesis of MAZ-type zeolites without using organic structure-directing agent[J]. Microporous and Mesoporous Materials, 2014, 186: 21-28. |
100 | YU Qingjun, MENG Xiaojing, LIU Jianwei, et al. A fast organic template-free, ZSM-11 seed-assisted synthesis of ZSM-5 with good performance in methanol-to-olefin[J]. Microporous and Mesoporous Materials, 2013, 181: 192-200. |
101 | WANG Ziyang, WANG Yaquan, SUN Chao, et al. Seed-assisted synthesis and catalytic performance of nano-sized ZSM-5 aggregates in a one-step crystallization process[J]. Transactions of Tianjin University, 2020, 26(4): 292-304. |
102 | SHESTAKOVA D O, BABINA K A, SLADKOVSKIY D A, et al. Seed-assisted synthesis of hierarchical zeolite ZSM-5 in the absence of organic templates[J]. Materials Chemistry and Physics, 2022, 288: 126432. |
103 | ZHANG Hongxia, ZHANG Hongbin, WANG Peicheng, et al. Organic template-free synthesis of zeolite mordenite nanocrystals through exotic seed-assisted conversion[J]. RSC Advances, 2016, 6(53): 47623-47631. |
104 | LU Baowang, TSUDA Tomohiro, OUMI Yasunori, et al. Direct synthesis of high-silica mordenite using seed crystals[J]. Microporous and Mesoporous Materials, 2004, 76(1/2/3): 1-7. |
105 | ALY H M, MOUSTAFA M E, ABDELRAHMAN E A. Synthesis of mordenite zeolite in absence of organic template[J]. Advanced Powder Technology, 2012, 23(6): 757-760. |
106 | ZHAO Guoliang, TENG Jiawei, ZHANG Yahong, et al. Synthesis of ZSM-48 zeolites and their catalytic performance in C4-olefin cracking reactions[J]. Applied Catalysis A: General, 2006, 299: 167-174. |
107 | SOGUKKANLI S, IYOKI K, ELANGOVAN S P, et al. Rational seed-directed synthesis of MSE-type zeolites using a simple organic structure-directing agent by extending the composite building unit hypothesis[J]. Microporous and Mesoporous Materials, 2017, 245: 1-7. |
108 | WU Qinming, WANG Xiong, MENG Xiangju, et al. Organotemplate-free, seed-directed, and rapid synthesis of Al-rich zeolite MTT with improved catalytic performance in isomerization of m-xylene[J]. Microporous and Mesoporous Materials, 2014, 186: 106-112. |
109 | KAMIMURA Y, ITABASHI K, OKUBO T. Seed-assisted, OSDA-free synthesis of MTW-type zeolite and “Green MTW” from sodium aluminosilicate gel systems[J]. Microporous and Mesoporous Materials, 2012, 147(1): 149-156. |
110 | KAMIMURA Y, IYOKI K, ELANGOVAN S, et al. OSDA-free synthesis of MTW-type zeolite from sodium aluminosilicate gels with zeolite beta seeds[J]. Microporous and Mesoporous Materials, 2012, 163: 282-290. |
111 | KAMIMURA Y, ITABASHI K, KON Y, et al. Seed-assisted synthesis of MWW-type zeolite with organic structure-directing agent-free Na-aluminosilicate gel system[J]. Chemistry—An Asian Journal, 2017, 12(5): 530-542. |
112 | IYOKI K, TAKASE M, ITABASHI K, et al. Organic structure-directing agent-free synthesis of NES-type zeolites using EU-1 seed crystals[J]. Microporous and Mesoporous Materials, 2015, 215: 191-198. |
113 | YOKOI T, YOSHIOKA M, IMAI H, et al. Diversification of RTH-type zeolite and its catalytic application[J]. Angewandte Chemie, 2009, 121(52): 10068-10071. |
114 | DAI Feng-Yuen, SUZUKI M, TAKAHASHI H, et al. Crystallization of pentasil zeolite in the absence of organic templates[M]//ACS Symposium Series. Washington, DC: American Chemical Society, 1989: 244-256. |
115 | XIE Bin, SONG Jiangwei, REN Limin, et al. Organotemplate-free and fast route for synthesizing beta zeolite[J]. Chemistry of Materials, 2008, 20(14): 4533-4535. |
116 | OLEKSIAK M D, RIMER J D. Synthesis of zeolites in the absence of organic structure-directing agents: Factors governing crystal selection and polymorphism[J]. Reviews in Chemical Engineering, 2014, 30(1): 1-49. |
117 | ZHANG Haiyan, XIE Bin, MENG Xiangju, et al. Rational synthesis of beta zeolite with improved quality by decreasing crystallization temperature in organotemplate-free route[J]. Microporous and Mesoporous Materials, 2013, 180: 123-129. |
118 | ZHANG Ke, FERNANDEZ S, OSTRAAT M L. Understanding commonalities and interplay between organotemplate-free zeolite synthesis, hierarchical structure creation, and interzeolite transformation[J]. ChemCatChem, 2018, 10(19): 4197-4212. |
119 | PILAR R, MORAVKOVA J, SADOVSKA G, et al. Controlling the competitive growth of zeolite phases without using an organic structure-directing agent. Synthesis of Al-rich *BEA[J]. Microporous and Mesoporous Materials, 2022, 333: 111726. |
120 | DE BAERDEMAEKER T, YILMAZ B, MÜLLER U, et al. Catalytic applications of OSDA-free beta zeolite[J]. Journal of Catalysis, 2013, 308: 73-81. |
121 | LI Jialiang, GAO Mingkun, YAN Wenfu, et al. Regulation of the Si/Al ratios and Al distributions of zeolites and their impact on properties[J]. Chemical Science, 2022, 14(8): 1935-1959. |
122 | WU Qinming, ZHU Longfeng, CHU Yueying, et al. Sustainable synthesis of pure silica zeolites from a combined strategy of zeolite seeding and alcohol filling[J]. Angewandte Chemie, 2019, 131(35): 12266-12270. |
123 | CHEN Zhudan, ZHANG Huizhi, GAN Lai, et al. Hetero-epitaxial growth of chabazite zeolite membranes using an RHO-type seed layer[J]. Journal of Membrane Science, 2021, 635: 119465. |
124 | PAN Huihua, PAN Qunxiong, ZHAO Yuansheng, et al. A green and efficient synthesis of ZSM-5 using NaY as seed with mother liquid recycling and in the absence of organic template[J]. Industrial & Engineering Chemistry Research, 2010, 49(16): 7294-7302. |
125 | MA Duozheng, FU Wenhua, LIU Chuang, et al. Seed-directed syntheses of zeolites in a versatile borosilicate system with the presence of Octyltrimethylammonium Chloride[J]. Microporous and Mesoporous Materials, 2022, 346: 112283. |
126 | GOEL S, ZONES S I, IGLESIA E. Synthesis of zeolites via interzeolite transformations without organic structure-directing agents[J]. Chemistry of Materials, 2015, 27(6): 2056-2066. |
127 | GOTO I, ITAKURA M, SHIBATA S, et al. Transformation of LEV-type zeolite into less dense CHA-type zeolite[J]. Microporous and Mesoporous Materials, 2012, 158: 117-122. |
128 | 王云峥. HEU和CHA分子筛的晶种辅助合成及其在环境保护中的应用[D]. 长春: 吉林大学, 2022. |
WANG Yunzheng. Seed-assisted synthesis of HEU and CHA molecular sieves and their application in environmental protection[D]. Changchun: Jilin University, 2022. | |
129 | LIU Ruiyun, LIN Sen, SHI Lei, et al. Morphology adjustment of ZSM-5 nanocrystal agglomerates and achievement of improved activity in LDPE catalytic cracking reaction[J]. Microporous and Mesoporous Materials, 2019, 285: 120-128. |
130 | HAN Shunyu, LIU Yu, YIN Chengri, et al. Fast synthesis of submicron ZSM-5 zeolite from leached illite clay using a seed-assisted method[J]. Microporous and Mesoporous Materials, 2019, 275: 223-228. |
131 | CHENG Xiaowei, MAO Jianjiang, Xinchun LYU, et al. Fast synthesis of nanosized zeolite beta from a low-seeded, low-templated dry gel with a seeding-steam-assisted conversion method[J]. Journal of Materials Chemistry A, 2014, 2(5): 1247-1251. |
132 | KALVACHEV Y, JABER M, MAVRODINOVA V, et al. Seeds-induced fluoride media synthesis of nanosized zeolite beta crystals[J]. Microporous and Mesoporous Materials, 2013, 177: 127-134. |
133 | WU Qinming, MA Ye, WANG Sai, et al. 110th Anniversary: Sustainable synthesis of zeolites: From fundamental research to industrial production[J]. Industrial & Engineering Chemistry Research, 2019, 58(27): 11653-11658. |
[1] | 丁康, 何军桥, 陈元捷, 杨霞珍, 刘化章, 霍超. Ru/Ba-MgO氨合成催化剂模板棉纤维的盐酸处理对催化性能的影响[J]. 化工进展, 2024, 43(2): 962-970. |
[2] | 王达锐, 孙洪敏, 王一棪, 唐智谋, 李芮, 范雪研, 杨为民. 分子筛催化反应过程高效化的技术进展[J]. 化工进展, 2024, 43(1): 1-18. |
[3] | 张家昊, 李盈盈, 徐彦琳, 尹佳滨, 张吉松. 微反应器中连续还原胺化反应的研究进展[J]. 化工进展, 2024, 43(1): 186-197. |
[4] | 衡霖宇, 邓卓然, 程道建, 魏彬, 赵利强. 高通量合成装置强化金属催化剂制备过程的研究进展[J]. 化工进展, 2024, 43(1): 246-259. |
[5] | 王一棪, 王达锐, 沈震浩, 何俊琳, 孙洪敏, 杨为民. 全结晶MCM-22分子筛催化剂的制备及其催化性能[J]. 化工进展, 2024, 43(1): 285-291. |
[6] | 曾悦, 王月, 张学瑞, 宋玺文, 夏博文, 陈梓颀. 可再生能源合成绿氨研究进展及氢-氨储运经济性分析[J]. 化工进展, 2024, 43(1): 376-389. |
[7] | 张海鹏, 王树振, 马梦茜, 张巍, 向江南, 王玉婷, 王琰, 范彬彬, 郑家军, 李瑞丰. ZSM-22分子筛合成及其正十二烷烃临氢异构化性能:模板剂和动态晶化的影响[J]. 化工进展, 2024, 43(1): 414-421. |
[8] | 李桂贞, 胡英元, 章博, 杨耀祖, 翟荣佳, 赵鑫. 一种罗丹明内酰胺类高分子pH荧光探针的合成及性能[J]. 化工进展, 2024, 43(1): 473-479. |
[9] | 成昊霖, 年瑶, 韩优. CH4和CO2共转化反应机理研究进展[J]. 化工进展, 2024, 43(1): 60-75. |
[10] | 周媚, 曾浩桀, 卢俊宁, 蒲婷, 刘宝玉. 等级孔分子筛构筑及扩散过程强化研究进展[J]. 化工进展, 2024, 43(1): 76-86. |
[11] | 冯瑶光, 陈奎, 赵佳伟, 王娜, 王霆, 黄欣, 周丽娜, 郝红勋. 溶液结晶过程强化[J]. 化工进展, 2024, 43(1): 87-99. |
[12] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[13] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[14] | 张杰, 白忠波, 冯宝鑫, 彭肖林, 任伟伟, 张菁丽, 刘二勇. PEG及其复合添加剂对电解铜箔后处理的影响[J]. 化工进展, 2023, 42(S1): 374-381. |
[15] | 赵巍, 赵德银, 李世瀚, 刘洪达, 孙进, 郭艳秋. 三嗪型天然气管道缓蚀型减阻剂合成与应用[J]. 化工进展, 2023, 42(S1): 391-399. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |