化工进展 ›› 2023, Vol. 42 ›› Issue (11): 5943-5955.DOI: 10.16085/j.issn.1000-6613.2022-2317
龙彩梅1,2(), 武帅山1,2, 王建成1,2, 米杰1,2(), 冯宇1,2()
收稿日期:
2022-12-15
修回日期:
2023-03-17
出版日期:
2023-11-20
发布日期:
2023-12-15
通讯作者:
米杰,冯宇
作者简介:
龙彩梅(1996—),女,硕士研究生,研究方向为气体分离与净化。E-mail:1783139394@qq.com。
基金资助:
LONG Caimei1,2(), WU Shuaishan1,2, WANG Jiancheng1,2, MI Jie1,2(), FENG Yu1,2()
Received:
2022-12-15
Revised:
2023-03-17
Online:
2023-11-20
Published:
2023-12-15
Contact:
MI Jie, FENG Yu
摘要:
煤气化过程中产生的H2S气体易造成下游设备腐蚀、催化剂中毒和环境污染等问题,分子筛负载型脱硫剂由于能够使活性组分高度分散,促进反应传质,在H2S净化领域应用广泛。本文以分子筛孔径大小和孔道结构特征为依据,分别介绍了微孔(d<2nm)、介孔(2nm<d<50nm)、大孔(d>50nm)和多级孔分子筛及具备分子筛结构特性材料为载体的脱硫剂在高温煤气吸附H2S气体中的应用现状,分析探讨了不同类型分子筛复合脱硫剂目前存在的优点与不足。最后,从不同分子筛载体的结构特点、分子筛复合脱硫剂净化H2S现状及性能提升、脱硫功能化和绿色制备工艺等方面进行了总结和展望,以期能够为今后分子筛基负载型脱硫剂的开发与应用提供有益参考。
中图分类号:
龙彩梅, 武帅山, 王建成, 米杰, 冯宇. 基于分子筛结构特性的高温煤气脱硫剂应用现状[J]. 化工进展, 2023, 42(11): 5943-5955.
LONG Caimei, WU Shuaishan, WANG Jiancheng, MI Jie, FENG Yu. Status of high temperature gas desulfurizer with structural characteristics of molecular sieves[J]. Chemical Industry and Engineering Progress, 2023, 42(11): 5943-5955.
脱硫剂种类 | 合成方法 | 反应气氛 | 温度/℃ | 硫容 | 参考文献 |
---|---|---|---|---|---|
5Ce5Mn/ZSM-5 | 溶胶-凝胶法 | 0.5%H2S/N2 | 750 | 7653.1µmolS/g | [ |
5La5Mn/ZSM-5 | 溶胶-凝胶法 | 0.2%H2S/N2 | 600 | 1020.0µmolS/g | [ |
CuMn/ZSM-5 | 湿法浸渍 | 0.2%H2S/11%CO2/12.5%CO/13.8%H2/1%CH4/19%H2O/N2 | 871 | NA | [ |
Cu@MCM-41/ Cu-MCM-41 | 浸渍法/水热法 | 1%H2S/10%H2/He | 500 | 23.0gS/100gCuO/ 19.0gS/100gCuO | [ |
LaFeO3/M41 | 溶胶-凝胶法 | 0.33%H2S/10.5%H2/17.1%CO2/N2 | 500 | 3.2gS/100g脱硫剂 | [ |
35%ZnO/MCM-41 | 一步水热法 | 0.2%~0.3%H2S/39%H2/27%CO/12%CO2/10%H2O/N2 | 500 | 11.0gS/100g脱硫剂 | [ |
40%ZnO/MCM-41 | 微波水热法 | 2000μL/L H2S/39%H2/27%CO/12%CO2/N2 | 500 | 11.2gS/100g脱硫剂 | [ |
Al-ZnO/MCM-41 | 微波水热法 | 3000μL/L H2S/39%H2/27%CO/12%CO2/N2 | 500 | 9.1gS/100g脱硫剂 | [ |
ZnO/SBA-15 Fe2O3/SBA-15 | 双溶剂法 | 1.5%H2S/He | 300 | 5.3gS/100g ZnO 40.1gS/100g Fe2O3 | [ |
ZnO/DSBA-15 ZnO/Nb20DSBA-15 Zn5Co/Ti10DSBA-15 | 溶胶-凝胶法 | 2787mg/m3 H2S/10.5%H2/18%CO/5%CO2/N2 | 500 | 5.7gS/100g脱硫剂 6.7gS/100g脱硫剂 7.1gS/100g脱硫剂 | [ |
Zn20Ni1/SBA-15 | 溶胶-凝胶法 | 2000μL/L H2S/10.5%H2/18%CO/5%CO2/N2 | 500 | 16.0gS/100g脱硫剂 | [ |
LaFeO3/SBA-15 | 溶胶-凝胶法 | 0.33%H2S/10.5%H2/17.1%±0.3%CO2/72.1%±2%N2 | 500 | 4.9gS/100g脱硫剂 | [ |
4Mn1Fe-3%Mo/FSM-16 | 溶胶-凝胶法 | 0.33%H2S/10.5%H2/18%CO/N2 | 600 | 18.2gS/100g脱硫剂 | [ |
50% Mn/MCM-48 | 溶胶-凝胶法 | 0.33%H2S/10.5%H2/18%CO/N2 | 550 | 12.4gS/100g脱硫剂 | [ |
Zn/M48 Zn/M41 | 溶胶-凝胶法 | 0.2%H2S/18%CO/10.5%H2/5%CO2/N2 | 500 | NA | [ |
ZnO/KIT-6 La-ZnO/KIT-6 | 溶胶-凝胶法 | 0.1%H2S/2% CO/5% H2/10%H2O/N2 | 300 | 5.0gS/100g脱硫剂 7.0gS/100g脱硫剂 | [ |
La3Mn7/KIT-6 | 溶胶-凝胶法 | 0.36%H2S/13.84%H2/19.36%CO/N2 | 800 | 11.6gS/100g脱硫剂 | [ |
55%5Sm95Mn/MSU-S | 溶胶-凝胶法 | 0.33%H2S/10.5%H2/18%CO/N2 | 800 | 15.2gS/100g脱硫剂 | [ |
90Mn10Ca/MSU-H | 溶胶-凝胶法 | 0.33%H2S/10.5%H2/18%CO/N2 | 750 | 18.7gS/100g脱硫剂 | [ |
4Mn1Ce/HMS | 溶胶-凝胶法 | 0.33%H2S/10.6%H2/18%CO/N2 | 600 | 12.1gS/100g脱硫剂 | [ |
90Mn10Mo/KIT-1 | 溶胶-凝胶法 | 0.33%H2S/10.6%H2/18%CO/N2 | 700 | 16.9gS/100g脱硫剂 | [ |
ZnO/SiO2 | 胶晶模板法 | 1mg/m3 H2S/3.0%H2O/N2 | 500 | 17.0gS/100g脱硫剂 | [ |
ZnCo2/SS | 溶胶-凝胶法 | 0.33%H2S/10.5%H2/18%CO/N2 | 550 | 13.8gS/100g脱硫剂 | [ |
Ca3Cu10Mn87Oi/MAS-9 | 溶胶-凝胶法 | 0.33%H2S/10.5%H2/18%CO/N2 | 800 | 17.2gS/100g脱硫剂 | [ |
(8%Ce-Mn)1.5Al0.5O x | 溶胶-凝胶法 | 0.33%H2S/10.5%H2/18%CO/N2 | 700 | 29.0gS/100g脱硫剂 | [ |
表1 不同种类脱硫剂的制备方法、反应条件及性能汇总
脱硫剂种类 | 合成方法 | 反应气氛 | 温度/℃ | 硫容 | 参考文献 |
---|---|---|---|---|---|
5Ce5Mn/ZSM-5 | 溶胶-凝胶法 | 0.5%H2S/N2 | 750 | 7653.1µmolS/g | [ |
5La5Mn/ZSM-5 | 溶胶-凝胶法 | 0.2%H2S/N2 | 600 | 1020.0µmolS/g | [ |
CuMn/ZSM-5 | 湿法浸渍 | 0.2%H2S/11%CO2/12.5%CO/13.8%H2/1%CH4/19%H2O/N2 | 871 | NA | [ |
Cu@MCM-41/ Cu-MCM-41 | 浸渍法/水热法 | 1%H2S/10%H2/He | 500 | 23.0gS/100gCuO/ 19.0gS/100gCuO | [ |
LaFeO3/M41 | 溶胶-凝胶法 | 0.33%H2S/10.5%H2/17.1%CO2/N2 | 500 | 3.2gS/100g脱硫剂 | [ |
35%ZnO/MCM-41 | 一步水热法 | 0.2%~0.3%H2S/39%H2/27%CO/12%CO2/10%H2O/N2 | 500 | 11.0gS/100g脱硫剂 | [ |
40%ZnO/MCM-41 | 微波水热法 | 2000μL/L H2S/39%H2/27%CO/12%CO2/N2 | 500 | 11.2gS/100g脱硫剂 | [ |
Al-ZnO/MCM-41 | 微波水热法 | 3000μL/L H2S/39%H2/27%CO/12%CO2/N2 | 500 | 9.1gS/100g脱硫剂 | [ |
ZnO/SBA-15 Fe2O3/SBA-15 | 双溶剂法 | 1.5%H2S/He | 300 | 5.3gS/100g ZnO 40.1gS/100g Fe2O3 | [ |
ZnO/DSBA-15 ZnO/Nb20DSBA-15 Zn5Co/Ti10DSBA-15 | 溶胶-凝胶法 | 2787mg/m3 H2S/10.5%H2/18%CO/5%CO2/N2 | 500 | 5.7gS/100g脱硫剂 6.7gS/100g脱硫剂 7.1gS/100g脱硫剂 | [ |
Zn20Ni1/SBA-15 | 溶胶-凝胶法 | 2000μL/L H2S/10.5%H2/18%CO/5%CO2/N2 | 500 | 16.0gS/100g脱硫剂 | [ |
LaFeO3/SBA-15 | 溶胶-凝胶法 | 0.33%H2S/10.5%H2/17.1%±0.3%CO2/72.1%±2%N2 | 500 | 4.9gS/100g脱硫剂 | [ |
4Mn1Fe-3%Mo/FSM-16 | 溶胶-凝胶法 | 0.33%H2S/10.5%H2/18%CO/N2 | 600 | 18.2gS/100g脱硫剂 | [ |
50% Mn/MCM-48 | 溶胶-凝胶法 | 0.33%H2S/10.5%H2/18%CO/N2 | 550 | 12.4gS/100g脱硫剂 | [ |
Zn/M48 Zn/M41 | 溶胶-凝胶法 | 0.2%H2S/18%CO/10.5%H2/5%CO2/N2 | 500 | NA | [ |
ZnO/KIT-6 La-ZnO/KIT-6 | 溶胶-凝胶法 | 0.1%H2S/2% CO/5% H2/10%H2O/N2 | 300 | 5.0gS/100g脱硫剂 7.0gS/100g脱硫剂 | [ |
La3Mn7/KIT-6 | 溶胶-凝胶法 | 0.36%H2S/13.84%H2/19.36%CO/N2 | 800 | 11.6gS/100g脱硫剂 | [ |
55%5Sm95Mn/MSU-S | 溶胶-凝胶法 | 0.33%H2S/10.5%H2/18%CO/N2 | 800 | 15.2gS/100g脱硫剂 | [ |
90Mn10Ca/MSU-H | 溶胶-凝胶法 | 0.33%H2S/10.5%H2/18%CO/N2 | 750 | 18.7gS/100g脱硫剂 | [ |
4Mn1Ce/HMS | 溶胶-凝胶法 | 0.33%H2S/10.6%H2/18%CO/N2 | 600 | 12.1gS/100g脱硫剂 | [ |
90Mn10Mo/KIT-1 | 溶胶-凝胶法 | 0.33%H2S/10.6%H2/18%CO/N2 | 700 | 16.9gS/100g脱硫剂 | [ |
ZnO/SiO2 | 胶晶模板法 | 1mg/m3 H2S/3.0%H2O/N2 | 500 | 17.0gS/100g脱硫剂 | [ |
ZnCo2/SS | 溶胶-凝胶法 | 0.33%H2S/10.5%H2/18%CO/N2 | 550 | 13.8gS/100g脱硫剂 | [ |
Ca3Cu10Mn87Oi/MAS-9 | 溶胶-凝胶法 | 0.33%H2S/10.5%H2/18%CO/N2 | 800 | 17.2gS/100g脱硫剂 | [ |
(8%Ce-Mn)1.5Al0.5O x | 溶胶-凝胶法 | 0.33%H2S/10.5%H2/18%CO/N2 | 700 | 29.0gS/100g脱硫剂 | [ |
1 | AZZAM Sara A, ALSHAFEI Faisal H, Tirso LÓPEZ-AUSENS, et al. Effects of morphology and surface properties of copper oxide on the removal of hydrogen sulfide from gaseous streams[J]. Industrial & Engineering Chemistry Research, 2019, 58(40): 18836-18847. |
2 | LIU Dongjing, WANG Qian, WU Jiang, et al. A review of sorbents for high-temperature hydrogen sulfide removal from hot coal gas[J]. Environmental Chemistry Letters, 2019, 17(1): 259-276. |
3 | KHABAZIPOUR Maryam, ANBIA Mansoor. Removal of hydrogen sulfide from gas streams using porous materials: A review[J]. Industrial & Engineering Chemistry Research, 2019, 58(49): 22133-22164. |
4 | SUN Jian, MODI Shruti, LIU Ke, et al. Kinetics of zinc oxide sulfidation for packed-bed desulfurizer modeling[J]. Energy & Fuels, 2007, 21(4): 1863-1871. |
5 | JIANG Bolong, ZHANG Jiaojing, CHEN Yanguang, et al. Ultrasonic-assisted preparation of highly active Co3O4/MCM-41 adsorbent and its desulfurization performance for low H2S concentration gas[J]. RSC Advances, 2020, 10(50): 30214-30222. |
6 | WANG Xiaowen, ZHANG Ran, LI Qiaochun, et al. Insights into H2S-absorption and oxidation-regeneration behavior of Ni-doped ZnO-based sorbents supported on SBA-15 for desulfurization of hot coal gas[J]. Fuel, 2023, 332: 126052. |
7 | 陈宪宏. 天然沸石改性及其去除氮磷性能研究[D]. 广州: 广州大学, 2022. |
CHEN Xianhong. Study on modification of natural zeolite and its nitrogen and phosphorus removal performance[D]. Guangzhou: Guangzhou University, 2022. | |
8 | KOOHSARYAN Esmat, ANBIA Mansoor. Nanosized and hierarchical zeolites: A short review[J]. Chinese Journal of Catalysis, 2016, 37(4): 447-467. |
9 | WILSON Stephen T, Brent M LOK, MESSINA Celeste A, et al. Aluminophosphate molecular sieves: A new class of microporous crystalline inorganic solids[J]. Journal of the American Chemical Society, 1982, 104(4): 1146-1147. |
10 | ZHANG Jie, TAN Yan, SONG Wenjun. Zeolitic imidazolate frameworks for use in electrochemical and optical chemical sensing and biosensing: A review[J]. Microchimica Acta, 2020, 187(4): 234. |
11 | ZACHARIOU Andrea, HAWKINS Alexander, HOWE Russell, et al. Counting the acid sites in a commercial ZSM-5 zeolite catalyst[J]. ACS Physical Chemistry Au, 2023, 3(1): 74-83. |
12 | WATANABE Shingo. Chemistry of H2S over the surface of common solid sorbents in industrial natural gas desulfurization[J]. Catalysis Today, 2021, 371: 204-220. |
13 | 邱广敏, 黄宝丽, 王新民, 等. HZSM-5沸石分子筛吸附H2S的理论研究[J]. 石油与天然气化工, 2006, 35(2): 107-109. |
QIU Guangmin, HUANG Baoli, WANG Xinmin, et al. The theoretical study of H2S adsorption on HZSM-5 zeolite[J]. Chemical Engineering of Oil & Gas, 2006, 35(2): 107-109. | |
14 | LIU Dongjing, ZHOU Weiguo, WU Jiang. CeO2-MnO x /ZSM-5 sorbents for H2S removal at high temperature[J]. Chemical Engineering Journal, 2016, 284: 862-871. |
15 | LIU Dongjing, ZHOU Weiguo, WU Jiang. Perovskite LaMnO3/ZSM-5 composites for H2S reactive adsorption at high temperature[J]. Adsorption, 2016, 22(3): 327-334. |
16 | ATIMTAY Aysel T, GASPER-GALVIN Lee D, POSTON James A. Novel supported sorbent for hot gas desulfurization[J]. Environmental Science & Technology, 1993, 27(7): 1295-1303. |
17 | CHENG Chifeng, HE Heyong, ZHOU Wuzong, et al. Crystal morphology supports the liquid crystal formation mechanism for the mesoporous molecular sieve MCM-41[J]. Chemical Physics Letters, 1995, 244(1/2): 117-120. |
18 | FENG Yu, LU Jianjun, WANG Jiancheng, et al. Desulfurization sorbents for green and clean coal utilization and downstream toxics reduction: A review and perspectives[J]. Journal of Cleaner Production, 2020, 273: 123080. |
19 | CHENG Chifeng, ZHOU Wuzong, PARK Dong Ho, et al. Controlling the channel diameter of the mesoporous molecularsieve MCM-41[J]. Journal of the Chemical Society, Faraday Transactions, 1997, 93(2): 359-363. |
20 | OZAYDIN Zeynep, YASYERLI Sena, DOGU Gulsen. Synthesis and activity comparison of copper-incorporated MCM-41-type sorbents prepared by one-pot and impregnation procedures for H2S removal[J]. Industrial & Engineering Chemistry Research, 2008, 47(4): 1035-1042. |
21 | LIU Bingsi, WAN Zhengyong, ZHAN Yueping, et al. Desulfurization of hot coal gas over high-surface-area LaMeO x /MCM-41 sorbents[J]. Fuel, 2012, 98: 95-102. |
22 | 贾磊. MCM-41负载纳米ZnO中高温煤气脱硫剂的制备及其硫化性能研究[D]. 太原: 太原理工大学, 2017. |
JIA Lei. Preparation and desulfurization performance of zinc oxide load in MCM-41 sorbent for hot coal gas[D]. Taiyuan: Taiyuan University of Technology, 2017. | |
23 | WU Mengmeng, SHI Lei, Teik Thye LIM, et al. Ordered mesoporous Zn-based supported sorbent synthesized by a new method for high-efficiency desulfurization of hot coal gas[J]. Chemical Engineering Journal, 2018, 353: 273-287. |
24 | 史磊. 微波原位制备ZnO/MCM-41中高温煤气脱硫剂及其性能的研究[D]. 太原: 太原理工大学, 2018. |
SHI Lei. The study on desulfurization performance of ZnO/MCM-41 sorbent prepared by microwave assisted in-situ method for hot coal gas[D]. Taiyuan: Taiyuan University of Technology, 2018. | |
25 | 李阳. 锌基有序介孔高温煤气脱硫剂性能稳定性及动力学研究[D]. 太原: 太原理工大学, 2020. |
LI Yang. Performance stability and kinetics of zinc-based ordered mesoporous sorbent for high temperature coal gas[D]. Taiyuan: Taiyuan University of Technology, 2020. | |
26 | 姜晓庆, 郭宇, 吴红梅. 2-吡啶甲醛功能化SBA-15介孔材料的制备及其对Cr(Ⅲ)离子的吸附[J]. 化工进展, 2022, 41(7): 3915-3924. |
JIANG Xiaoqing, GUO Yu, WU Hongmei. Synthesis of 2-pyridinecarboxaldehyde functionalized SBA-15 mesoporous material for the adsorption of Cr(Ⅲ) ions from aqueous solution[J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3915-3924. | |
27 | MUREDDU Mauro, FERINO Italo, MUSINU Anna, et al. MeO x /SBA-15 (Me=Zn, Fe): Highly efficient nanosorbents for mid-temperature H2S removal[J]. Journal of Materials Chemistry A, 2014, 2(45): 19396-19406. |
28 | 张旭阳, 武蒙蒙, 李俏春, 等. 载体形貌对ZnO/SBA-15煤气脱硫剂结构及性能的影响[J]. 天然气化工——C1化学与化工, 2022, 47(3): 33-40. |
ZHANG Xuyang, WU Mengmeng, LI Qiaochun, et al. Effect of carrier morphology on structure and properties of ZnO/SBA-15 coal gas desulfurizer[J]. Natural Gas Chemical Industry—C1 Chemistry and Chemical Industry, 2022, 47(3): 33-40. | |
29 | 李俏春. SBA-15负载锌基氧化物的煤气脱硫与再生行为研究[D]. 太原: 太原理工大学, 2021. |
LI Qiaochun. Study on desulfurization and regeneration behavior of coal gas with SBA-15 loaded zinc-based oxides[D]. Taiyuan: Taiyuan University of Technology, 2021. | |
30 | LIU Bingsi, WEI Xiaona, ZHAN Yueping, et al. Preparation and desulfurization performance of LaMeO x /SBA-15 for hot coal gas[J]. Applied Catalysis B: Environmental, 2011, 102(1/2): 27-36. |
31 | SAMARI Mahya, ZINADINI Sirus, ZINATIZADEH Ali Akbar, et al. A new fouling resistance polyethersulfone ultrafiltration membrane embedded by metformin-modified FSM-16: Fabrication, characterization and performance evaluation in emulsified oil-water separation[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105386. |
32 | XIA Hong, LIU Bingsi, LI Qian, et al. High capacity Mn-Fe-Mo/FSM-16 sorbents in hot coal gas desulfurization and mechanism of elemental sulfur formation[J]. Applied Catalysis B: Environmental, 2017, 200: 552-565. |
33 | DUAN Yongzheng, ZHAI Decui, ZHANG Xin, et al. Synthesis of CuO/Ti-MCM-48 photocatalyst for the degradation of organic pollutions under solar-simulated irradiation[J]. Catalysis Letters, 2018, 148(1): 51-61. |
34 | 黄兆彪. 高温煤气脱硫剂的制备及反应条件对脱硫性能的影响[D]. 天津: 天津大学, 2016. |
HUANG Zhaobiao. Preparation of sorbents for hot coal gas desulfurization and performance of sorbents under different reaction conditions[D]. Tianjin: Tianjin University, 2016. | |
35 | WU Mengmeng, LI Qiaochun, WANG Xiaowen, et al. Structure characteristics and hot-coal-gas desulfurization properties of Zn-based sorbents supported on mesoporous silica with different pore-arrangement patterns: A comparison study[J]. Energy & Fuels, 2021, 35(3): 2456-2467. |
36 | 周一思, 马守涛, 汪颖军, 等. KIT-6介孔分子筛的研究进展[J]. 化学与粘合, 2022, 44(2): 158-161. |
ZHOU Yisi, MA Shoutao, WANG Yingjun, et al. Progress in research on the mesoporous molecular sieves KIT-6[J]. Chemistry and Adhesion, 2022, 44(2): 158-161. | |
37 | LI Lu, ZHOU Pin, ZHANG Hongbo, et al. Mid-temperature deep removal of hydrogen sulfide on rare earth (RE = Ce, La, Sm, Gd) doped ZnO supported on KIT-6: Effect of RE dopants and interaction between active phase and support matrix[J]. Applied Surface Science, 2017, 407: 197-208. |
38 | 张凤梅. 介孔高温煤气脱硫剂的研制与性能研究[D]. 天津: 天津大学, 2012. |
ZHANG Fengmei. Preparation and performance of mesoporous sorbents for hot coal gas desulfurization[D]. Tianjin: Tianjin University, 2012. | |
39 | CHANG Xiaoqian, LIU Bingsi, XIA Hong, et al. High catalytic activity and stability of Ni/Ce x Zr1- x O2/MSU-H for CH4/CO2 reforming reaction[J]. Applied Surface Science, 2018, 442: 342-351. |
40 | 王芳. 钐-锰/MSU-S吸附剂的高温煤气脱硫研究[D]. 天津: 天津大学, 2015. |
WANG Fang. High-temperature desulfurization of coal gas with Sm adopted Mn-based support MSU-S sorbents[D]. Tianjin: Tianjin University, 2015. | |
41 | XIA Hong, LIU Bingsi. High H2O-resistance CaO-MnO x /MSU-H sorbents for hot coal gas desulfurization[J]. Journal of Hazardous Materials, 2017, 324: 281-290. |
42 | 熊鹏辉. Ti改性的PtSn/Ti-HMS催化剂的丙烷直接脱氢制丙烯的研究[D]. 北京: 中国石油大学(北京), 2019. |
XIONG Penghui. Study on the titanium-modified PtSn/Ti-HMS catalysts for the dehydrogenation of propane to propylene[D]. Beijing: China University of Petroleum (Beijing), 2019. | |
43 | 张照飞. 锰基-蠕虫状介孔高温煤气脱硫剂的制备及性能研究[D]. 天津: 天津大学, 2014. |
ZHANG Zhaofei. Prepared and performance of Mn-based mesoporous sorbents with wormlike-hole for hot coal gas desulfurization[D]. Tianjin: Tianjin University, 2014. | |
44 | 宋佳音. 纳米Al-KIT-1介孔分子筛的合成、表征和催化性质[D]. 大连: 大连理工大学, 2012. |
SONG Jiayin. Synthesis, characterization and catalytic performances of nanosized Al-KIT-1 mesoprous molecular sieve[D]. Dalian: Dalian University of Technology, 2012. | |
45 | WANG Longjiang, FAN Huiling, SHANGGUAN Ju, et al. Design of a sorbent to enhance reactive adsorption of hydrogen sulfide[J]. ACS Applied Materials & Interfaces, 2014, 6(23): 21167-21177. |
46 | WANG Jialu, GUO Xiaolin, SHI Yijun, et al. Synergistic effect of Pt nanoparticles and micro-mesoporous ZSM-5 in VOCs low-temperature removal[J]. Journal of Environmental Sciences, 2021, 107: 87-97. |
47 | LI Xin, REZAEI Fateme, LUDLOW Douglas K, et al. Synthesis of SAPO-34@ZSM-5 and SAPO-34@Silicalite-1 core-shell zeolite composites for ethanol dehydration[J]. Industrial & Engineering Chemistry Research, 2018, 57(5): 1446-1453. |
48 | LIU Qiang, LIU Bingsi, LIU Qinze, et al. Lattice substitution and desulfurization kinetic analysis of Zn-based spinel sorbents loading onto porous silicoaluminophosphate zeolites[J]. Journal of Hazardous Materials, 2020, 383: 121151. |
49 | LIU Qiang, LIU Bingsi, LIU Qinze, et al. Probing mesoporous character, desulfurization capability and kinetic mechanism of synergistic stabilizing sorbent Ca x CuyMn z O i /MAS-9 in hot coal gas[J]. Journal of Colloid and Interface Science, 2021, 587: 743-754. |
50 | LIU Qiang, LIU Bingsi, LIU Qinze, et al. Walnut wood-derived hierarchically 3D self-assembly of (a%Ce-Mn) y Al2-yO x and rapid diffusion character of straight micron channel during hot coal gas desulfurization[J]. Chemical Engineering Journal, 2020, 393: 124761. |
[1] | 陈崇明, 陈秋, 宫云茜, 车凯, 郁金星, 孙楠楠. 分子筛基CO2吸附剂研究进展[J]. 化工进展, 2023, 42(S1): 411-419. |
[2] | 盛维武, 程永攀, 陈强, 李小婷, 魏嘉, 李琳鸽, 陈险峰. 微气泡和微液滴双强化脱硫反应器操作分析[J]. 化工进展, 2023, 42(S1): 142-147. |
[3] | 朱杰, 金晶, 丁正浩, 杨会盼, 侯封校. 化学链气化中准东煤灰对CaSO4载氧体改性及其作用机理[J]. 化工进展, 2023, 42(9): 4628-4635. |
[4] | 高彦静. 单原子催化技术国际研究态势分析[J]. 化工进展, 2023, 42(9): 4667-4676. |
[5] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[6] | 张丽宏, 金要茹, 程芳琴. 煤气化渣资源化利用[J]. 化工进展, 2023, 42(8): 4447-4457. |
[7] | 王报英, 王皝莹, 闫军营, 汪耀明, 徐铜文. 聚合物包覆膜在金属分离回收中的研究进展[J]. 化工进展, 2023, 42(8): 3990-4004. |
[8] | 王云刚, 焦健, 邓世丰, 赵钦新, 邵怀爽. 冷凝换热与协同脱硫性能实验分析[J]. 化工进展, 2023, 42(8): 4230-4237. |
[9] | 王晓晗, 周亚松, 于志庆, 魏强, 孙劲晓, 姜鹏. 不同晶粒尺寸Y分子筛的合成及其加氢裂化反应性能[J]. 化工进展, 2023, 42(8): 4283-4295. |
[10] | 韩恒文, 韩伟, 李明丰. 烯烃水合反应工艺与催化剂研究进展[J]. 化工进展, 2023, 42(7): 3489-3500. |
[11] | 于志庆, 黄文斌, 王晓晗, 邓开鑫, 魏强, 周亚松, 姜鹏. B掺杂Al2O3@C负载CoMo型加氢脱硫催化剂性能[J]. 化工进展, 2023, 42(7): 3550-3560. |
[12] | 王帅旗, 王从新, 王学林, 田志坚. 无溶剂快速合成ZSM-12分子筛[J]. 化工进展, 2023, 42(7): 3561-3571. |
[13] | 龚鹏程, 严群, 陈锦富, 温俊宇, 苏晓洁. 铁酸钴复合碳纳米管活化过硫酸盐降解铬黑T的性能及机理[J]. 化工进展, 2023, 42(7): 3572-3581. |
[14] | 王达锐, 孙洪敏, 薛明伟, 王一棪, 刘威, 杨为民. 微波法高效合成全结晶ZSM-5分子筛催化剂及其催化性能[J]. 化工进展, 2023, 42(7): 3582-3588. |
[15] | 张耀丹, 孙若溪, 陈鹏程. 以级联反应为基础的多酶共固定载体研究进展[J]. 化工进展, 2023, 42(6): 3167-3176. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |