化工进展 ›› 2023, Vol. 42 ›› Issue (12): 6286-6300.DOI: 10.16085/j.issn.1000-6613.2023-0126
• 工业催化 • 上一篇
周佳丽1,2(), 马子然1(), 李歌1, 赵春林1, 王红妍1, 王磊1
收稿日期:
2023-02-02
修回日期:
2023-05-24
出版日期:
2023-12-25
发布日期:
2024-01-08
通讯作者:
马子然
作者简介:
周佳丽(1992—),女,硕士,工程师,研究方向为环保催化材料开发及应用。E-mail:jiali.zhou@chnenergy.com.cn。
基金资助:
ZHOU Jiali1,2(), MA Ziran1(), LI Ge1, ZHAO Chunlin1, WANG Hongyan1, WANG Lei1
Received:
2023-02-02
Revised:
2023-05-24
Online:
2023-12-25
Published:
2024-01-08
Contact:
MA Ziran
摘要:
“双碳”背景下,燃煤机组减污降碳需求迫切,与可再生燃料耦合发电可提高能源利用水平,降低碳排放量,不同燃料的特性导致掺烧后的烟气特征复杂,对脱硝催化剂提出新的挑战。本文简要回顾了脱硝催化剂反应过程机理,综合阐述了掺烧可再生燃料后的锅炉烟气对脱硝催化剂的催化过程影响,并详细讨论了不同中毒元素对脱硝催化剂催化活性的作用影响机制,然后重点综合了现有的不同抗中毒研究,提出了多种催化剂抗中毒设计策略,本文也对未来抗中毒催化剂的发展趋势进行了阐述,应更加明晰掺烧工况对催化剂的中毒影响、增强多掺烧场景可适性,通过工艺改进提高工业产品成品率和质量,最终助力火电机组实现低碳经济发展。
中图分类号:
周佳丽, 马子然, 李歌, 赵春林, 王红妍, 王磊. 燃煤耦合可再生燃料电厂抗中毒脱硝催化剂研究进展[J]. 化工进展, 2023, 42(12): 6286-6300.
ZHOU Jiali, MA Ziran, LI Ge, ZHAO Chunlin, WANG Hongyan, WANG Lei. Research progress on anti-poisoning of SCR catalysts in flue gas of coal and renewable fuel co-fired power plant[J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6286-6300.
中毒元素 | 主要中毒机理 | 抗中毒策略 |
---|---|---|
碱金属 K、Na等 | ①碱金属盐沉积堵塞表面孔道,改变微孔结构; ②降低催化剂表面酸性; ③与催化剂表面活性氧结合,降低氧化还原能力; ④抑制NO x 或NH3的表面吸附和后续活化 | ①加强载体和活性组分的表面酸性,如催化剂硫酸化; ②掺杂助剂元素提高催化剂表面酸性和氧化还原性; ③引入表面牺牲剂,构建碱金属捕集位点,优先吸附碱(土)金属,保护活性中心; ④构筑特殊孔道结构或形貌,使活性组分高度分散在特定空间,利用尺寸效应对毒化物限域捕捉,保护活性组分,如构造核壳结构、纳米管结构、六棱柱形貌等; ⑤通过缺陷工程在载体上构建晶体缺陷,增加氧空位,不使用活性组分,本质上避免中毒 |
碱土金属 Ca、Mg等 | ①碱土金属盐体积膨胀,堵塞催化剂孔道,遮蔽表面反应活性位; ②中和催化剂表面酸性,减少活性位点; ③与催化剂活性位点、反应气体发生反应; ④抑制NH3的表面吸附 | |
酸性气体 HCl、HF | ①与反应气体反应,产物覆盖、堵塞催化剂孔道; ②与活性组分发生反应,造成活性位损失; ③抑制NO x 的表面吸附 | ①引入添加剂,作为牺牲位点; ②构筑特殊孔道结构或形貌,保护活性位点 |
SO2、SO3 | ①生成硫酸氢铵和硫酸铵,降低催化剂比表面积、孔体积; ②与催化剂表面的活性成分发生反应,生成金属硫酸盐; ③在催化剂表面与NO x 竞争吸附 | ①掺杂助剂或表面改性加强载体和活性组分的表面酸性,抑制SO x 的吸附; ②引入功能性促进剂,建立牺牲位点,保护活性中心; ③构建保护壳,利用界面效应保护活性位点; ④构造载体多级孔结构,促进硫酸氢铵分解; ⑤保证催化剂机械强度条件下降低壁厚,降低SO2氧化率,抑制硫酸氢铵和硫酸盐生成 |
非金属 P、As、Se等 | ①酸化合物、非金属氧化物覆盖催化剂表面,堵塞孔道; ②与载体或活性组分成键,发生化学反应,破坏催化剂活性中心和酸性位点; ③破坏活性组分-载体结构 | ①调整催化剂孔隙结构,构造多级孔结构,保证反应气体分子扩散; ②添加助剂,抑制中毒元素的吸附沉积、保护催化剂活性 组分、增加酸位点数量 |
重金属 Hg、Pb等 | ①氧化物颗粒堵塞孔隙,阻碍气体扩散; ②占据酸性位点,抑制催化剂对NH3的吸附和活化; ③改变催化剂活性物种价态,降低氧化还原能力; ④改变活性组分晶体形态,由无定形向晶体结构转变 | ①加强载体和活性组分的表面酸性,如催化剂硫酸化,使用固体超强酸等; ②添加助剂,增加酸性位点,促进NH3吸附活化; ③构筑特殊孔道结构或形貌,使活性组分高度分散在特定 空间,增加催化剂表面酸性位点,保护活性位点 |
表1 中毒元素对脱硝催化剂的性能影响
中毒元素 | 主要中毒机理 | 抗中毒策略 |
---|---|---|
碱金属 K、Na等 | ①碱金属盐沉积堵塞表面孔道,改变微孔结构; ②降低催化剂表面酸性; ③与催化剂表面活性氧结合,降低氧化还原能力; ④抑制NO x 或NH3的表面吸附和后续活化 | ①加强载体和活性组分的表面酸性,如催化剂硫酸化; ②掺杂助剂元素提高催化剂表面酸性和氧化还原性; ③引入表面牺牲剂,构建碱金属捕集位点,优先吸附碱(土)金属,保护活性中心; ④构筑特殊孔道结构或形貌,使活性组分高度分散在特定空间,利用尺寸效应对毒化物限域捕捉,保护活性组分,如构造核壳结构、纳米管结构、六棱柱形貌等; ⑤通过缺陷工程在载体上构建晶体缺陷,增加氧空位,不使用活性组分,本质上避免中毒 |
碱土金属 Ca、Mg等 | ①碱土金属盐体积膨胀,堵塞催化剂孔道,遮蔽表面反应活性位; ②中和催化剂表面酸性,减少活性位点; ③与催化剂活性位点、反应气体发生反应; ④抑制NH3的表面吸附 | |
酸性气体 HCl、HF | ①与反应气体反应,产物覆盖、堵塞催化剂孔道; ②与活性组分发生反应,造成活性位损失; ③抑制NO x 的表面吸附 | ①引入添加剂,作为牺牲位点; ②构筑特殊孔道结构或形貌,保护活性位点 |
SO2、SO3 | ①生成硫酸氢铵和硫酸铵,降低催化剂比表面积、孔体积; ②与催化剂表面的活性成分发生反应,生成金属硫酸盐; ③在催化剂表面与NO x 竞争吸附 | ①掺杂助剂或表面改性加强载体和活性组分的表面酸性,抑制SO x 的吸附; ②引入功能性促进剂,建立牺牲位点,保护活性中心; ③构建保护壳,利用界面效应保护活性位点; ④构造载体多级孔结构,促进硫酸氢铵分解; ⑤保证催化剂机械强度条件下降低壁厚,降低SO2氧化率,抑制硫酸氢铵和硫酸盐生成 |
非金属 P、As、Se等 | ①酸化合物、非金属氧化物覆盖催化剂表面,堵塞孔道; ②与载体或活性组分成键,发生化学反应,破坏催化剂活性中心和酸性位点; ③破坏活性组分-载体结构 | ①调整催化剂孔隙结构,构造多级孔结构,保证反应气体分子扩散; ②添加助剂,抑制中毒元素的吸附沉积、保护催化剂活性 组分、增加酸位点数量 |
重金属 Hg、Pb等 | ①氧化物颗粒堵塞孔隙,阻碍气体扩散; ②占据酸性位点,抑制催化剂对NH3的吸附和活化; ③改变催化剂活性物种价态,降低氧化还原能力; ④改变活性组分晶体形态,由无定形向晶体结构转变 | ①加强载体和活性组分的表面酸性,如催化剂硫酸化,使用固体超强酸等; ②添加助剂,增加酸性位点,促进NH3吸附活化; ③构筑特殊孔道结构或形貌,使活性组分高度分散在特定 空间,增加催化剂表面酸性位点,保护活性位点 |
1 | 陈志董, 林育超, 刘铭宇, 等. 污泥干燥及其与燃煤电站耦合的热力特性分析[J]. 热力发电, 2022, 51(5): 55-64. |
CHEN Zhidong, LIN Yuchao, LIU Mingyu, et al. Thermodynamic characteristic analysis of sewage sludge drying and its integration with coal-fired power plant[J]. Thermal Power Generation, 2022, 51(5): 55-64. | |
2 | 左克祥, 张秀峰. 大型燃煤机组污泥耦合发电技术研究与应用[J]. 电力科技与环保, 2022, 38(4): 317-325 |
ZUO Kexiang, ZHANG Xiufeng. Research and application of sludge coupling power generation technology for large coal-fired units[J]. Electric Power Technology and Environmental Protection, 2022, 38(4): 317-325 | |
3 | 张自丽. 循环流化床锅炉燃煤耦合污泥技术研究与展望[J]. 热力发电, 2020, 49(5): 7-13. |
ZHANG Zili. Research and prospect of coal-fired and sludge-coupled technologies in CFB boilers[J]. Thermal Power Generation, 2020, 49(5): 7-13. | |
4 | 李春建, 曾澄光, 段小云, 等. 煤与木屑掺烧的燃烧特性与污染物排放规律[J]. 能源与节能, 2022(6): 6-9, 127. |
LI Chunjian, ZENG Chengguang, DUAN Xiaoyun, et al. Co-combustion characteristics and pollutant emission regularity of coal and sawdust[J]. Energy and Energy Conservation, 2022(6): 6-9, 127. | |
5 | 董阳. 掺烧玉米秸秆对污泥灰磷形态转变的影响研究[D]. 贵阳: 贵州大学, 2022. |
DONG Yang. Study on the effect of corn straw on the transformation of phosphorus form in sludge ash[D]. Guiyang: Guizhou University, 2022. | |
6 | Nan-Yu TOPSØE. Mechanism of the selective catalytic reduction of nitric oxide by ammonia elucidated by in situ on-line Fourier transform infrared spectroscopy[J]. Science, 1994, 265(5176): 1217-1219. |
7 | 杜凯敏, 秦刚华, 祁志福, 等. NH3-SCR脱硝催化剂的中毒及其抗毒策略[J]. 现代化工, 2021, 41(11): 58-62. |
DU Kaimin, QIN Ganghua, QI Zhifu, et al. Poisoning of NH3-SCR denitrification catalyst and resistance strategy[J]. Modern Chemical Industry, 2021, 41(11): 58-62. | |
8 | 穆林, 李通, 王震, 等. 藻类和木质生物质与烟煤掺混燃烧结渣特性[J]. 可再生能源, 2022, 40(2): 143-151 |
MU Lin, LI Tong, WANG Zhen, et al. Slag formation characteristics of co-combustion of bituminous coal with algae and woody biomass[J]. Renewable Energy Resources, 2022, 40(2): 143-151 | |
9 | ZHENG Yuanjing, JENSEN Anker Degn, JOHNSSON Jan Erik. Deactivation of V2O5-WO3-TiO2 SCR catalyst at a biomass-fired combined heat and power plant[J]. Applied Catalysis B: Environmental, 2005, 60(3/4): 253-264. |
10 | LI Xiang, LI Xiansheng, YANG Ralph T, et al. The poisoning effects of calcium on V2O5-WO3/TiO2 catalyst for the SCR reaction: Comparison of different forms of calcium[J]. Molecular Catalysis, 2017, 434: 16-24. |
11 | LI Junhua, PENG Yue, CHANG Huazhen, et al. Chemical poison and regeneration of SCR catalysts for NO x removal from stationary source[J]. Frontiers of Environmental Science & Engineering, 2016, 10(3): 413-427. |
12 | DU Xuesen, GAO Xiang, QIU Kunzan, et al. The reaction of poisonous alkali oxides with vanadia SCR catalyst and the afterward influence: A DFT and experimental study[J]. The Journal of Physical Chemistry C, 2015, 119(4): 1905-1912. |
13 | NICOSIA D, ĈZEKAJ I, KRÖCHER O. Chemical deactivation of V2O5/WO3-TiO2 SCR catalysts by additives and impurities from fuels, lubrication oils, and urea solution[J]. Applied Catalysis B: Environmental, 2008, 77(3/4): 228-236. |
14 | PENG Yue, LI Junhua, CHEN Liang, et al. Alkali metal poisoning of a CeO2-WO3 catalyst used in the selective catalytic reduction of NO x with NH3: An experimental and theoretical study[J]. Environmental Science & Technology, 2012, 46(5): 2864-2869. |
15 | YANG Xinfang, ZHAO Bo, ZHUO Yuqun, et al. DRIFTS study of ammonia activation over CaO and sulfated CaO for NO reduction by NH3 [J]. Environmental Science & Technology, 2011, 45(3): 1147-1151. |
16 | 林凡. 钒钛基脱硝催化剂抗碱金属中毒机理研究[D]. 重庆: 重庆大学, 2017. |
LIN Fan. Mechanism of anti-alkali metal poisoning of vanadium-titanium-based denitrification catalyst[D]. Chongqing: Chongqing University, 2017. | |
17 | PENG Yue, LI Junhua, HUANG Xu, et al. Deactivation mechanism of potassium on the V2O5/CeO2 catalysts for SCR reaction: Acidity, reducibility and adsorbed-NO x [J]. Environmental Science & Technology, 2014, 48(8): 4515-4520. |
18 | Ki Bok NAM, Jong Hyeon YEO, HONG Sung Chang. Study of the phosphorus deactivation effect and resistance of vanadium-based catalysts[J]. Industrial & Engineering Chemistry Research, 2019, 58(41): 18930-18941. |
19 | CAO Jun, ROHANI Sohrab, LIU Weizao, et al. Influence of phosphorus on the NH3-SCR performance of CeO2-TiO2 catalyst for NO x removal from co-incineration flue gas of domestic waste and municipal sludge[J]. Journal of Colloid and Interface Science, 2022, 610: 463-473. |
20 | HUANG Li, ZENG Yiqing, CHANG Zhengfeng, et al. Promotional effect of phosphorus modification on improving the Na resistance of V2O5-MoO3/TiO2 catalyst for selective catalytic reduction of NO x by NH3 [J]. Molecular Catalysis, 2021, 506: 111565. |
21 | LI Mingyuan, GUO Ruitang, HU Changxing, et al. The enhanced resistance to K deactivation of Ce/TiO2 catalyst for NH3-SCR reaction by the modification with P[J]. Applied Surface Science, 2018, 436: 814-822. |
22 | WANG Yan, YU Jianglong, WANG Zhihua, et al. A review on arsenic removal from coal combustion: Advances, challenges and opportunities[J]. Chemical Engineering Journal, 2021, 414: 128785. |
23 | LU Qiang, PEI Xinqi, WU Yangwen, et al. Deactivation mechanism of the commercial V2O5-MoO3/TiO2 selective catalytic reduction catalyst by arsenic poisoning in coal-fired power plants[J]. Energy & Fuels, 2020, 34(4): 4865-4873. |
24 | PENG Yue, LI Junhua, SI Wenzhe, et al. Insight into deactivation of commercial SCR catalyst by arsenic: An experiment and DFT study[J]. Environmental Science & Technology, 2014, 48(23): 13895-13900. |
25 | LIU Zhong, HAN Jian, ZHAO Li, et al. Effects of Se and SeO2 on the denitrification performance of V2O5-WO3/TiO2 SCR catalyst[J]. Applied Catalysis A: General, 2019, 587: 117263. |
26 | 霍丽丽, 赵立欣, 郝彦辉, 等. 国内外生物质成型燃料质量标准现状[J]. 农业工程学报, 2020, 36(9): 245-254. |
HUO Lili, ZHAO Lixin, HAO Yanhui, et al. Quality standard system of densified biomass fuels at home and abroad[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(9): 245-254. | |
27 | CHEN J P, BUZANOWSKI M A, YANG R T, et al. Deactivation of the vanadia catalyst in the selective catalytic reduction process[J]. Journal of the Air & Waste Management Association, 1990, 40(10): 1403-1409. |
28 | LIU Shuaiwei, GUO Ruitang, SUN Xiao, et al. The deactivation effect of Cl on V/TiO2 catalyst for NH3-SCR process: A DRIFT study[J]. Journal of the Energy Institute, 2019, 92(5): 1610-1617. |
29 | YANG Ningzhi, GUO Ruitang, PAN Weiguo, et al. The deactivation mechanism of Cl on Ce/TiO2 catalyst for selective catalytic reduction of NO with NH3 [J]. Applied Surface Science, 2016, 378: 513-518. |
30 | DENG Lei, ZHU Zhengrong, WANG Yikun, et al. Deactivation influence of HF on the V2O5-WO3-TiO2 SCR catalyst[J]. Energy & Fuels, 2021, 35(5): 4377-4386. |
31 | YANG Yang, XU Wenqing, WU Yinghong, et al. Inhibition effect of HBr over a commercial V2O5-WO3/TiO2 catalyst in a NH3-SCR process[J]. Catalysis Communications, 2017, 94: 82-85. |
32 | MIAO Jifa, LI Huirong, SU Qingfa, et al. The combined promotive effect of SO2 and HCl on Pb-poisoned commercial NH3-SCR V2O5-WO3/TiO2 catalysts[J]. Catalysis Communications, 2019, 125: 118-122. |
33 | BARRER R M, KANELLOPOULOS A G. The sorption of ammonium chloride vapour in zeolites. Part Ⅰ. Hydrogen chloride and ammonia[J]. Journal of the Chemical Society A: Inorganic, Physical, Theoretical, 1970: 765. |
34 | CHOUNG Jin Woo, In-Sik NAM. Characteristics of copper ion exchanged mordenite catalyst deactivated by HCl for the reduction of NO x with NH3 [J]. Applied Catalysis B: Environmental, 2006, 64(1/2): 42-50. |
35 | ZHANG Xiaoyang, FANG Beibei, CUI Lin, et al. Effects of HCl and O2 on Hg0 oxidation in the SCR catalyst[J]. Energy & Fuels, 2021, 35(14): 11382-11392. |
36 | ZHAO Li, LIU Yu, WU Yangwen, et al. Mechanism of heterogeneous mercury oxidation by HCl on V2O5(001) surface[J]. Current Applied Physics, 2018, 18(6): 626-632. |
37 | 李春建, 段小云, 曾澄光, 等. 煤掺混污泥的燃烧特性及排放规律[J]. 工业炉, 2022, 44(3): 20-25. |
LI Chunjian, DUAN Xiaoyun, ZENG Chengguang, et al. Combustion characteristics and emission law of coal mixed sludge[J]. Industrial Furnace, 2022, 44(3): 20-25. | |
38 | 翟胜兵, 李伟, 王明昊, 等. 旋流燃烧器生物质掺烧试验研究[J]. 锅炉制造, 2020(6): 14-17. |
ZHAI Shengbing, LI Wei, WANG Minghao, et al. Experimental study on the pulverized coal-biomass swirling burner[J]. Boiler Manufacturing, 2020(6): 14-17. | |
39 | XU Liwen, WANG Chizhong, CHANG Huazhen, et al. New insight into SO2 poisoning and regeneration of CeO2-WO3/TiO2 and V2O5-WO3/TiO2 catalysts for low-temperature NH3-SCR[J]. Environmental Science & Technology, 2018, 52 (12): 7064-7071. |
40 | PENG Yue, WANG Dong, LI Bing, et al. Impacts of Pb and SO2 poisoning on CeO2-WO3/TiO2-SiO2 SCR catalyst[J]. Environmental Science & Technology, 2017, 51(20): 11943-11949. |
41 | PAN Siwei, LUO Hongcheng, LI Li, et al. H2O and SO2 deactivation mechanism of MnO x /MWCNTs for low-temperature SCR of NO x with NH3 [J]. Journal of Molecular Catalysis A: Chemical, 2013, 377: 154-161. |
42 | Yujin EOM, JEON Seok Ho, Thanh An NGO, et al. Heterogeneous mercury reaction on a selective catalytic reduction (SCR) catalyst[J]. Catalysis Letters, 2008, 121(3): 219-225. |
43 | YANG Jian, YANG Qiang, SUN Jian, et al. Effects of mercury oxidation on V2O5-WO3/TiO2 catalyst properties in NH3-SCR process[J]. Catalysis Communications, 2015, 59: 78-82. |
44 | 刘强, 杨洋, 秦福初. 钒钛基SCR催化剂的制备及其汞中毒机理研究[J]. 当代化工研究, 2019(1): 168-169. |
LIU Qiang, YANG Yang, QIN Fuchu. Preparation of vanadium-titanium-based SCR catalyst and the research on its mercury poisoning mechanism[J]. Modern Chemical Research, 2019(1): 168-169. | |
45 | KONG Ming, LIU Qingcai, JIANG Lijun, et al. Property influence and poisoning mechanism of HgCl2 on V2O5-WO3/TiO2 SCR-DeNO x catalysts[J]. Catalysis Communications, 2016, 85: 34-38. |
46 | KHODAYARI Raziyeh, C U Ingemar ODENBRAND. Deactivating effects of lead on the selective catalytic reduction of nitric oxide with ammonia over a V2O5/WO3/TiO2 catalyst for waste incineration applications[J]. Industrial & Engineering Chemistry Research, 1998, 37(4): 1196-1202. |
47 | PENG Yue, SI Wenzhe, LI Xiang, et al. Investigation of the poisoning mechanism of lead on the CeO2—WO3 catalyst for the NH3-SCR reaction via in situ IR and Raman spectroscopy measurement[J]. Environmental Science & Technology, 2016, 50(17): 9576-9582. |
48 | WU Yangwen, ZHOU Xinyue, CAI Qi, et al. Intrinsic mechanism insight of the interaction between lead species and the Vanadium-based catalysts based on First-principles investigation[J]. Journal of Colloid and Interface Science, 2022, 607: 1362-1372. |
49 | GAO Xiang, DU Xuesen, FU Yincheng, et al. Theoretical and experimental study on the deactivation of V2O5 based catalyst by lead for selective catalytic reduction of nitric oxides[J]. Catalysis Today, 2011, 175(1): 625-630. |
50 | 潘有春, 金奇杰, 沈岳松, 等. Sm3+掺入对MnO2/TiO2催化剂低温脱硝性能的影响[J]. 应用化工, 2019, 48(1): 38-42, 47. |
PAN Youchun, JIN Qijie, SHEN Yuesong, et al. Effect of Sm3+ on catalytic performance of MnO2/TiO2 catalyst for selective catalytic reduction of NO at low temperature[J]. Applied Chemical Industry, 2019, 48(1): 38-42, 47. | |
51 | GONG Pijun, HE Feng, FANG De, et al. In-situ DRIFTS study on the k-poisoning resistance mechanism of titanium bearing blast furnace slag catalyst by Sm/La doping[J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 107895. |
52 | CHEN Qilin, GUO Ruitang, WANG Qingshan, et al. The promotion effect of Co doping on the K resistance of Mn/TiO2 catalyst for NH3-SCR of NO[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 64: 116-123. |
53 | ZHU Baozhong, ZI Zhaohui, SUN Yunlan, et al. Enhancing low-temperature SCR de-NO x and alkali metal poisoning resistance of a 3Mn10Fe/Ni catalyst by adding Co[J]. Catalysis Science & Technology, 2019, 9(12): 3214-3225. |
54 | YANG Ningzhi, GUO Ruitang, PAN Weiguo, et al. The promotion effect of Sb on the Na resistance of Mn/TiO2 catalyst for selective catalytic reduction of NO with NH3 [J]. Fuel, 2016, 169: 87-92. |
55 | KHAN Mehak Nawaz, HAN Lupeng, WANG Penglu, et al. Tailored alkali resistance of DeNO x catalysts by improving redox properties and activating adsorbed reactive species[J]. iScience, 2020, 23(6): 101173. |
56 | YAN Zidi, SHI Xiaoyan, YU Yunbo, et al. Alkali resistance promotion of Ce-doped vanadium-titanic-based NH3-SCR catalysts[J]. Journal of Environmental Sciences, 2018, 73: 155-161. |
57 | PENG Yue, LI Junhua, SI Wenzhe, et al. Ceria promotion on the potassium resistance of MnO x /TiO2 SCR catalysts: An experimental and DFT study[J]. Chemical Engineering Journal, 2015, 269: 44-50. |
58 | ZHAO Wanxia, RONG Jing, LUO Wen, et al. Enhancing the K-poisoning resistance of CeO2-SnO2 catalyst by hydrothermal method for NH3-SCR reaction[J]. Applied Surface Science, 2022, 579: 152176. |
59 | XUE Hongyan, MENG Tao, LIU Fangfang, et al. Enhanced resistance to calcium poisoning on Zr-modified Cu/ZSM-5 catalysts for the selective catalytic reduction of NO with NH3 [J]. RSC Advances, 2019, 9(66): 38477-38485. |
60 | LI Xiang, LI Xiansheng, LI Junhua, et al. High calcium resistance of CeO2-WO3 SCR catalysts: Structure investigation and deactivation analysis[J]. Chemical Engineering Journal, 2017, 317: 70-79. |
61 | WANG Jiaqing, XING Yi, SU Wei, et al. Promotional effect of Sn additive on the chlorine resistance over SnMnO x /LDO catalysts for synergistic removal of NO x and o-DCB[J]. Catalysis Science & Technology, 2022, 12(12): 3863-3873. |
62 | 高翔, 骆仲泱, 岑可法, 等. 用于选择性催化还原氮氧化物的V-Sb-Nb/Ti催化剂及制备方法: CN101862651A[P]. 2010-10-20. |
GAO Xiang, LUO Zhongyang, CEN Kefa, et al. V-Sb-Nb for selective catalytic reduction of nitrogen oxides Ti catalyst and preparation method: CN101862651A[P]. 2010-10-20. | |
63 | 陆强, 胡斌. 一种具有抗砷中毒性能的SCR脱硝催化剂及其制备方法: CN108160069B[P]. 2020-07-14. |
LU Qiang, HU Bin. A SCR denitration catalyst with arsenic poisoning resistance and its preparation method: CN108160069B[P]. 2020-07-14. | |
64 | LI Gehua, MAO Dongsen, CHAO Mengxi, et al. Significantly enhanced Pb resistance of a Co-modified Mn-Ce-O x /TiO2 catalyst for low-temperature NH3-SCR of NO x [J]. Catalysis Science & Technology, 2020, 10(18): 6368-6377. |
65 | 徐托雨, 蔡思翔. 硫酸化改性对TiO2负载的铈基脱硝催化剂的活性及抗碱金属性能的影响[J]. 北京化工大学学报(自然科学版), 2021, 48(1): 25-33. |
XU Tuoyu, CAI Sixiang. Effect of sulfation on the activity and alkali resistance of TiO2-supported cerium-based deNO x catalysts[J]. Journal of Beijing University of Chemical Technology (Natural Science Edition), 2021, 48(1): 25-33. | |
66 | ZHA Kaiwen, FENG Chong, HAN Lupeng, et al. Promotional effects of Fe on manganese oxide octahedral molecular sieves for alkali-resistant catalytic reduction of NO x : XAFS and in situ DRIFTs study[J]. Chemical Engineering Journal, 2020, 381: 122764. |
67 | GAO Shan, WANG Penglu, CHEN Xiongbo, et al. Enhanced alkali resistance of CeO2/SO4 2--ZrO2 catalyst in selective catalytic reduction of NO x by ammonia[J]. Catalysis Communications, 2014, 43: 223-226. |
68 | SKOTTE Johannes, BOGHOSIAN Soghomon, KUSTOV Arkady, et al. Vanadia-based SCR catalysts supported on tungstated and sulfated zirconia: Influence of doping with potassium[J]. Journal of Catalysis, 2007, 251(2): 459-473. |
69 | KUSTOV A L, RASMUSSEN S B, FEHRMANN R, et al. Activity and deactivation of sulphated TiO2- and ZrO2-based V, Cu, and Fe oxide catalysts for NO abatement in alkali containing flue gases[J]. Applied Catalysis B: Environmental, 2007, 76(1/2): 9-14. |
70 | PUTLURU Siva Sankar Reddy, MOSSIN Susanne, RIISAGER Anders, et al. Heteropoly acid promoted Cu and Fe catalysts for the selective catalytic reduction of NO with ammonia[J]. Catalysis Today, 2011, 176(1): 292-297. |
71 | ZHENG Yang, GUO Yangyang, SHAN Wenpo, et al. Revealing the Ca resistance enhancement mechanism for the NH3-SCR reaction over VTi catalyst by CuO modification[J]. Applied Catalysis A: General, 2022, 637: 118606. |
72 | HU Wenshuo, ZHANG Yuhong, LIU Shaojun, et al. Improvement in activity and alkali resistance of a novel V-Ce(SO4)2/Ti catalyst for selective catalytic reduction of NO with NH3 [J]. Applied Catalysis B: Environmental, 2017, 206: 449-460. |
73 | WANG Penglu, YAN Lijun, GU Yundong, et al. Poisoning-resistant NO x reduction in the presence of alkaline and heavy metals over H-SAPO-34-supported Ce-promoted Cu-based catalysts[J]. Environmental Science & Technology, 2020, 54(10): 6396-6405. |
74 | KANG Lin, HAN Lupeng, HE Jiebing, et al. Improved NO x reduction in the presence of SO2 by using Fe2O3-promoted halloysite-supported CeO2-WO3 catalysts[J]. Environmental Science & Technology, 2019, 53(2): 938-945. |
75 | 李想. 一种提升抗砷中毒性能的脱硝催化剂及其制备方法和应用: CN108435159A[P]. 2021-06-04. |
LI Xiang. Denitration catalyst for improving arsenic poisoning resistance as well as preparation method and application of denitration catalyst: CN108435159A[P]. 2021-06-04. | |
76 | 黄锐, 刘红辉, 平原, 等. 一种适用于高砷烟气的蜂窝式脱硝催化剂及其制备方法: CN106179319B[P]. 2019-03-29. |
HUANG Rui, LIU Honghui, PING Yuan, et al. Honeycomb de-nitration catalyst suitable for high-arsenic fume and preparation method of honeycomb de-nitration catalyst: CN106179319B[P]. 2019-03-29. | |
77 | ZHAN Sihui, ZHANG He, ZHANG Yu, et al. Efficient NH3-SCR removal of NO x with highly ordered mesoporous WO3(χ)-CeO2 at low temperatures[J]. Applied Catalysis B: Environmental, 2017, 203: 199-209. |
78 | HUANG Chunying, GUO Ruitang, PAN Weiguo, et al. SCR of NO x by NH3 over MnFeOx@TiO2 catalyst with a core-shell structure: The improved K resistance[J]. Journal of the Energy Institute, 2019, 92(5): 1364-1378. |
79 | HUANG Zhiwei, LI Hao, GAO Jiayi, et al. Alkali- and sulfur-resistant tungsten-based catalysts for NO x emissions control[J]. Environmental Science & Technology, 2015, 49(24): 14460-14465. |
80 | HU Pingping, HUANG Zhiwei, GU Xiao, et al. Alkali-resistant mechanism of a hollandite deNO x catalyst[J]. Environmental Science & Technology, 2015, 49(11): 7042-7047. |
81 | WANG Penglu, WANG Haiqiang, CHEN Xiongbo, et al. Novel SCR catalyst with superior alkaline resistance performance: Enhanced self-protection originated from modifying protonated titanate nanotubes[J]. Journal of Materials Chemistry A, 2015, 3(2): 680-690. |
82 | CHANG Huazhen, ZHANG Tao, DANG Hao, et al. Fe2O3@SiTi core-shell catalyst for the selective catalytic reduction of NO x with NH3: Activity improvement and HCl tolerance[J]. Catalysis Science & Technology, 2018, 8(13): 3313-3320. |
83 | 吴忠标, 王芃芦, 王海强, 等. 一种具有抗中毒性能的氧化钒纳米管脱硝催化剂及其制备方法: CN106140146B[P]. 2018-09-11. |
WU Zhongbiao, WANG Penglu, WANG Haiqiang, et al. Vanadium oxide nanotube denitration catalyst with anti-poisoning performance and preparation method of catalyst: CN106140146B[P]. 2018-09-11. | |
84 | 张登松, 施利毅, 查凯文, 等. 抗碱金属中毒的脱硝催化剂及其制备方法: CN108607602B[P]. 2021-12-03. |
ZHANG Dengsong, SHI Liyi, ZHA Kaiwen, et al. Denitration catalyst capable of resisting alkali metal poisoning and preparation method thereof: CN108607602B[P]. 2021-12-03. | |
85 | 胡小夫, 汪洋, 耿宣, 等. 一种抗砷抗碱金属中毒的SCR脱硝催化剂及其制备方法: CN109603814B[P]. 2021-11-09. |
HU Xiaofu, WANG Yang, GENG Xuan, et al. Arsenism and alkalosis resistant SCR denitration catalyst and preparing method thereof: CN109603814B[P]. 2021-11-09. | |
86 | 陆强, 裴鑫琦, 吴洋文, 等. 一种薄壁蜂窝式低温抗硫SCR脱硝催化剂及其制备方法: CN110354843B[P]. 2020-09-22. |
LU Qiang, PEI Xinqi, WU Yangwen, et al. Thin-wall honeycomb type low-temperature sulfur-resistant SCR denitration catalyst and preparation method thereof: CN110354843B[P]. 2020-09-22. | |
87 | 曾红, 刘平乐, 张喻升, 等. 表面涂覆型低温脱硝催化剂的开发与中试应用[J]. 过程工程学报, 2017, 17(6): 1208-1216. |
ZENG Hong, LIU Pingle, ZHANG Yusheng, et al. Development and pilot test of surface-coating SCR denitration catalyst at low temperature[J]. The Chinese Journal of Process Engineering, 2017, 17(6): 1208-1216. | |
88 | 李歌, 王宝冬, 马子然, 等. 氢化TiO2脱硝催化剂及其制备方法和应用: CN110743581A[P]. 2020-02-04. |
LI Ge, WANG Baodong, MA Ziran, et al. Hydrogenated-TiO catalyst for denitration and preparation method and application of hydrogenated-TiO catalyst: CN110743581A[P]. 2020-02-04. | |
89 | LI Ge, WANG Baodong, MA Ziran, et al. An anti-poisoning defective catalyst without metal active sites for NH3-SCR via in situ stabilization[J]. EES Catalysis, 2023, 1(2): 134-143. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[6] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[7] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[8] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[9] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[10] | 王伟涛, 鲍婷玉, 姜旭禄, 何珍红, 王宽, 杨阳, 刘昭铁. 醛酮树脂基非金属催化剂催化氧气氧化苯制备苯酚[J]. 化工进展, 2023, 42(9): 4706-4715. |
[11] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[12] | 吴海波, 王希仑, 方岩雄, 纪红兵. 3D打印催化材料开发与应用进展[J]. 化工进展, 2023, 42(8): 3956-3964. |
[13] | 向阳, 黄寻, 魏子栋. 电催化有机合成反应的活性和选择性调控研究进展[J]. 化工进展, 2023, 42(8): 4005-4014. |
[14] | 王耀刚, 韩子姗, 高嘉辰, 王新宇, 李思琪, 杨全红, 翁哲. 铜基催化剂电还原二氧化碳选择性的调控策略[J]. 化工进展, 2023, 42(8): 4043-4057. |
[15] | 刘毅, 房强, 钟达忠, 赵强, 李晋平. Ag/Cu耦合催化剂的Cu晶面调控用于电催化二氧化碳还原[J]. 化工进展, 2023, 42(8): 4136-4142. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |