化工进展 ›› 2023, Vol. 42 ›› Issue (12): 6239-6250.DOI: 10.16085/j.issn.1000-6613.2023-0067
• 能源加工与技术 • 上一篇
张静1,2(), 贺业亨1(), 王晶晶1, 夏博文1, 赵秦峰1, 王延飞1, 余颖龙1, 邵晨熠1, 龙川1
收稿日期:
2023-01-13
修回日期:
2023-04-25
出版日期:
2023-12-25
发布日期:
2024-01-08
通讯作者:
贺业亨
作者简介:
张静(1998—),女,硕士研究生,研究方向为电催化水分解。E-mail:zhangjing092543@163.com。
基金资助:
ZHANG Jing1,2(), HE Yeheng1(), WANG Jingjing1, XIA Bowen1, ZHAO Qinfeng1, WANG Yanfei1, YU Yinglong1, SHAO Chenyi1, LONG Chuan1
Received:
2023-01-13
Revised:
2023-04-25
Online:
2023-12-25
Published:
2024-01-08
Contact:
HE Yeheng
摘要:
在“碳达峰、碳中和”的目标下,绿氢成为极具前景的清洁能源。碱性电解水制取绿氢技术商业化程度最高,但由于析氧反应(OER)动力学过程缓慢且需要较高的过电位,成为制约电解水电极效率的主要瓶颈。商业电解槽中广泛使用的镍网或泡沫镍电极的OER性能仍有很大提升空间,在其上复合镍基催化功能层,开发新型高活性的析氧电极有利于提高电极效率,降低制氢成本。电沉积技术具有工艺简单、条件温和、利于放大生产自支撑电极的优势,成为工业化生产OER电极的理想工艺之一。本文综述了近年来利用电沉积技术制备的镍基析氧电极并用于碱性电解水的研究进展。采用电沉积技术在镍网或泡沫镍基底上制备镍(氢)氧化物、双金属及多元金属以及非金属掺杂的镍基催化剂作为催化功能层,通过增强催化功能层的电导率及金属间的协同作用、增加活性位点数量、减小扩散路径以及改变表面原子构型等方式提高镍基自支撑电极的OER性能。最后,展望了镍基自支撑电极在电解水领域的应用,同时指出了电沉积法制备电极材料存在的挑战。
中图分类号:
张静, 贺业亨, 王晶晶, 夏博文, 赵秦峰, 王延飞, 余颖龙, 邵晨熠, 龙川. 电沉积法制备碱性电解水镍基析氧电极的研究进展[J]. 化工进展, 2023, 42(12): 6239-6250.
ZHANG Jing, HE Yeheng, WANG Jingjing, XIA Bowen, ZHAO Qinfeng, WANG Yanfei, YU Yinglong, SHAO Chenyi, LONG Chuan. Research progress on nickel-based oxygen evolution electrode prepared by electrodeposition for alkaline water electrolysis[J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6239-6250.
催化剂名称 | 基底 | 电流密度 /mA·cm-2 | 过电位 /mV | 塔菲尔斜率 /mV·dec-1 | 电解液 | 沉积液 | 参考文献 |
---|---|---|---|---|---|---|---|
α-Ni(OH)2·0.75H2O/NF | NF | 100 | 357① | 128.7 | 1.0mol/L KOH | NiCl2 | [ |
Ni(OH)2/NF/N-CNTs | NF/N-CNTs | 10 | 254 | 84 | 1.0mol/L KOH | Ni(NO3)2·6H2O | [ |
α-Ni(OH)2/NF | NF | 10 | 192① | 108 | 1.0mol/L KOH | Ni(NO3)2·6H2O | [ |
NiO/NiNDs@NF | NF | 50 | 360① | 90 | 1.0mol/L KOH | Ni(NO3)2乙腈溶液 | [ |
NiFe(OH)x-500/Ni | 镍网 | 10 | 204① | 39 | 1.0mol/L KOH | Ni(NO3)2·6H2O+ FeSO4·7H2O | [ |
NiFe/NF | NF | 10 | 191① | 44.1 | 1.0mol/L KOH | NiCl2·6H2O+FeCl2·4H2O | [ |
NiFe-LDHs/NF | NF | 10 | 283① | 47.76 | 1.0mol/L KOH | Ni(NO3)2·6H2O+ Fe(NO3) 2·9H2O | [ |
Ni(Co0.5Fe0.5)/NF | NF | 10 | 209① | 54 | 1.0mol/L KOH | Ni(NO3)2+Co(NO3)2+FeSO4 | [ |
Ag@NiCo LDH/NF | NF | 100 | 304① | 64.6 | 1.0mol/L KOH | Ni(NO3)2·6H2O+Co(NO3)2·6H2O | [ |
NiFeCr/NF | NF | — | —① | 36 | 1.0mol/L KOH | Ni(NO3)2·6H2O+Fe(NO3)2·9H2O+ Cr(NO3)2·9H2O | [ |
NiFeMo/NF | NF | 10 | 306① | 77.1 | 30% KOH | NiSO4·6H2O+NaCl+H3BO3+ FeSO4·6H2O+Na3C6H5O7·2H2O+ Na2MoO4·2H2O | [ |
Ni0.65Ga0.30Fe0.05/NF | NF | 10 | 200 | 42 | 1.0mol/L KOH | Ga(NO3)3∙xH2O+Ni(NO3)2∙6H2O+ Fe(NO3)2∙9H2O | [ |
NiFeSn/NF | NF | 10 | 253① | 61.5 | 30% KOH | NiSO4·6H2O+NaCl+H3BO3+ FeSO4·6H2O+C6H5Na3O7·2H2O+ SnCl2·6H2O | [ |
Ni-Fe-W-Mo/Ni | 镍网 | 10 | 152① | — | 5.35mol/L KOH | NiSO4·6H2O+FeSO4·7H2O+ Na2WO4·2H2O+C6H8O7·7H2O+ Na2MoO4·2H2O+抗坏血酸 | [ |
Ni(OH)2/Ni3S2/NF | NF | 10 | 210① | 72 | 1.0mol/L KOH | NiCl2·6H2O+CS(NH2)2+NaCl+H2SO4 | [ |
NiFeS/NF | NF | 10 | 287① | 64.74 | 1.0mol/L KOH | NiSO4·6H2O+CoCl2·6H2O+CH4N2S+H3BO3+ C6H5Na3O7·2H2O+NaCl | [ |
NiFe-Pi/P-12/NF | NF | 20 | 255① | 50 | 1.0mol/L KOH | NiCl2·6H2O+FeCl3·6H2O+NaOH+柠檬酸溶液 | [ |
NiFeCuP@Ni3S2/NF | NF | 10 | 230 | 42 | 1.0mol/L KOH | NaH2PO4+NH4Cl+Ni(NO3)2·6H2O+ FeSO4·7H2O+CuSO4·5H2O | [ |
Ni-S-P/NF | NF | 10 | 219① | 82 | 1.0mol/L KOH | Ni(NO3)2·6H2O+CH4N2S Ni(NO3)2·6H2O+NaH2PO2+CH3COONa | [ |
NiSP/NF | NF | 10 | 281① | 68.51 | 1.0mol/L KOH | NiSO4·6H2O+CH4N2S+Na2HPO4·2H2O+ C6H5Na3O7·2H2O+NaCl | [ |
表1 文献中报道的电沉积法制备镍基电催化剂的OER性能
催化剂名称 | 基底 | 电流密度 /mA·cm-2 | 过电位 /mV | 塔菲尔斜率 /mV·dec-1 | 电解液 | 沉积液 | 参考文献 |
---|---|---|---|---|---|---|---|
α-Ni(OH)2·0.75H2O/NF | NF | 100 | 357① | 128.7 | 1.0mol/L KOH | NiCl2 | [ |
Ni(OH)2/NF/N-CNTs | NF/N-CNTs | 10 | 254 | 84 | 1.0mol/L KOH | Ni(NO3)2·6H2O | [ |
α-Ni(OH)2/NF | NF | 10 | 192① | 108 | 1.0mol/L KOH | Ni(NO3)2·6H2O | [ |
NiO/NiNDs@NF | NF | 50 | 360① | 90 | 1.0mol/L KOH | Ni(NO3)2乙腈溶液 | [ |
NiFe(OH)x-500/Ni | 镍网 | 10 | 204① | 39 | 1.0mol/L KOH | Ni(NO3)2·6H2O+ FeSO4·7H2O | [ |
NiFe/NF | NF | 10 | 191① | 44.1 | 1.0mol/L KOH | NiCl2·6H2O+FeCl2·4H2O | [ |
NiFe-LDHs/NF | NF | 10 | 283① | 47.76 | 1.0mol/L KOH | Ni(NO3)2·6H2O+ Fe(NO3) 2·9H2O | [ |
Ni(Co0.5Fe0.5)/NF | NF | 10 | 209① | 54 | 1.0mol/L KOH | Ni(NO3)2+Co(NO3)2+FeSO4 | [ |
Ag@NiCo LDH/NF | NF | 100 | 304① | 64.6 | 1.0mol/L KOH | Ni(NO3)2·6H2O+Co(NO3)2·6H2O | [ |
NiFeCr/NF | NF | — | —① | 36 | 1.0mol/L KOH | Ni(NO3)2·6H2O+Fe(NO3)2·9H2O+ Cr(NO3)2·9H2O | [ |
NiFeMo/NF | NF | 10 | 306① | 77.1 | 30% KOH | NiSO4·6H2O+NaCl+H3BO3+ FeSO4·6H2O+Na3C6H5O7·2H2O+ Na2MoO4·2H2O | [ |
Ni0.65Ga0.30Fe0.05/NF | NF | 10 | 200 | 42 | 1.0mol/L KOH | Ga(NO3)3∙xH2O+Ni(NO3)2∙6H2O+ Fe(NO3)2∙9H2O | [ |
NiFeSn/NF | NF | 10 | 253① | 61.5 | 30% KOH | NiSO4·6H2O+NaCl+H3BO3+ FeSO4·6H2O+C6H5Na3O7·2H2O+ SnCl2·6H2O | [ |
Ni-Fe-W-Mo/Ni | 镍网 | 10 | 152① | — | 5.35mol/L KOH | NiSO4·6H2O+FeSO4·7H2O+ Na2WO4·2H2O+C6H8O7·7H2O+ Na2MoO4·2H2O+抗坏血酸 | [ |
Ni(OH)2/Ni3S2/NF | NF | 10 | 210① | 72 | 1.0mol/L KOH | NiCl2·6H2O+CS(NH2)2+NaCl+H2SO4 | [ |
NiFeS/NF | NF | 10 | 287① | 64.74 | 1.0mol/L KOH | NiSO4·6H2O+CoCl2·6H2O+CH4N2S+H3BO3+ C6H5Na3O7·2H2O+NaCl | [ |
NiFe-Pi/P-12/NF | NF | 20 | 255① | 50 | 1.0mol/L KOH | NiCl2·6H2O+FeCl3·6H2O+NaOH+柠檬酸溶液 | [ |
NiFeCuP@Ni3S2/NF | NF | 10 | 230 | 42 | 1.0mol/L KOH | NaH2PO4+NH4Cl+Ni(NO3)2·6H2O+ FeSO4·7H2O+CuSO4·5H2O | [ |
Ni-S-P/NF | NF | 10 | 219① | 82 | 1.0mol/L KOH | Ni(NO3)2·6H2O+CH4N2S Ni(NO3)2·6H2O+NaH2PO2+CH3COONa | [ |
NiSP/NF | NF | 10 | 281① | 68.51 | 1.0mol/L KOH | NiSO4·6H2O+CH4N2S+Na2HPO4·2H2O+ C6H5Na3O7·2H2O+NaCl | [ |
1 | DORNING Monica A, DIFFENDORFER Jay E, LOSS Scott R, et al. Review of indicators for comparing environmental effects across energy sources[J]. Environmental Research Letters, 2019, 14(10): 103002. |
2 | SOLARIN Sakiru Adebola. An environmental impact assessment of fossil fuel subsidies in emerging and developing economies[J]. Environmental Impact Assessment Review, 2020, 85: 106443. |
3 | MARTINS Florinda, FELGUEIRAS Carlos, SMITKOVA Miroslava, et al. Analysis of fossil fuel energy consumption and environmental impacts in European countries[J]. Energies, 2019, 12(6): 964. |
4 | VAKULCHUK Roman, OVERLAND Indra, SCHOLTEN Daniel. Renewable energy and geopolitics: A review[J]. Renewable and Sustainable Energy Reviews, 2020, 122: 109547. |
5 | DOU Yuhai, HE Chunting, ZHANG Lei, et al. Approaching the activity limit of CoSe2 for oxygen evolution via Fe doping and Co vacancy[J]. Nature Communications, 2020, 11(1): 1664. |
6 | WAN Jiawei, ZHAO Zhenghang, SHANG Huishan, et al. In situ phosphatizing of triphenylphosphine encapsulated within metal-organic frameworks to design atomic Co1-P1N3 interfacial structure for promoting catalytic performance[J]. Journal of the American Chemical Society, 2020, 142(18): 8431-8439. |
7 | YUN Qinbai, LU Qipeng, ZHANG Xiao, et al. Three-dimensional architectures constructed from transition-metal dichalcogenide nanomaterials for electrochemical energy storage and conversion[J]. Angewandte Chemie International Edition, 2018, 57(3): 626-646. |
8 | 中国氢能源及燃料电池产业创新战略联盟. 中国氢能源及燃料电池产业白皮书2020[M]. 北京: 人民日报出版社, 2021. |
China Hydrogen Energy and Fuel Cell Industry Innovation Strategic Alliance. White Paper on hydrogen energy and fuel cell industry in China 2020[M]. Beijing: People Daily Press, 2021. | |
9 | 程明睿, 高宏. 绿氢已成为未来维护能源安全的重要方向[J]. 科技中国, 2022(10): 60-65. |
CHENG Mingrui, GAO Hong. Green hydrogen has become an important direction to maintain energy security in the future[J]. Scitech in China, 2022(10): 60-65. | |
10 | LEE Hae In, MEHDI Muhammad, KIM Sang Kyung, et al. Advanced Zirfon-type porous separator for a high-rate alkaline electrolyser operating in a dynamic mode[J]. Journal of Membrane Science, 2020, 616: 118541. |
11 | HASAN Md Mahedi, ISLAM Tamanna, SHAH Syed Shaheen, et al. Supporting electrolyte interaction with the AACVD synthesized Rh thin film influences the OER activity[J]. International Journal of Hydrogen Energy, 2022, 47(67): 28740-28751. |
12 | SUNTIVICH Jin, Kevin J MAY, GASTEIGER Hubert A, et al. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles[J]. Science, 2011, 334(6061): 1383-1385. |
13 | Boon Siang YEO. Oxygen evolution by stabilized single Ru atoms[J]. Nature Catalysis, 2019, 2(4): 284-285. |
14 | 刘太楷, 邓春明, 张亚鹏. 电解水制氢发展概况之一: 碱式电解水[J].材料研究与应用, 2019, 13(4): 339-346. |
LIU Taikai, DENG Chunming, ZHANG Yapeng. Development of hydrogen production by electrolysis of water I: Alkaline electrolysis of water[J]. Materials Research and Application, 2019, 13(4): 339-346. | |
15 | YAO Mengqi, WANG Ni, HU Wencheng, et al. Novel hydrothermal electrodeposition to fabricate mesoporous film of Ni0.8Fe0.2 nanosheets for high performance oxygen evolution reaction[J]. Applied Catalysis B: Environmental, 2018, 233: 226-233. |
16 | THIRUMAL V, YUVAKKUMAR R, SENTHIL KUMAR P, et al. Morphology investigation on direct growth ultra-long CNTs by chemical vapour deposition method for high performance HER applications[J]. Fuel, 2022, 330: 125532. |
17 | GONG Feilong, YE Sheng, LIU Mengmeng, et al. Boosting electrochemical oxygen evolution over yolk-shell structured O-MoS2 nanoreactors with sulfur vacancy and decorated Pt nanoparticles[J]. Nano Energy, 2020, 78: 105284. |
18 | GUO Daying, ZENG Zhihao, WAN Zhixin, et al. A CoN-based OER electrocatalyst capable in neutral medium: Atomic layer deposition as rational strategy for fabrication[J]. Advanced Functional Materials, 2021, 31(24): 2101324. |
19 | ZAI Shifeng, DONG Anqi, LI Jian, et al. Low-crystallinity mesoporous NiGaFe hydroxide nanosheets on macroporous Ni foam for high-efficiency oxygen evolution electrocatalysis[J]. Journal of Materials Chemistry A, 2021, 9(10): 6223-6231. |
20 | BO Xin, HOCKING Rosalie K, ZHOU Si, et al. Capturing the active sites of multimetallic (oxy) hydroxides for the oxygen evolution reaction[J]. Energy & Environmental Science, 2020, 13(11): 4225-4237. |
21 | TONG Wenming, FORSTER Mark, DIONIGI Fabio, et al. Electrolysis of low-grade and saline surface water[J]. Nature Energy, 2020, 5(5): 367-377. |
22 | SONG Jiajia, WEI Chao, HUANG Zhenfeng, et al. A review on fundamentals for designing oxygen evolution electrocatalysts[J]. Chemical Society Reviews, 2020, 49(7): 2196-2214. |
23 | MEDFORD Andrew J, VOJVODIC Aleksandra, HUMMELSHØJ Jens S, et al. From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis[J]. Journal of Catalysis, 2015, 328: 36-42. |
24 | JIANG Wenjie, TANG Tang, ZHANG Yun, et al. Synergistic modulation of non-precious-metal electrocatalysts for advanced water splitting[J]. Accounts of Chemical Research, 2020, 53(6): 1111-1123. |
25 | 李荻. 电化学原理[M]. 3版. 北京: 北京航空航天大学出版社, 2008. |
LI Di. Electrochemical principle[M]. 3rd ed. Beijing: Beijing University of Aeronautics & Astronautics Press, 2008. | |
26 | WU Zhipeng, LU Xuefeng, ZANG Shuangquan, et al. Non-noble-metal-based electrocatalysts toward the oxygen evolution reaction[J]. Advanced Functional Materials, 2020, 30(15): 1910274. |
27 | WU Jian, SUBRAMANIAM Jayabal, LIU Yongqiang, et al. Facile assembly of Ni(OH)2 nanosheets on nitrogen-doped carbon nanotubes network as high-performance electrocatalyst for oxygen evolution reaction[J]. Journal of Alloys and Compounds, 2018, 731: 766-773. |
28 | WANG Jiaxin, SUN Xiaoliang, HU Hanbin, et al. Electrodeposition of defect-rich ternary NiCoFe layered double hydroxides: fine modulation of Co3+ for highly efficient oxygen evolution reaction[J]. Chemistry-A European Journal, 2022, 28(6): e202103601. |
29 | ALLEMAND Morgan, MARTIN Manuel H, REYTER David, et al. Synthesis of Cu-Pd alloy thin films by co-electrodeposition[J]. Electrochimica Acta, 2011, 56(21): 7397-7403. |
30 | ABBASPOUR Abdolkarim, Fatemeh NOROUZ-SARVESTANI. High electrocatalytic effect of Au-Pd alloy nanoparticles electrodeposited on microwave assisted sol-gel-derived carbon ceramic electrode for hydrogen evolution reaction[J]. International Journal of Hydrogen Energy, 2013, 38(4): 1883-1891. |
31 | HE Chuanglong, JIN Xiaobing, MA Peter X. Calcium phosphate deposition rate, structure and osteoconductivity on electrospun poly (L-lactic acid) matrix using electrodeposition or simulated body fluid incubation[J]. Acta Biomaterialia, 2014, 10(1): 419-427. |
32 | LEE Sol A, YANG Jin Wook, CHOI Sungkyun, et al. Nanoscale electrodeposition: dimension control and 3D conformality[J]. Exploration. 2021, 1(3): 20210012. |
33 | LI Mian, XIONG Yueping, LIU Xiaotian, et al. Facile synthesis of electrospun MFe2O4(M=Co, Ni, Cu, Mn) spinel nanofibers with excellent electrocatalytic properties for oxygen evolution and hydrogen peroxide reduction[J]. Nanoscale, 2015, 7(19): 8920-8930. |
34 | CHEN Junsheng, LI Hao, YU Zixun, et al. Octahedral coordinated trivalent cobalt enriched multimetal oxygen-evolution catalysts[J]. Advanced Energy Materials, 2020, 10(43): 2002593. |
35 | ZHENG Jingxu, ZHAO Qing, TANG Tian, et al. Reversible epitaxial electrodeposition of metals in battery anodes[J]. Science, 2019, 366(6465): 645-648. |
36 | ZHANG Huigang, NING Hailong, BUSBEE John, et al. Electroplating lithium transition metal oxides[J]. Science Advances, 2017, 3(5):e1602427. |
37 | YU Hongtao, QUAN Ting, MEI Shilin, et al. Prompt electrodeposition of Ni nanodots on Ni foam to construct a high-performance water-splitting electrode: efficient, scalable, and recyclable[J]. Nano-Micro Letters, 2019, 11(1): 41. |
38 | LEI Yaqi, XU Tingting, YE Shenghua, et al. Engineering defect-rich Fe-doped NiO coupled Ni cluster nanotube arrays with excellent oxygen evolution activity[J]. Applied Catalysis B: Environmental, 2021, 285: 119809. |
39 | CAO Liming, CAO Qingcai, ZHANG Jia, et al. Electrochemically controlled synthesis of ultrathin nickel hydroxide nanosheets for electrocatalytic oxygen evolution[J]. Inorganic Chemistry, 2021, 60(5): 3365-3374. |
40 | YAO Kaili, ZHAI Muheng, NI Yonghong. α-Ni(OH)2·0.75H2O nanofilms on Ni foam from simple NiCl2 solution: Fast electrodeposition, formation mechanism and application as an efficient bifunctional electrocatalyst for overall water splitting in alkaline solution[J]. Electrochimica Acta, 2019, 301: 87-96. |
41 | ZHANG Ping, TAN Wenyu, HE Hanwei, et al. Binder-free quaternary Ni-Fe-W-Mo alloy as a highly efficient electrocatalyst for oxygen evolution reaction[J]. Journal of Alloys and Compounds, 2021, 853: 157265. |
42 | HAI Y, LIU L, GONG Y. Iron coordination polymer, Fe(oxalate)(H2O)2 nanorods grown on nickel foam via one-step electrodeposition as an efficient electrocatalyst for oxygen evolution reaction[J]. Inorganic Chemistry, 2021, 60(7): 5140-5152. |
43 | JIN Jun, XIA Jiangbing, QIAN Xin, et al. Exceptional electrocatalytic oxygen evolution efficiency and stability from electrodeposited NiFe alloy on Ni foam[J]. Electrochimica Acta, 2019, 299: 567-574. |
44 | WU Yihui, GAO Ying, HE Hanwei, et al. Electrodeposition of self-supported Ni-Fe-Sn film on Ni foam: An efficient electrocatalyst for oxygen evolution reaction[J]. Electrochimica Acta, 2019, 301: 39-46. |
45 | MLYNAREK G, PASZKIEWICZ M, RADNIECKA A. The effect of ferric ions on the behaviour of a nickelous hydroxide electrode[J]. Journal of Applied Electrochemistry, 1984, 14(2): 145-149. |
46 | TICHENOR Robert L. Nickel oxides-relation between electrochemical and foreign ion content[J]. Industrial & Engineering Chemistry, 1952, 44(5): 973-977. |
47 | LI Huixiu, ZHANG Lingling, WANG Shengping, et al. Accelerated oxygen evolution kinetics on NiFeAl-layered double hydroxide electrocatalysts with defect sites prepared by electrodeposition[J]. International Journal of Hydrogen Energy, 2019, 44(54): 28556-28565. |
48 | ZHOU Huan, ZHANG Hua, LAI Changgan, et al. Rapidly electrodeposited NiFe(OH) x as the catalyst for oxygen evolution reaction[J]. Inorganic Chemistry Communications, 2022, 139: 109350. |
49 | ETESAMI Mohammad, MOHAMAD Ahmad Azmin, NGUYEN Mai Thanh, et al. Benchmarking superfast electrodeposited bimetallic (Ni, Fe, Co, and Cu) hydroxides for oxygen evolution reaction[J]. Journal of Alloys and Compounds, 2021, 889: 161738. |
50 | HUANG Yu, WU Yihui, ZHANG Zejie, et al. Rapid electrodeposited of self-supporting Ni-Fe-Mo film on Ni foam as affordable electrocatalysts for oxygen evolution reaction[J]. Electrochimica Acta, 2021, 390: 138754. |
51 | LIU Shanshan, XU Xiufeng, LI Jisen. Silver decorated nickel-cobalt (oxy) hydroxides fabricated via surface reconstruction engineering for boosted electrocatalytic oxygen evolution and urea oxidation[J]. Dalton Transactions, 2022, 51(31): 11814-11822. |
52 | XU Qiucheng, JIANG Hao, ZHANG Haoxuan, et al. Heterogeneous interface engineered atomic configuration on ultrathin Ni(OH)2/Ni3S2 nanoforests for efficient water splitting[J]. Applied Catalysis B: Environmental, 2019, 242: 60-66. |
53 | CARTAGENA Santiago, BEDOYA-LORA Franky E, CALDERÓN Jorge A. Enhancement of anodically treated stainless steel by NiFeP-catalyst electrodeposition as bifunctional electrodes for water electrolysis[J]. Journal of the Electrochemical Society, 2022, 169(4): 044501. |
54 | LI Wenhui, CHEN Mingyue, LU Yu, et al. One-pot electrodeposition synthesis of NiFe-phosphate/phosphide hybrid nanosheet arrays for efficient water splitting[J]. Applied Surface Science, 2022, 598: 153717. |
55 | WAN Kai, LUO Jiangshui, ZHOU Chen, et al. Hierarchical porous Ni3S4 with enriched high-valence Ni sites as a robust electrocatalyst for efficient oxygen evolution reaction[J]. Advanced Functional Materials, 2019, 29(18): 1900315. |
56 | LV Jingjing, ZHAO Jun, FANG Hua, et al. Incorporating nitrogen-doped graphene quantum dots and Ni3S2 nanosheets: A synergistic electrocatalyst with highly enhanced activity for overall water splitting[J]. Small, 2017, 13(24): 1700264. |
57 | ZHANG Yanfang, LIN Li, LIU Juntong, et al. A hierarchical and branch-like NiCoS/NF material prepared by gradient electrodeposition method for oxygen evolution reaction[J]. International Journal of Hydrogen Energy, 2021, 46(74): 36629-36639. |
58 | KHODABAKHSHI Meysam, CHEN Shumin, YE Tian, et al. Hierarchical highly wrinkled trimetallic NiFeCu phosphide nanosheets on nanodendrite Ni3S2/Ni foam as an efficient electrocatalyst for the oxygen evolution reaction[J]. ACS Applied Materials & Interfaces, 2020, 12(32): 36268-36276. |
59 | XU Qingli, GAO Wenluan, WANG Miao, et al. Electrodeposition of NiS/Ni2P nanoparticles embedded in amorphous Ni(OH)2 nanosheets as an efficient and durable dual-functional electrocatalyst for overall water splitting[J]. International Journal of Hydrogen Energy, 2020, 45(4): 2546-2556. |
60 | ZHANG Yanfang, LIN Li, LIU Juntong, et al. Hierarchical sulphide-phosphide NiSP/NF catalyst prepared by gradient electrodeposition for oxygen evolution reaction[J]. Journal of Alloys and Compounds, 2022, 895:162675. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 张杰, 白忠波, 冯宝鑫, 彭肖林, 任伟伟, 张菁丽, 刘二勇. PEG及其复合添加剂对电解铜箔后处理的影响[J]. 化工进展, 2023, 42(S1): 374-381. |
[6] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[7] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[8] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[9] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[10] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[11] | 王伟涛, 鲍婷玉, 姜旭禄, 何珍红, 王宽, 杨阳, 刘昭铁. 醛酮树脂基非金属催化剂催化氧气氧化苯制备苯酚[J]. 化工进展, 2023, 42(9): 4706-4715. |
[12] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[13] | 吴海波, 王希仑, 方岩雄, 纪红兵. 3D打印催化材料开发与应用进展[J]. 化工进展, 2023, 42(8): 3956-3964. |
[14] | 向阳, 黄寻, 魏子栋. 电催化有机合成反应的活性和选择性调控研究进展[J]. 化工进展, 2023, 42(8): 4005-4014. |
[15] | 王耀刚, 韩子姗, 高嘉辰, 王新宇, 李思琪, 杨全红, 翁哲. 铜基催化剂电还原二氧化碳选择性的调控策略[J]. 化工进展, 2023, 42(8): 4043-4057. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |