化工进展 ›› 2023, Vol. 42 ›› Issue (8): 4340-4350.DOI: 10.16085/j.issn.1000-6613.2022-1791
张耀杰(), 张传祥(), 孙悦, 曾会会, 贾建波, 蒋振东()
收稿日期:
2022-09-23
修回日期:
2022-11-06
出版日期:
2023-08-15
发布日期:
2023-09-19
通讯作者:
张传祥,蒋振东
作者简介:
张耀杰(1993—),男,博士研究生,研究方向为煤基先进功能材料。E-mail:1020105281@qq.com。
基金资助:
ZHANG Yaojie(), ZHANG Chuanxiang(), SUN Yue, ZENG Huihui, JIA Jianbo, JIANG Zhendong()
Received:
2022-09-23
Revised:
2022-11-06
Online:
2023-08-15
Published:
2023-09-19
Contact:
ZHANG Chuanxiang, JIANG Zhendong
摘要:
针对目前制备煤基活性炭氢氧化钾(KOH)使用比例过高及孔结构分布不合理问题,以太西无烟煤为碳源,先采用高铁酸钾与过氧化氢分步氧化将其氧化为石墨烯量子点,再与KOH混合活化制备煤基石墨烯量子点活性炭。结果表明,这种方法可降低KOH使用量(使碱炭比小于1),且碱炭比对煤基石墨烯量子点的活化机制与对煤的活化机制类似:KOH用量较少时(碱炭比0.25)只有造孔作用;增加用量后(碱炭比0.5),KOH不但有造孔作用,还有扩孔作用;过量的KOH(碱炭比0.75)则以扩孔为主。随着碱炭比的增加,活性炭的比表面积与总孔容也随之增加,微孔率逐渐下降,中孔率和平均孔径都在增长。在碱炭比为0.75时,活化效果最好,GQDAC-0.75比表面积为1207.3m2/g,微孔率为39.5%,中孔率为51.8%;得益于其独特的“大孔-中孔-微孔”的层次孔结构,GQDAC-0.75表现出最优的电化学性能,在0.5A/g电流密度下比电容达243.6F/g,当电流密度增大到10A/g时,GQDAC-0.75的比电容保持在202.2F/g,继续增大电流密度到100A/g,比电容仍有179.5F/g,且在20A/g电流密度下循环10000次后比电容仍有191.6F/g,保持率为98.1%,具有优异的倍率性能和循环稳定性。
中图分类号:
张耀杰, 张传祥, 孙悦, 曾会会, 贾建波, 蒋振东. 煤基石墨烯量子点在超级电容器中的应用[J]. 化工进展, 2023, 42(8): 4340-4350.
ZHANG Yaojie, ZHANG Chuanxiang, SUN Yue, ZENG Huihui, JIA Jianbo, JIANG Zhendong. Application of coal-based graphene quantum dots in supercapacitors[J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4340-4350.
样品 | 工业分析/% | 元素分析/% | |||||||
---|---|---|---|---|---|---|---|---|---|
水分 | 灰分 | 挥发分 | 固定碳 | 碳 | 氢 | 氧 | 氮 | 硫 | |
太西无烟煤 | 1.55 | 2.32 | 6.94 | 93.06 | 94.08 | 3.61 | 1.42 | 0.76 | 0.13 |
表1 原料煤的工业分析及元素分析(质量分数)
样品 | 工业分析/% | 元素分析/% | |||||||
---|---|---|---|---|---|---|---|---|---|
水分 | 灰分 | 挥发分 | 固定碳 | 碳 | 氢 | 氧 | 氮 | 硫 | |
太西无烟煤 | 1.55 | 2.32 | 6.94 | 93.06 | 94.08 | 3.61 | 1.42 | 0.76 | 0.13 |
样品编号 | 比表面积/m2·g-1 | 总孔容/cm3·g-1 | 微孔孔容/cm3·g-1 | 微孔率/% | 中孔孔容/cm3·g-1 | 中孔率/% | 平均孔径/nm |
---|---|---|---|---|---|---|---|
GQDAC-0 | 268.8 | 0.204 | 0.156 | 76.6 | 0.029 | 13.9 | 2.24 |
GQDAC-0.25 | 654.1 | 0.476 | 0.421 | 88.4 | 0.049 | 10.3 | 1.84 |
GQDAC-0.5 | 1166.4 | 0.852 | 0.607 | 71.2 | 0.230 | 26.9 | 2.00 |
GQDAC-0.75 | 1207.3 | 1.346 | 0.531 | 39.5 | 0.697 | 51.8 | 3.59 |
表2 活性炭的比表面积及孔径参数
样品编号 | 比表面积/m2·g-1 | 总孔容/cm3·g-1 | 微孔孔容/cm3·g-1 | 微孔率/% | 中孔孔容/cm3·g-1 | 中孔率/% | 平均孔径/nm |
---|---|---|---|---|---|---|---|
GQDAC-0 | 268.8 | 0.204 | 0.156 | 76.6 | 0.029 | 13.9 | 2.24 |
GQDAC-0.25 | 654.1 | 0.476 | 0.421 | 88.4 | 0.049 | 10.3 | 1.84 |
GQDAC-0.5 | 1166.4 | 0.852 | 0.607 | 71.2 | 0.230 | 26.9 | 2.00 |
GQDAC-0.75 | 1207.3 | 1.346 | 0.531 | 39.5 | 0.697 | 51.8 | 3.59 |
样品编号 | C原子分数/% | 氧原子 分数(总含量)/% | |||||
---|---|---|---|---|---|---|---|
总含量 | C—C/C | C—O | C—O—C | C | COOH | ||
GQDAC-0 | 89.46 | 69.58 | 12.58 | 9.44 | 5.04 | 3.36 | 8.56 |
GQDAC-0.25 | 87.53 | 54.51 | 25.62 | 11.47 | 4.78 | 3.62 | 10.8 |
GQDAC-0.5 | 86.42 | 59.51 | 19.11 | 12.37 | 5.08 | 3.92 | 11.24 |
GQDAC-0.75 | 86.24 | 64.71 | 12.44 | 13.99 | 5.93 | 2.91 | 11.47 |
表3 活性炭的元素含量及官能团含量
样品编号 | C原子分数/% | 氧原子 分数(总含量)/% | |||||
---|---|---|---|---|---|---|---|
总含量 | C—C/C | C—O | C—O—C | C | COOH | ||
GQDAC-0 | 89.46 | 69.58 | 12.58 | 9.44 | 5.04 | 3.36 | 8.56 |
GQDAC-0.25 | 87.53 | 54.51 | 25.62 | 11.47 | 4.78 | 3.62 | 10.8 |
GQDAC-0.5 | 86.42 | 59.51 | 19.11 | 12.37 | 5.08 | 3.92 | 11.24 |
GQDAC-0.75 | 86.24 | 64.71 | 12.44 | 13.99 | 5.93 | 2.91 | 11.47 |
前体 | 活化剂 | 测试体系 | 电解液 | 比电容 /F·g-1(A·g-1) | 参考 文献 |
---|---|---|---|---|---|
褐煤 | ZnCl2 | 三电极 | 6mol/L KOH | 140.0(10) | [ |
烟煤 | PAN+DMF | 三电极 | 6mol/L KOH | 200.6(10) | [ |
无烟煤 | CO2+KOH | 三电极 | 6mol/L KOH | 190.0(5) | [ |
低阶煤 | FeCl2+CO2 | 三电极 | 6mol/L KOH | 180.0(10) | [ |
煤/半焦 | PAN/PVP | 三电极 | 6mol/L KOH | 152.0(4) | [ |
煤沥青 | KOH | 三电极 | 6mol/L KOH | 192.0(10) | [ |
褐煤 | 水蒸气 | 三电极 | 6mol/L KOH | 122.0(10) | [ |
煤沥青/ 氧化石墨烯 | 1,6-二氨基乙烷 | 三电极 | 6mol/L KOH | 163.0(30) | [ |
无烟煤 | KOH | 三电极 | 6mol/L KOH | 202.2(10) | 本文 |
179.5(100) |
表4 不同活性炭比电容对比总结表
前体 | 活化剂 | 测试体系 | 电解液 | 比电容 /F·g-1(A·g-1) | 参考 文献 |
---|---|---|---|---|---|
褐煤 | ZnCl2 | 三电极 | 6mol/L KOH | 140.0(10) | [ |
烟煤 | PAN+DMF | 三电极 | 6mol/L KOH | 200.6(10) | [ |
无烟煤 | CO2+KOH | 三电极 | 6mol/L KOH | 190.0(5) | [ |
低阶煤 | FeCl2+CO2 | 三电极 | 6mol/L KOH | 180.0(10) | [ |
煤/半焦 | PAN/PVP | 三电极 | 6mol/L KOH | 152.0(4) | [ |
煤沥青 | KOH | 三电极 | 6mol/L KOH | 192.0(10) | [ |
褐煤 | 水蒸气 | 三电极 | 6mol/L KOH | 122.0(10) | [ |
煤沥青/ 氧化石墨烯 | 1,6-二氨基乙烷 | 三电极 | 6mol/L KOH | 163.0(30) | [ |
无烟煤 | KOH | 三电极 | 6mol/L KOH | 202.2(10) | 本文 |
179.5(100) |
1 | PERMATASARI F A, IRHAM M A, BISRI S Z, et al. Carbon-based quantum dots for supercapacitors: Recent advances and future challenges[J]. Nanomaterials, 2021, 11(1): E91. |
2 | YUE Xiaoming, PENG Cheng, XU Jing, et al. Preparation of carbon electrodes from alkaline extraction of lignite for double-layer capacitors[J]. Ionics, 2021, 27(8): 3605-3614. |
3 | 杨芳, 刘晨, 杨绍斌, 等. 用于超级电容器的煤基活性炭电极材料的研究进展[J]. 硅酸盐学报, 2019, 47(10): 1499-1508. |
YANG Fang, LIU Chen, YANG Shaobin, et al. Research progress on coal-based activated carbon electrode material for supercapacitor[J]. Journal of the Chinese Ceramic Society, 2019, 47(10): 1499-1508. | |
4 | SHI Ming, XIN Yanfei, CHEN Xinxing, et al. Coal-derived porous activated carbon with ultrahigh specific surface area and excellent electrochemical performance for supercapacitors[J]. Journal of Alloys and Compounds, 2021, 859: 157856. |
5 | LI Keke, LIU Guoyang, ZHENG Lisi, et al. Coal-derived carbon nanomaterials for sustainable energy storage applications[J]. New Carbon Materials, 2021, 36(1): 133-154. |
6 | CHEN Di, JIANG Kai, HUANG Tingting, et al. Recent advances in fiber supercapacitors: Materials, device configurations, and applications[J]. Advanced Materials (Deerfield Beach, Fla), 2020, 32(5): e1901806. |
7 | DONG Duo, ZHANG Yongsheng, XIAO Yi, et al. High performance aqueous supercapacitor based on nitrogen-doped coal-based activated carbon electrode materials[J]. Journal of Colloid and Interface Science, 2020, 580: 77-87. |
8 | 解强, 张香兰, 梁鼎成, 等. 煤基活性炭定向制备: 原理·方法·应用[J]. 煤炭科学技术, 2021, 49(1): 100-127. |
XIE Qiang, ZHANG Xianglan, LIANG Dingcheng, et al. Directional preparation of coal-based activated carbon: Principles, approaches and applications[J]. Coal Science and Technology, 2021, 49(1): 100-127. | |
9 | 邢宝林. 超级电容器用低阶煤基活性炭的制备及电化学性能研究[D]. 焦作: 河南理工大学, 2011. |
XING Baolin. Preparation and electrochemical performance of low-rank coal based activated carbon for supercapacitor[D]. Jiaozuo: Henan Polytechnic University, 2011. | |
10 | 侯彩霞, 孔碧华, 樊丽华, 等. 超级电容器用煤基活性炭研究[J]. 洁净煤技术, 2017, 23(5): 56-61. |
HOU Caixia, KONG Bihua, FAN Lihua, et al. Research in coal-based activated carbon for supercapacitor[J]. Clean Coal Technology, 2017, 23(5): 56-61. | |
11 | 林国鑫, 于馨凝, 刘少俊, 等. 煤质成分对煤基活性炭活化成孔的影响机制[J]. 燃烧科学与技术, 2020, 26(1): 81-86. |
LIN Guoxin, YU Xinning, LIU Shaojun, et al. Influence mechanism of coal composition on activation pore formation of coal-based activated carbon[J]. Journal of Combustion Science and Technology, 2020, 26(1): 81-86. | |
12 | 邢宝林, 黄光许, 谌伦建, 等. 高品质低阶煤基活性炭的制备与表征[J]. 煤炭学报, 2013, 38(S1): 217-222. |
XING Baolin, HUANG Guangxu, CHEN Lunjian, et al. Preparation and characterization of high quality low-rank coal based activated carbon[J]. Journal of China Coal Society, 2013, 38(S1): 217-222. | |
13 | ZHANG Chuanxiang, LONG Donghui, XING Baolin, et al. The superior electrochemical performance of oxygen-rich activated carbons prepared from bituminous coal[J]. Electrochemistry Communications, 2008, 10(11): 1809-1811. |
14 | LI Lijun, WANG Xiaoyan, WANG Shujuan, et al. Activated carbon prepared from lignite as supercapacitor electrode materials[J]. Electroanalysis, 2016, 28(1): 243-248. |
15 | HAN Gaoxu, JIA Jianbo, LIU Quanrun, et al. Template-activated bifunctional soluble salt ZnCl2 assisted synthesis of coal-based hierarchical porous carbon for high-performance supercapacitors[J]. Carbon, 2022, 186: 380-390. |
16 | 王凯, 高超, 李松恩, 等. 煤质沥青基超级活性炭的提质处理及其电化学性能的研究[J]. 新型炭材料, 2018, 33(6): 562-570. |
WANG Kai, GAO Chao, LI Songen, et al. Electrochemical performance of high surface area activated carbons derived from coal tar pitch[J]. New Carbon Materials, 2018, 33(6): 562-570. | |
17 | 郭秉霖, 侯彩霞, 樊丽华, 等. 萃取温度对无灰煤结构及煤基活性炭电化学性能的影响[J]. 无机化学学报, 2018, 34(9): 1615-1624. |
GUO Binglin, HOU Caixia, FAN Lihua, et al. Effect of extraction temperature on hyper-coal structure and electrochemistry of coal-based activated carbon[J]. Chinese Journal of Inorganic Chemistry, 2018, 34(9): 1615-1624. | |
18 | 裴卫兵, 邢宝林, 黄光许, 等. 预炭化时间对煤基活性炭孔结构及电化学性能的影响[J]. 洁净煤技术, 2013, 19(3): 42-45, 64. |
PEI Weibing, XING Baolin, HUANG Guangxu, et al. Influence of carbonization time on pore struture and electrochemical performance of coal-based activated carbon[J]. Clean Coal Technology, 2013, 19(3): 42-45, 64. | |
19 | 薄纯辉, 姜维佳, 王玉高, 等. 煤基碳量子点合成研究进展[J]. 应用化学, 2021, 38(7): 767-788. |
BO Chunhui, JIANG Weijia, WANG Yugao, et al. Research progress on synthesis of coal-based carbon quantum dots[J]. Chinese Journal of Applied Chemistry, 2021, 38(7): 767-788. | |
20 | ZHANG Bo, MAIMAITI Halidan, ZHANG Dedong, et al. Preparation of coal-based C-Dots/TiO2 and its visible-light photocatalytic characteristics for degradation of pulping black liquor[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 345: 54-62. |
21 | CAI Tingting, LIU Bin, PANG Ernan, et al. A review on the preparation and applications of coal-based fluorescent carbon dots[J]. New Carbon Materials, 2020, 35(6): 646-666. |
22 | 张伟, 安兴业, 刘利琴, 等. 木质素纳米颗粒/天然纤维基活性碳纤维材料的制备及其电化学性能[J]. 化工进展, 2022, 41(7): 3770-3783. |
ZHANG Wei, AN Xingye, LIU Liqin, et al. Preparation and electrochemical performance of lignin nanoparticles/natural fiber based activated carbon fiber materials[J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3770-3783. | |
23 | XING Baolin, HUANG Guangxu, CHEN Zhengfei, et al. Facile preparation of hierarchical porous carbons for supercapacitors by direct carbonization of potassium humate[J]. Journal of Solid State Electrochemistry, 2017, 21(1): 263-271. |
24 | 张传祥, 张睿, 成果, 等. 煤基活性炭电极材料的制备及电化学性能[J]. 煤炭学报, 2009, 34(2): 252-256. |
ZHANG Chuanxiang, ZHANG Rui, CHENG Guo, et al. Preparation and electrochemical properties of coal-based activated carbons[J]. Journal of China Coal Society, 2009, 34(2): 252-256. | |
25 | STRAUSS Volker, MARSH Kris, KOWAL Matthew D, et al. A simple route to porous graphene from carbon nanodots for supercapacitor applications[J]. Advanced Materials, 2018, 30(8): 1704449. |
26 | 朱家瑶, 董玥, 张苏, 等. 炭-/石墨烯量子点在超级电容器中的应用[J]. 物理化学学报, 2020, 36(2): 1903052. |
ZHU Jiayao, DONG Yue, ZHANG Su, et al. Application of carbon-/graphene quantum dots for supercapacitors[J]. Acta Physico-Chimica Sinica, 2020, 36(2): 1903052. | |
27 | 马爱玲, 黄光许, 耿乾浩, 等. 硼/氮共掺杂多孔碳纳米片的制备及其电化学性能[J]. 化工进展, 2021, 40(8): 4388-4396. |
MA Ailing, HUANG Guangxu, GENG Qianhao, et al. Preparation and electrochemical properties of B/N co-doped porous carbon nanosheets[J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4388-4396. | |
28 | GAO Shasha, TANG Yakun, WANG Lei, et al. Coal-based hierarchical porous carbon synthesized with a soluble salt self-assembly-assisted method for high performance supercapacitors and Li-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(3): 3255-3263. |
29 | WANG Lijie, SUN Fei, GAO Jihui, et al. A novel melt infiltration method promoting porosity development of low-rank coal derived activated carbon as supercapacitor electrode materials[J]. Journal of the Taiwan Institute of Chemical Engineers, 2018, 91: 588-596. |
30 | YAO Youheng, HUANG Guangxu, LIU Yingbin, et al. Facile synthesis of B/N co-doped porous carbon nanosheets with high heteroatom content and electrical conductivity for excellent-performance supercapacitors[J]. Applied Surface Science, 2022, 580: 152236. |
31 | 王博阳, 夏吉利, 董晓玲, 等. 不同变质程度煤衍生硬炭的储钠行为研究[J]. 化工学报, 2021, 72(11): 5738-5750. |
WANG Boyang, XIA Jili, DONG Xiaoling, et al. Study on sodium storage behavior of hard carbons derived from coal with different grades of metamorphism[J]. CIESC Journal, 2021, 72(11): 5738-5750. | |
32 | DENG Jun, BAI Zujin, XIAO Yang, et al. Effects of imidazole ionic liquid on macroparameters and microstructure of bituminous coal during low-temperature oxidation[J]. Fuel, 2019, 246: 160-168. |
33 | ZHANG Su, ZHU Jiayao, QING Yan, et al. Ultramicroporous carbons puzzled by graphene quantum dots: Integrated high gravimetric, volumetric, and areal capacitances for supercapacitors[J]. Advanced Functional Materials, 2018, 28(52): 1805898. |
34 | YAGLIKCI Savas, GOKCE Yavuz, YAGMUR Emine, et al. Does high sulphur coal have the potential to produce high performance-low cost supercapacitors?[J]. Surfaces and Interfaces, 2021, 22: 100899. |
35 | DONG Xiaoxi, WANG Jingyue, YAN Meifang, et al. Hierarchically Fe-doped porous carbon derived from phenolic resin for high performance supercapacitor[J]. Ceramics International, 2021, 47(5): 5998-6009. |
36 | ZHANG Hongyue, WANG Bolun, YU Xiaowei, et al. Carbon dots in porous materials: Host-guest synergy for enhanced performance[J]. Angewandte Chemie International Edition, 2020, 59(44): 19390-19402. |
37 | WANG Dawei, LI Feng, LIU Min, et al. 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage[J]. Angewandte Chemie International Edition, 2009, 48(9): 1525. |
38 | XING Baolin, HUANG Guangxu, CHEN Lunjian, et al. Microwave synthesis of hierarchically porous activated carbon from lignite for high performance supercapacitors[J]. Journal of Porous Materials, 2016, 23(1): 67-73. |
39 | DONG Duo, ZHANG Yongsheng, XIAO Yi, et al. Oxygen-enriched coal-based porous carbon under plasma-assisted MgCO3 activation as supercapacitor electrodes[J]. Fuel, 2022, 309: 122168. |
40 | HE Yitao, WANG Luxiang, JIA Dianzeng. Coal/PAN interconnected carbon nanofibers with excellent energy storage performance and electrical conductivity[J]. Electrochimica Acta, 2016, 194: 239-245. |
41 | YUE Xiaoming, AN Zhaoyang, YE Mei, et al. Preparation of porous activated carbons for high performance supercapacitors from Taixi anthracite by multi-stage activation[J]. Molecules, 2019, 24(19): 3588. |
42 | TAN Shuai, KRAUS Theodore John, LI-OAKEY Katie Dongmei. Understanding the supercapacitor properties of electrospun carbon nanofibers from Powder River Basin coal[J]. Fuel, 2019, 245: 148-159. |
43 | 徐园园, 陆倩, 木沙江, 等. 煤基多孔炭的制备及其在超级电容器中的应用[J]. 煤炭转化, 2016, 39(1): 76-81. |
XU Yuanyuan, LU Qian, MU Shajiang, et al. Preparation of coal-based porous carbon and utilization in supercapacitor[J]. Coal Conversion, 2016, 39(1): 76-81. | |
44 | QU Wenhui, GUO Yubo, SHEN Wenzhong, et al. Using asphaltene supermolecules derived from coal for the preparation of efficient carbon electrodes for supercapacitors[J]. The Journal of Physical Chemistry C, 2016, 120(28): 15105-15113. |
[1] | 罗成, 范晓勇, 朱永红, 田丰, 崔楼伟, 杜崇鹏, 王飞利, 李冬, 郑化安. 中低温煤焦油加氢反应器不同分配器中液体分布的CFD模拟[J]. 化工进展, 2023, 42(9): 4538-4549. |
[2] | 赖诗妮, 江丽霞, 李军, 黄宏宇, 小林敬幸. 含碳掺氨燃料的研究进展[J]. 化工进展, 2023, 42(9): 4603-4615. |
[3] | 朱杰, 金晶, 丁正浩, 杨会盼, 侯封校. 化学链气化中准东煤灰对CaSO4载氧体改性及其作用机理[J]. 化工进展, 2023, 42(9): 4628-4635. |
[4] | 雷伟, 姜维佳, 王玉高, 和明豪, 申峻. N、S共掺杂煤基碳量子点的电化学氧化法制备及用于Fe3+检测[J]. 化工进展, 2023, 42(9): 4799-4807. |
[5] | 宋伟涛, 宋慧平, 范朕连, 樊飙, 薛芳斌. 粉煤灰在防腐涂料中的研究进展[J]. 化工进展, 2023, 42(9): 4894-4904. |
[6] | 杨莹, 侯豪杰, 黄瑞, 崔煜, 王兵, 刘健, 鲍卫仁, 常丽萍, 王建成, 韩丽娜. 利用煤焦油中酚类物质Stöber法制备碳纳米球用于CO2吸附[J]. 化工进展, 2023, 42(9): 5011-5018. |
[7] | 张丽宏, 金要茹, 程芳琴. 煤气化渣资源化利用[J]. 化工进展, 2023, 42(8): 4447-4457. |
[8] | 龚鹏程, 严群, 陈锦富, 温俊宇, 苏晓洁. 铁酸钴复合碳纳米管活化过硫酸盐降解铬黑T的性能及机理[J]. 化工进展, 2023, 42(7): 3572-3581. |
[9] | 王知彩, 刘伟伟, 周璁, 潘春秀, 闫洪雷, 李占库, 颜井冲, 任世彪, 雷智平, 水恒福. 基于煤基腐殖酸的高效减水剂合成与性能表征[J]. 化工进展, 2023, 42(7): 3634-3642. |
[10] | 李艳玲, 卓振, 池亮, 陈曦, 孙堂磊, 刘鹏, 雷廷宙. 氮掺杂生物炭的制备与应用研究进展[J]. 化工进展, 2023, 42(7): 3720-3735. |
[11] | 谭利鹏, 申峻, 王玉高, 刘刚, 徐青柏. 煤沥青和石油沥青共混改性的研究进展[J]. 化工进展, 2023, 42(7): 3749-3759. |
[12] | 朱薇, 齐鹏刚, 苏银海, 张书平, 熊源泉. 生物油分级多孔碳超级电容器电极材料的制备及性能[J]. 化工进展, 2023, 42(6): 3077-3086. |
[13] | 杨家添, 唐金铭, 梁恣荣, 黎胤宏, 胡华宇, 陈渊. 新型淀粉基高吸水树脂抑尘剂的制备及其应用[J]. 化工进展, 2023, 42(6): 3187-3196. |
[14] | 王久衡, 荣鼐, 刘开伟, 韩龙, 水滔滔, 吴岩, 穆正勇, 廖徐情, 孟文佳. 水蒸气强化纤维素模板改性钙基吸附剂固碳性能及强度[J]. 化工进展, 2023, 42(6): 3217-3225. |
[15] | 郑昕, 贾里, 王彦霖, 张靖超, 陈世虎, 乔晓磊, 樊保国. 污泥与煤泥混烧对重金属固留特性的影响[J]. 化工进展, 2023, 42(6): 3233-3241. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |