化工进展 ›› 2024, Vol. 43 ›› Issue (3): 1266-1274.DOI: 10.16085/j.issn.1000-6613.2023-0410
• 工业催化 • 上一篇
张鹏飞(), 严张艳, 任亮, 张奎, 梁家林, 赵广乐, 张璠玢, 胡志海
收稿日期:
2023-03-17
修回日期:
2023-10-23
出版日期:
2024-03-10
发布日期:
2024-04-11
通讯作者:
张鹏飞
作者简介:
张鹏飞(1994—),男,博士,助理研究员,研究方向为加氢裂化工艺及催化剂的开发和应用。E-mail:zhangpengfei.ripp@sinopec.com。
基金资助:
ZHANG Pengfei(), YAN Zhangyan, REN Liang, ZHAGN Kui, LIANG Jialin, ZHAO Guangle, ZHANG Fanbin, HU Zhihai
Received:
2023-03-17
Revised:
2023-10-23
Online:
2024-03-10
Published:
2024-04-11
Contact:
ZHANG Pengfei
摘要:
随着我国芳烃联合装置、乙烯裂解装置的扩能或新建,国内C
中图分类号:
张鹏飞, 严张艳, 任亮, 张奎, 梁家林, 赵广乐, 张璠玢, 胡志海. C
ZHANG Pengfei, YAN Zhangyan, REN Liang, ZHAGN Kui, LIANG Jialin, ZHAO Guangle, ZHANG Fanbin, HU Zhihai. Research progress in the catalytic hydrodealkylation of C
组分 | 质量分数 /% | 组分 | 质量分数 /% |
---|---|---|---|
异丙苯 | 0.697 | 邻甲乙苯 | 4.273 |
正丙苯 | 2.024 | 均三甲苯 | 12.839 |
间甲乙苯 | 12.704 | 偏三甲苯 | 37.802 |
对甲乙苯 | 4.534 | 连三甲苯 | 8.773 |
1-乙基-2,3-二甲基苯 | 1.981 | 1,2,4,5-四甲基苯 | 1.884 |
1-甲基,3-丙基苯 | 1.073 | 1,2,3,5-四甲基苯 | 2.713 |
1,3-二乙苯 | 0.733 | 1-甲基,4-丙基苯 | 0.820 |
萘 | 1.288 | 2-乙基,1,4-二甲基苯 | 1.413 |
茚满 | 1.719 | 1-甲基,2-丙基苯 | 0.427 |
表1 典型重整C9+重芳烃组成
组分 | 质量分数 /% | 组分 | 质量分数 /% |
---|---|---|---|
异丙苯 | 0.697 | 邻甲乙苯 | 4.273 |
正丙苯 | 2.024 | 均三甲苯 | 12.839 |
间甲乙苯 | 12.704 | 偏三甲苯 | 37.802 |
对甲乙苯 | 4.534 | 连三甲苯 | 8.773 |
1-乙基-2,3-二甲基苯 | 1.981 | 1,2,4,5-四甲基苯 | 1.884 |
1-甲基,3-丙基苯 | 1.073 | 1,2,3,5-四甲基苯 | 2.713 |
1,3-二乙苯 | 0.733 | 1-甲基,4-丙基苯 | 0.820 |
萘 | 1.288 | 2-乙基,1,4-二甲基苯 | 1.413 |
茚满 | 1.719 | 1-甲基,2-丙基苯 | 0.427 |
载体 | 研究者 | 活性组分 | 原料 | 反应条件 | 性能指标 |
---|---|---|---|---|---|
Al2O3 | Daly等[ | Cr2O3-Na2O | 甲苯 | 620℃、5.5MPa、1.47h-1 | 甲苯转化率>55%,苯选择性>90% |
Al2O3 | UOP[ | Cr2O3 | C | 600~650℃、3.5~4.5MPa、0.5h-1 | 高纯苯 |
Al2O3 | 王士文等[ | Cr2O3-RE | C9~C10 | 550℃、5MPa、1h-1 | C9~C10转化率>58.32%,BTX选择性>95.55% |
SiO2 | 石德先等[ | CrO x | C | 550℃、5MPa、1h-1 | C |
Al2O3 | Wu等[ | MoO3-ZnO | C | 400~650℃、5h-1、1.5~4.5MPa | C |
Al2O3 | Ozawa等[ | MoO3-NiO | C9~C10芳烃 | 550℃、6MPa | 苯选择性9.74%,甲苯选择性30.27%,二甲苯选择性32.33% |
表2 文献中关于氧化物型催化剂的研究进展
载体 | 研究者 | 活性组分 | 原料 | 反应条件 | 性能指标 |
---|---|---|---|---|---|
Al2O3 | Daly等[ | Cr2O3-Na2O | 甲苯 | 620℃、5.5MPa、1.47h-1 | 甲苯转化率>55%,苯选择性>90% |
Al2O3 | UOP[ | Cr2O3 | C | 600~650℃、3.5~4.5MPa、0.5h-1 | 高纯苯 |
Al2O3 | 王士文等[ | Cr2O3-RE | C9~C10 | 550℃、5MPa、1h-1 | C9~C10转化率>58.32%,BTX选择性>95.55% |
SiO2 | 石德先等[ | CrO x | C | 550℃、5MPa、1h-1 | C |
Al2O3 | Wu等[ | MoO3-ZnO | C | 400~650℃、5h-1、1.5~4.5MPa | C |
Al2O3 | Ozawa等[ | MoO3-NiO | C9~C10芳烃 | 550℃、6MPa | 苯选择性9.74%,甲苯选择性30.27%,二甲苯选择性32.33% |
载体 | 研究者 | 活性组分 | 原料 | 反应条件 | 性能指标 |
---|---|---|---|---|---|
ZSM-5 | 杨纪等[ | Pt/Pd | C | 480℃、1.4MPa、5h-1 | BTX选择性约70% |
RIPP[ | Pt、Sn、Re或Pd | C | 375~390℃、0.80~0.85MPa、1~4h-1 | BTX收率>70% | |
董娇娇等[ | Mo | C | 550℃、3MPa、3.6h-1 | C | |
Arca等[ | Pt-Mo | C8~C13 | 400~650℃、2~4MPa | 液体产物中BTX质量分数达75% | |
β | 申群兵[ | NiO/MoO3 | C | 460℃、3MPa、3.62h-1 | C |
Y | 孙彦民等[ | Y2O3-Pt | C | 350~370℃、2~3MPa、1~2h-1 | C8、C9总选择性大于40% |
MCM-56 | 何剑洪等[ | La2O3-NiO | C | 460℃、3MPa、3.62h-1 | C |
表3 文献中关于分子筛型催化剂的研究进展
载体 | 研究者 | 活性组分 | 原料 | 反应条件 | 性能指标 |
---|---|---|---|---|---|
ZSM-5 | 杨纪等[ | Pt/Pd | C | 480℃、1.4MPa、5h-1 | BTX选择性约70% |
RIPP[ | Pt、Sn、Re或Pd | C | 375~390℃、0.80~0.85MPa、1~4h-1 | BTX收率>70% | |
董娇娇等[ | Mo | C | 550℃、3MPa、3.6h-1 | C | |
Arca等[ | Pt-Mo | C8~C13 | 400~650℃、2~4MPa | 液体产物中BTX质量分数达75% | |
β | 申群兵[ | NiO/MoO3 | C | 460℃、3MPa、3.62h-1 | C |
Y | 孙彦民等[ | Y2O3-Pt | C | 350~370℃、2~3MPa、1~2h-1 | C8、C9总选择性大于40% |
MCM-56 | 何剑洪等[ | La2O3-NiO | C | 460℃、3MPa、3.62h-1 | C |
1 | 范景新, 臧甲忠, 于海斌, 等. 重芳烃轻质化研究进展[J]. 工业催化, 2015, 23(9): 666-673. |
FAN Jingxin, ZANG Jiazhong, YU Haibin, et al. Research progress in conversion of heavy aromatics to light ones[J]. Industrial Catalysis, 2015, 23(9): 666-673. | |
2 | 孔德金, 祁晓岚, 朱志荣, 等. 重芳烃轻质化技术进展[J]. 化工进展, 2006, 25(9): 983-987. |
KONG Dejin, QI Xiaolan, ZHU Zhirong, et al. Technological advances in conversion of heavy aromatics to light aromatics[J]. Chemical Industry and Engineering Progress, 2006, 25(9): 983-987. | |
3 | 臧甲忠, 郭春垒, 范景新,等. C 9 + 重芳烃增产BTX技术进展[J]. 化工进展, 2017, 36(4): 1278-1287. |
ZANG Jiazhong, GUO Chunlei, FAN Jingxin, et al. Advance in BTX production increase technology from C 9 + heavy aromatics. Chemical Industry and Engineering Progress, 2017, 36(4): 1278-1287. | |
4 | 戴厚良. 芳烃生产技术展望[J]. 石油炼制与化工, 2013, 44(1): 1-10. |
DAI Houliang. Outlook of aromatics production technology[J]. Petroleum Processing and Petrochemicals, 2013, 44(1): 1-10. | |
5 | 孔德金, 杨为民. 芳烃生产技术进展[J]. 化工进展, 2011, 30(1): 16-25. |
KONG Dejin, YANG Weimin. Advance in technology for production of aromatic hydrocarbons[J]. Chemical Industry and Engineering Progress, 2011, 30(1): 16-25. | |
6 | ALBERSBERGER S, SHI H, WAGENHOFER M, et al. On the enhanced catalytic activity of acid-treated, trimetallic Ni-Mo-W sulfides for quinoline hydrodenitrogenation[J]. Journal of Catalysis, 2019, 380(3): 332-342. |
7 | 马爱增. 中国催化重整技术进展[J]. 中国科学: 化学, 2014, 44(1): 25-39. |
MA Aizeng. Development and commercial application of naphtha catalytic reforming technology in China[J]. Scientia Sinica Chimica, 2014, 44(1): 25-39. | |
8 | 张传兆. 催化重整工艺技术进展及产能现状[J]. 炼油与化工, 2011, 22(4): 3-8. |
ZHANG Chuanzhao. Progress in catalytic reforming process technologies and production capacity status[J]. Refining and Chemical Industry, 2011, 22(4): 3-8. | |
9 | 路守彦. 国内外催化重整工艺技术进展[J]. 炼油技术与工程, 2009, 39(8): 1-6. |
LU Shouyan. Catalytic reforming process technology development in the world[J]. Petroleum Refinery Engineering, 2009, 39(8): 1-6. | |
10 | 袁国民, 从海峰, 李鑫钢. 重芳烃轻质化与分离研究进展[J]. 化学工业与工程, 2022, 39(3): 60-72. |
YUAN Guomin, CONG Haifeng, LI Xingang. Research progress in conversion to light aromatics and separation of heavy aromatics[J]. Chemical Industry and Engineering, 2022, 39(3): 60-72. | |
11 | 刘毅, 王金玲. 重芳烃轻质化技术和前景浅析[J]. 当代化工研究, 2017(6): 40-41. |
LIU Yi, WANG Jinling. Analysis on the technology and Prospect of heavy aromatics[J]. Modern Chemical Research, 2017(6): 40-41. | |
12 | 申群兵. 负载金属氧化物和贵金属的分子筛催化剂上重芳烃加氢脱烷基制备BTX研究[D]. 上海: 华东理工大学, 2010. |
SHEN Qunbing. Study on hydrodealkylation of heavy aromatics to produce BTX over zeolite-supported metal oxide and noble metal catalysts[D]. Shanghai: East China University of Science and Technology, 2010. | |
13 | 石云革, 柏晓红. 800kt/a乙烯改扩建中甲苯脱烷基制苯的探讨[J]. 炼油与化工, 2004, 15(4): 8-14. |
SHI Yunge, BAI Xiaohong. Discussions on the progress for manufacturing benzene by dealkylation of toluene in the 800kt/a ethylene revamp project[J]. Refining and Chemicals, 2004, 15(4): 8-14. | |
14 | 陈庆龄, 孔德金, 杨卫胜. 对二甲苯增产技术发展趋向[J]. 石油化工, 2004, 33(10): 909-915. |
CHEN Qingling, KONG Dejin, YANG Weisheng. Developmental trends in p-xylene production increasing technology[J]. Petrochemical Technology, 2004, 33(10): 909-915. | |
15 | WARREN W K, LEE C S. ZSM-5/ZSM-12 catalyst mixture for cracking alkylbenzenes: US4975401[P]. 1990-12-04. |
16 | 景振华, 桂寿喜, 王建伟. HAL型重芳烃轻质化催化剂研究及应用前景[J]. 精细与专用化学品, 2000(12): 20-21. |
JING Zhenhua, GUI Shouxi, WANG Jianwei. Catalyst of HAL for conversion of heavy aromatics[J]. Fine and Specialty Chemicals, 2000(12): 20-21. | |
17 | 肖欢, 张维民, 马静红, 等. 1,3,5-三甲苯在沸石催化剂上的催化转化[J]. 石油学报(石油加工), 2019, 35(2): 369-375. |
XIAO Huan, ZHANG Weimin, MA Jinghong, et al. 1,3,5-Trimethylbenzene transformation over zeolite catalysts[J]. Acta Petrolei Sinica, 2019, 35(2): 369-375. | |
18 | TOPPI S, THOMAS C, SAYAG C, et al. On the radical cracking of n-propylbenzene to ethylbenzene or toluene over Sn/Al2O3-Cl catalysts under reforming conditions[J]. Journal of Catalysis, 2005, 230(2): 255-268. |
19 | AL-KHATTAF S, AKHTAR M N, ODEDAIRO T, et al. Catalytic transformation of methyl benzenes over zeolite catalysts[J]. Applied Catalysis A, 2011, 394(1/2): 176-190. |
20 | ČEJKA J, WICHTERLOVA B. Acid-catalyzed synthesis of mono- and dialkyl-benzenes over zeolites: Active sites, zeolite topology, and reaction mechanisms[J]. Catalysis Reviews, 2002, 44(3): 375-421. |
21 | KRANNILA H, HAAG W O, GATES B C. Monomolecular and bimolecular mechanisms of paraffin cracking: n-butane cracking catalyzed by HZSM-5[J]. Journal of Catalysis, 1992, 135(1): 115-124. |
22 | HOU X, NI N, WANG Y, et al. Roles of the free radical and carbenium ion mechanisms in pentane cracking to produce light olefins[J]. Journal of Analytical and Applied Pyrolysis, 2019, 138: 270-280. |
23 | WANG L, PENG B, ZHENG A, et al. Mechanistic origin of transition metal modification on ZSM-5 zeolite for the ethylene yield enhancement from the primary products of n-octane cracking[J]. Journal of Catalysis, 2022, 416: 387-397. |
24 | SINEVA L V, ASALIEVA E Y, MORDKOVICH V Z. The role of zeolite in the Fischer-Tropsch synthesis over cobal-zeolite catalysts[J]. Russian Chemical Reviews, 2015, 84(11): 1176-1189. |
25 | NARBESHUBER T F, BRAIT A, SESHAN K, et al. The influence of extraframework aluminum on H-FAU catalyzed cracking of light alkanes[J]. Applied Catalysis A: General, 1996, 146: 119-129. |
26 | BRAIT Axel, KOOPMANS Anko, WEINSTABL Helmut, et al. Hexadecane conversion in the evaluation of commercial fluid catalytic cracking catalysts[J]. Industrial Engineering Chemistry Research, 1998, 37: 873-881. |
27 | XIE Linjun, CHAI Yuchao, SUN Lanlan, et al. Optimizing zeolite stabilized Pt-Zn catalysts for propane dehydrogenation[J]. Journal of Energy Chemistry, 2021, 57: 92-98. |
28 | NARBESHUBER T F, BRAIT A, SESHAN K, et al. Dehydrogenation of light alkanes over zeolites[J]. Journal of Catalysis, 1997, 172: 127-136. |
29 | 祁晓岚, 左煜, 陈雪梅, 等. HAT-plus重芳烃轻质化技术[J]. 石油学报(石油加工), 2008, 24(s1): 338-341. |
QI Xiaolan, ZUO Yu, CHEN Xuemei, et al. HAT-plus technology for conversion of heavy aromatics to light aromatics[J]. ACTA Petrolei Sinica(Petroleum Processing Section), 2008, 24(s1): 338-341. | |
30 | 贺来宾, 李木金, 杨卫胜, 等. C9及以上重芳烃组分裂解多产三甲苯的方法: CN 103772121A[P]. 2012-10-25. |
HE Laibin, LI Mujin, YANG Weisheng, et al. Method for preparing trimethylbenzene form cracking of C 9 + heavy aromatics: CN 103772121A[P]. 2012-10-25. | |
31 | 孙丽丽. 创新芳烃工程设计开发与工业应用[J]. 石油学报(石油加工), 2015, 31(2): 244-249. |
SUN Lili. Innovation on engineering design and industrial application of complete set of aromatic technology[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2015, 31(2): 244-249. | |
32 | 孔德金, 祁晓岚, 郑均林, 等. 面向芳烃工业的催化新材料[J]. 化学反应工程与工艺, 2013, 29(5): 449-455. |
KONG Dejin, QI Xiaolan, ZHENG Junlin, et al. Novel catalytic materials towards industrial production of aromatics[J]. Chemical Reaction Engineering and Technology, 2013, 29(5): 449-455. | |
33 | DALY F P, WILHELMI F C. Catalyst for the hydrodealkylation of alkylaromatic compounds: DE3366268[P]. 1986-10-23. |
34 | 王士文, 秦永宁, 李炎生, 等. 新型临氢脱烷基制苯催化剂的研制[J]. 石油化工, 1990, 19(5): 283-287. |
WANG Shiwen, QIN Yongning, LI Yansheng, et al. Development of novel catalyst for hydrodealkylation to benzene[J]. Petrochemical Technology, 1990, 19(5): 283-287. | |
35 | CHARLES A D, WU An-hsiang. Hydrocarbon conversion catalyst composition and processes therefor and therewith: US 6063975[P]. 2000-05-16. |
36 | OZAWA A, KUBOTA T, MIE H, et al. Dealkylationg heavy aromatic hydrocarbons: JP 51029131[P]. 1976. |
37 | ALIBEYLI A, ALI K, HASIP Y, et al. Development of a polyfunctional catalyst for benzene production from pyrolysis gasoline[J]. Applied Catalysis A, 2003, 238: 279-287. |
38 | 王士文, 秦永宁, 王洪栋. Cr2O3聚集状态和助剂CeO2对Cr2O3/Al2O3催化剂性能的影响[J]. 催化学报, 1992(2): 103-109. |
WANG Shiwen, QIN Yongning, WANG Hongdong. Effect of Cr2O3 aggregation state and CeO2 on catalyst performance[J]. Journal of Catalysis(CUIHUA XUEBAO), 1992(2): 103-109. | |
39 | WU An-hsiang, CHARLES A D. Carbided hydrocarbon conversion catalyst composition and processes therefor and therewith: US 6093671[P]. 2000-07-25. |
40 | WU An-hsiang, CHARLES A D. Hydrocarbon conversion catalyst composition and process therefor and therewith: US 2001008949[P]. 2001-07-19. |
41 | WU An-hsiang, CHARLES A D. Hydrocarbon conversion catalyst composition and process therefor and therewith: US 6420295[P]. 2002-07-16. |
42 | 杨纪, 靳风英, 范景新, 等. 分子筛重芳烃加氢脱烷基催化剂研究进展[J]. 无机盐工业, 2017, 49(6): 1-6. |
YANG Ji, JIN Fengying, FAN Jingxin, et al. Research progress of zeolites in catalysts for hydrodealkylation of heavy aromatics[J]. Inorganic Chemical Industry, 2017, 49(6): 1-6. | |
43 | 郝玉芝, 桂寿喜, 李砚青, 等. 重质芳烃轻质化催化剂及轻质化产物的分离方法: CN 1082539C[P]. 2002-04-10. |
HAO Yuzhi, GUI Shouxi, LI Yanqing, et al. Heavy aromatics light conversion catalyst and light conversion product separation method: CN 1082539C[P]. 2002-04-10. | |
44 | 董娇娇, 朱瑾, 申群兵, 等. MoO3/HZSM-5催化剂上重芳烃加氢脱烷基反应[J]. 石油化工, 2008, 37(3): 232-237. |
DONG Jiaojiao, ZHU Jin, SHEN Qunbing, et al. Hydrodealkylation of heavy aromatics on MoO3/HZSM-5catalyst[J]. Petrochemical Technology, 2008, 37(3): 232-237. | |
45 | ARCA V, BOSCOLETTO A B, CROCETTA P. Catalytic compositions for the highly selective hydrodealkylation of alkylaromatic hydrocarbons: US 8168844[P]. 2012-05-01. |
46 | 孙彦民, 于海斌, 范景新, 等. 一种C 10 + 双环重芳烃选择性加氢裂解催化剂的制备方法: CN103551180B[P]. 2015-03-18. |
SUN Yanmin, YU Haibin, FAN Jingxin, et al. Acatalyst preparing method for selective hydrogenation cracking of C 10 + heavy aromatics: CN103551180B[P]. 2015-03-18. | |
47 | 何剑洪, 朱学栋, 申群兵, 等. La2O3对NiO/HMCM-56催化剂C 9 + 重芳烃加氢脱烷基性能的影响[J]. 石油化工, 2010, 39(3): 249-255. |
HE Jianhong, ZHU Xuedong, SHEN Qunbing, et al. The influence of La2O3 on the hydrodealkylation performance NiO/HMCM-56 catalyst for C 9 + heavy aromatics[J]. Petrochemical Technology, 2010, 39(3): 249-255. | |
48 | 王建伟, 刘中勋, 梁战桥, 等. 重质芳烃催化脱烷基催化剂及制备方法: CN1472182A[P]. 2004-02-04. |
WANG Jianwei, LIU Zhongxun, LIANG Zhanqiao, et al. Catalyst and preparation method for catalytic dealkylation of heavy aromatics: CN1472182A[P]. 2004-02-04. | |
49 | 付广斌. 负载型HMCM-56和Hβ复合催化剂对重芳烃加氢脱烷基性能的研究[D]. 上海: 华东理工大学, 2013. |
FU Guangbin. Study on the properties of dealkylation supported on HMCM-56 and Hβ composite catalyst with heavy aromatics hydrogenation[D]. Shanghai: East China University of Science and Technology, 2013. | |
50 | 孟菲菲. 气溶胶辅助合成多级孔ZSM-5/Beta复合分子筛[D]. 大连: 大连理工大学, 2021. |
MENG Feifei. Hydrothermal synthesis of hierarchical ZSM-5/Beta composite zeolites assisted by aerosol method[D]. Dalian: Dalian University of Technology, 2021. | |
51 | 周景明. 基于Y/β复合分子筛的劣质柴油选择性加氢裂化催化剂的制备[D]. 北京: 中国石油大学(北京), 2020. |
ZHONG Jingming. Preparation of selective hydrocracking catalyst for inferior diesel based on Y/β composite zeolite[D]. Beijing: China University of Petroleum(Beijing), 2020. |
[1] | 刘方旺, 韩艺, 张佳佳, 步红红, 王兴鹏, 于传峰, 刘猛帅. CO2与环氧化物耦合制备环状碳酸酯的多相催化体系研究进展[J]. 化工进展, 2024, 43(3): 1252-1265. |
[2] | 陈晓贞, 刘丽, 杨成敏, 郑步梅, 尹晓莹, 孙进, 姚运海, 段为宇. 氧化铝基加氢脱硫催化剂研究进展[J]. 化工进展, 2024, 43(2): 948-961. |
[3] | 丁康, 何军桥, 陈元捷, 杨霞珍, 刘化章, 霍超. Ru/Ba-MgO氨合成催化剂模板棉纤维的盐酸处理对催化性能的影响[J]. 化工进展, 2024, 43(2): 962-970. |
[4] | 王达锐, 孙洪敏, 王一棪, 唐智谋, 李芮, 范雪研, 杨为民. 分子筛催化反应过程高效化的技术进展[J]. 化工进展, 2024, 43(1): 1-18. |
[5] | 罗芬, 杨晓琪, 段方麟, 李小江, 吴亮, 徐铜文. 双极膜研究进展及应用展望[J]. 化工进展, 2024, 43(1): 145-163. |
[6] | 盖宏伟, 张辰君, 屈晶莹, 孙怀禄, 脱永笑, 王斌, 金旭, 张茜, 冯翔, CHEN De. 有机液体储氢技术催化脱氢过程强化研究进展[J]. 化工进展, 2024, 43(1): 164-185. |
[7] | 张家昊, 李盈盈, 徐彦琳, 尹佳滨, 张吉松. 微反应器中连续还原胺化反应的研究进展[J]. 化工进展, 2024, 43(1): 186-197. |
[8] | 衡霖宇, 邓卓然, 程道建, 魏彬, 赵利强. 高通量合成装置强化金属催化剂制备过程的研究进展[J]. 化工进展, 2024, 43(1): 246-259. |
[9] | 王一棪, 王达锐, 沈震浩, 何俊琳, 孙洪敏, 杨为民. 全结晶MCM-22分子筛催化剂的制备及其催化性能[J]. 化工进展, 2024, 43(1): 285-291. |
[10] | 于笑笑, 巢艳红, 刘海燕, 朱文帅, 刘植昌. D-A共轭聚合强化光电性能及光催化CO2转化[J]. 化工进展, 2024, 43(1): 292-301. |
[11] | 孙进, 陈晓贞, 刘名瑞, 刘丽, 牛世坤, 郭蓉. 加氢脱硫催化剂钠中毒失活机理[J]. 化工进展, 2024, 43(1): 407-413. |
[12] | 张海鹏, 王树振, 马梦茜, 张巍, 向江南, 王玉婷, 王琰, 范彬彬, 郑家军, 李瑞丰. ZSM-22分子筛合成及其正十二烷烃临氢异构化性能:模板剂和动态晶化的影响[J]. 化工进展, 2024, 43(1): 414-421. |
[13] | 杨成功, 黄蓉, 王冬娥, 田志坚. 氮掺杂二硫化钼纳米催化剂的电催化析氢性能[J]. 化工进展, 2024, 43(1): 465-472. |
[14] | 王棵旭, 张香平, 王红岩, 柏䶮, 王慧. 电流响应催化剂及其强化典型反应的研究进展[J]. 化工进展, 2024, 43(1): 49-59. |
[15] | 王博, 张长安, 赵利民, 袁俊, 宋永一. 基于掺硼金刚石电极的工业废水处理研究进展[J]. 化工进展, 2024, 43(1): 501-513. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |