化工进展 ›› 2023, Vol. 42 ›› Issue (8): 4322-4339.DOI: 10.16085/j.issn.1000-6613.2022-1777
汤磊1(), 曾德森2(), 凌子夜1,3(), 张正国1,3,4, 方晓明1,3,4
收稿日期:
2022-09-23
修回日期:
2022-11-16
出版日期:
2023-08-15
发布日期:
2023-09-19
通讯作者:
曾德森,凌子夜
作者简介:
汤磊(1999—),男,硕士研究生,研究方向为相变蓄冷材料。E-mail:952295541@qq.com。
基金资助:
TANG Lei1(), ZENG Desen2(), LING Ziye1,3(), ZHANG Zhengguo1,3,4, FANG Xiaoming1,3,4
Received:
2022-09-23
Revised:
2022-11-16
Online:
2023-08-15
Published:
2023-09-19
Contact:
ZENG Desen, LING Ziye
摘要:
相变蓄冷技术利用相变材料在相变时伴随着的吸热或放热过程对能量进行储存和应用,起到控制温度、降低能耗和转移用能负荷的作用。本文综述了相变温度在25℃以下的相变蓄冷材料及其在不同应用场景的筛选依据,介绍了相变蓄冷材料在食品医疗冷链物流、建筑节能控温与数据中心应急冷却、人体热管理和医疗保健的相变纺织品等领域的应用。从调节相变蓄冷材料相变温度、过冷度、热导率和循环稳定性等方面总结了材料热物性的调控策略,分析了不同调控策略存在的优缺点,指出相变蓄冷系统可通过增强蓄冷系统热导率和强化传热结构来改善普通材料传热性能差的问题。最后从复合相变材料制备到系统设计优化和应用场景拓展等方面对相变蓄冷技术研究方向进行了展望。
中图分类号:
汤磊, 曾德森, 凌子夜, 张正国, 方晓明. 相变蓄冷材料及系统应用研究进展[J]. 化工进展, 2023, 42(8): 4322-4339.
TANG Lei, ZENG Desen, LING Ziye, ZHANG Zhengguo, FANG Xiaoming. Research progress of phase change materials and their application systems for cool storage[J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4322-4339.
名称 | 相变温度/℃ | 相变潜热/kJ·kg-1 | 密度/kg·m-3 |
---|---|---|---|
甲醇 | -97 | 99 | 810~904 |
正己烷 | -95 | 152 | 677~760 |
乙烷 | -88 | 489 | 544~641 |
乙炔 | -84 | 144 | 760~764 |
2-己酮 | -56 | 148.7 | 830 |
正壬烷 | -54 | 121 | 720 |
癸烷 | -30 | 202 | 735 |
十二烷 | -12 | 216 | 750 |
二甘醇 | -10 | 247 | 1118 |
三甘醇 | -7 | 247 | 1200 |
十三烷 | -6 | 154 | 756 |
四氢呋喃 | 5 | 280 | 890 |
正十四烷 | 5.5 | 231 | 771 |
甲酸 | 7.8 | 247 | 1227 |
聚乙二醇400 | 8 | 100 | 1127 |
己二酸二甲酯 | 10 | 165 | 1062 |
棕榈酸丙酯 | 10 | 186 | 864 |
辛酸 | 16 | 148 | 901 |
醋酸 | 17 | 187~273 | 1050 |
甘油 | 18 | 199 | 1260 |
硬酯酸丁酯 | 19 | 140~200 | 1097 |
正十七烷 | 22 | 215 | 778 |
棕榈酸乙酯 | 23 | 122 | 870 |
表1 有机相变材料的热物性参数[20-23]
名称 | 相变温度/℃ | 相变潜热/kJ·kg-1 | 密度/kg·m-3 |
---|---|---|---|
甲醇 | -97 | 99 | 810~904 |
正己烷 | -95 | 152 | 677~760 |
乙烷 | -88 | 489 | 544~641 |
乙炔 | -84 | 144 | 760~764 |
2-己酮 | -56 | 148.7 | 830 |
正壬烷 | -54 | 121 | 720 |
癸烷 | -30 | 202 | 735 |
十二烷 | -12 | 216 | 750 |
二甘醇 | -10 | 247 | 1118 |
三甘醇 | -7 | 247 | 1200 |
十三烷 | -6 | 154 | 756 |
四氢呋喃 | 5 | 280 | 890 |
正十四烷 | 5.5 | 231 | 771 |
甲酸 | 7.8 | 247 | 1227 |
聚乙二醇400 | 8 | 100 | 1127 |
己二酸二甲酯 | 10 | 165 | 1062 |
棕榈酸丙酯 | 10 | 186 | 864 |
辛酸 | 16 | 148 | 901 |
醋酸 | 17 | 187~273 | 1050 |
甘油 | 18 | 199 | 1260 |
硬酯酸丁酯 | 19 | 140~200 | 1097 |
正十七烷 | 22 | 215 | 778 |
棕榈酸乙酯 | 23 | 122 | 870 |
名称 | 相变温度 /℃ | 相变潜热 /kJ·kg-1 | 密度 /kg·m-3 |
---|---|---|---|
二氧化碳 | -78 | 574 | 1562 |
氨气 | -78 | 332 | 682~728 |
汞 | -39 | 12 | 13546 |
冰 | 0 | 333 | 920 |
五氯化锑 | 4 | 33 | 2360 |
三水氯酸锂 | 8 | 253 | 1720(固体),1530(液体) |
硫酸 | 10 | 100 | 1831 |
六水磷酸氢二钾 | 14 | 109 | — |
四水磷酸氢二钾 | 19 | 231 | — |
六水溴化铁 | 21 | 105 | 1820 |
三氧化二磷 | 24 | 64 | 2130 |
六水硝酸锰 | 25 | 126~148 | 1738(固体),1728(液体) |
磷酸 | 25 | 147 | 1874 |
表2 无机相变材料的热物性参数[20-21,23,25-26]
名称 | 相变温度 /℃ | 相变潜热 /kJ·kg-1 | 密度 /kg·m-3 |
---|---|---|---|
二氧化碳 | -78 | 574 | 1562 |
氨气 | -78 | 332 | 682~728 |
汞 | -39 | 12 | 13546 |
冰 | 0 | 333 | 920 |
五氯化锑 | 4 | 33 | 2360 |
三水氯酸锂 | 8 | 253 | 1720(固体),1530(液体) |
硫酸 | 10 | 100 | 1831 |
六水磷酸氢二钾 | 14 | 109 | — |
四水磷酸氢二钾 | 19 | 231 | — |
六水溴化铁 | 21 | 105 | 1820 |
三氧化二磷 | 24 | 64 | 2130 |
六水硝酸锰 | 25 | 126~148 | 1738(固体),1728(液体) |
磷酸 | 25 | 147 | 1874 |
名称 | 相变温度/℃ | 相变潜热/kJ·kg-1 | 组成 |
---|---|---|---|
氯化氢+水 | -86 | 74 | 24.8∶75.2 (质量比) |
氯化锌+水 | -62 | 117 | 51∶49 (质量比) |
氯化钙+水 | -55 | 165 | 29.8∶70.2 (质量比) |
硝酸镁+水 | -29 | 187 | 34.6∶65.4 (质量比) |
乙二醇+ 氯化铵+水 | -23 | 176 | 10∶15∶75 (质量比) |
氯化钠+水 | -21 | 228 | 22.4∶77.6 (质量比) |
甘油+ 醋酸钠+水 | -14 | 172 | 10∶10∶80 (质量比) |
氯化钾+水 | -11 | 253 | 19.5∶80.5 (质量比) |
十二烷+十三烷 | -8 | 147 | 40∶60 (体积比) |
乳酸钙+氯化铵 | -4 | 265 | 50∶50 (质量比) |
硫酸钠+水 | -4 | 285 | 12.7∶87.3 (质量比) |
山梨酸钾+ 氯化钾 | -3 | 255 | 85.72∶14.28 (质量比) |
十二烷醇+辛酸 | 2 | 225 | 40∶60 (质量比) |
辛酸+月桂酸 | 4 | 152 | 9∶1 (摩尔比) |
六水氯化钙+ 六水溴化钙 | 15 | 140 | 50∶50 (质量比) |
癸酸+月桂酸 | 19 | 132 | 61.5∶38.5 (摩尔比) |
癸酸+棕榈酸酯 | 22 | 153 | 75.2∶24.8 (摩尔比) |
六水氯化钙+ 六水氯化镁 | 25 | 95 | 50∶50 (质量比) |
六水氯化钙+ 六水氯化镁 | 25 | 127 | 66.7∶33.3 (质量比) |
六水硝酸钙+ 六水硝酸锌 | 25 | 130 | 45∶55 (质量比) |
表3 共晶相变材料的热物性参数[20-21,23,32]
名称 | 相变温度/℃ | 相变潜热/kJ·kg-1 | 组成 |
---|---|---|---|
氯化氢+水 | -86 | 74 | 24.8∶75.2 (质量比) |
氯化锌+水 | -62 | 117 | 51∶49 (质量比) |
氯化钙+水 | -55 | 165 | 29.8∶70.2 (质量比) |
硝酸镁+水 | -29 | 187 | 34.6∶65.4 (质量比) |
乙二醇+ 氯化铵+水 | -23 | 176 | 10∶15∶75 (质量比) |
氯化钠+水 | -21 | 228 | 22.4∶77.6 (质量比) |
甘油+ 醋酸钠+水 | -14 | 172 | 10∶10∶80 (质量比) |
氯化钾+水 | -11 | 253 | 19.5∶80.5 (质量比) |
十二烷+十三烷 | -8 | 147 | 40∶60 (体积比) |
乳酸钙+氯化铵 | -4 | 265 | 50∶50 (质量比) |
硫酸钠+水 | -4 | 285 | 12.7∶87.3 (质量比) |
山梨酸钾+ 氯化钾 | -3 | 255 | 85.72∶14.28 (质量比) |
十二烷醇+辛酸 | 2 | 225 | 40∶60 (质量比) |
辛酸+月桂酸 | 4 | 152 | 9∶1 (摩尔比) |
六水氯化钙+ 六水溴化钙 | 15 | 140 | 50∶50 (质量比) |
癸酸+月桂酸 | 19 | 132 | 61.5∶38.5 (摩尔比) |
癸酸+棕榈酸酯 | 22 | 153 | 75.2∶24.8 (摩尔比) |
六水氯化钙+ 六水氯化镁 | 25 | 95 | 50∶50 (质量比) |
六水氯化钙+ 六水氯化镁 | 25 | 127 | 66.7∶33.3 (质量比) |
六水硝酸钙+ 六水硝酸锌 | 25 | 130 | 45∶55 (质量比) |
1 | TAKUDZWA MUZHANJE Allan, HASSAN M A, HASSAN Hamdy. Phase change material based thermal energy storage applications for air conditioning: Review[J]. Applied Thermal Engineering, 2022, 214: 118832. |
2 | GOLDSTEIN Eli A, RAMAN Aaswath P, FAN Shanhui. Sub-ambient non-evaporative fluid cooling with the sky[J]. Nature Energy, 2017, 2(9): 1-7. |
3 | 吴玉超, 史军军, 王辉国, 等. 炼化企业在“双碳”背景下的技术探讨[J]. 石油炼制与化工, 2022, 53(1): 1-6. |
WU Yuchao, SHI Junjun, WANG Huiguo, et al. Future prospects for refining industry in the era of “carbon peak and carbon neutralization”[J]. Petroleum Processing and Petrochemicals, 2022, 53(1): 1-6. | |
4 | 刘晨敏. 冷链物流用复合相变蓄冷材料研究进展[J]. 化工新型材料, 2021, 49(2): 16-19. |
LIU Chenmin. Research progress on PCCSM used in cold chain logistics[J]. New Chemical Materials, 2021, 49(2): 16-19. | |
5 | CATTIN Magali, JONNALAGEDDA Sashidhar, MAKOHLISO Solomzi, et al. The status of refrigeration solutions for last mile vaccine delivery in low-income settings[J]. Vaccine X, 2022, 11: 100184. |
6 | CUI Yaping, XIE Jingchao, LIU Jiaping, et al. A review on phase change material application in building[J]. Advances in Mechanical Engineering, 2017, 9(6). |
7 | SAID M A, HASSAN Hamdy. Parametric study on the effect of using cold thermal storage energy of phase change material on the performance of air-conditioning unit[J]. Applied Energy, 2018, 230: 1380-1402. |
8 | 黄双福, 何志森, 连洪波. 冰蓄冷技术在空调系统中的应用及经济性研究[J]. 山东化工, 2021, 50(23): 151-153. |
HUANG Shuangfu, HE Zhisen, LIAN Hongbo. Application and economic study of ice storage technology in air conditioning system[J]. Shandong Chemical Industry, 2021, 50(23): 151-153. | |
9 | YING Boan, KWOK Yi lin, LI Yi, et al. Assessing the performance of textiles incorporating phase change materials[J]. Polymer Testing, 2004, 23(5): 541-549. |
10 | 张雪, 刘圣春, 徐智明. 固液相变影响因素及应用研究综述[J]. 冷藏技术, 2021, 44(1): 45-51. |
ZHANG Xue, LIU Shengchun, XU Zhiming. A review on influencing factors and application of solid-liquid phase transformation[J]. Journal of Refrigeration Technology, 2021, 44(1): 45-51. | |
11 | SINGH Suman, GAIKWAD Kirtiraj K, LEE Youn Suk. Phase change materials for advanced cooling packaging[J]. Environmental Chemistry Letters, 2018, 16(3): 845-859. |
12 | 孙小琴. 相变材料蓄放热机理及其基站冷却的能效研究[D]. 长沙: 湖南大学, 2014. |
SUN Xiaoqin. Energy storage and release theory of phase change material (PCM) and its application for cooling in telecommunications base station (TBS)[D]. Changsha: Hunan University, 2014. | |
13 | YANG Tianyu, KING William P, MILJKOVIC Nenad. Phase change material-based thermal energy storage[J]. Cell Reports Physical Science, 2021, 2(8): 100540. |
14 | 陈颖, 姜庆辉, 辛集武, 等. 相变储能材料及其应用研究进展[J]. 材料工程, 2019, 47(7): 1-10. |
CHEN Ying, JIANG Qinghui, XIN Jiwu, et al. Research status and application of phase change materials[J]. Journal of Materials Engineering, 2019, 47(7): 1-10. | |
15 | 王文楷, 董震, 赖艳华, 等. 相变储能材料的研究与应用进展[J]. 制冷与空调(四川), 2020, 34(1): 91-103. |
WANG Wenkai, DONG Zhen, LAI Yanhua, et al. The research and application progress of phase change energy storage materials[J]. Refrigeration & Air Conditioning, 2020, 34(1): 91-103. | |
16 | VITORINO Nuno, ABRANTES João C C, FRADE Jorge R. Quality criteria for phase change materials selection[J]. Energy Conversion and Management, 2016, 124: 598-606. |
17 | 黄雪, 崔英德, 尹国强, 等. 相变蓄冷材料研究进展[J]. 化工新型材料, 2020, 48(1): 19-22, 30. |
HUANG Xue, CUI Yingde, YIN Guoqiang, et al. Research progress of phase change materials[J]. New Chemical Materials, 2020, 48(1): 19-22, 30. | |
18 | SHARMA Atul, TYAGI V V, CHEN C R, et al. Review on thermal energy storage with phase change materials and applications[J]. Renewable and Sustainable Energy Reviews, 2009, 13(2): 318-345. |
19 | YANG Guijun, Yoon-Ji YIM, LEE Ji Won, et al. Carbon-filled organic phase-change materials for thermal energy storage: A review[J]. Molecules (Basel, Switzerland), 2019, 24(11): 2055. |
20 | SU Weiguang, DARKWA Jo, KOKOGIANNAKIS Georgios. Review of solid-liquid phase change materials and their encapsulation technologies[J]. Renewable and Sustainable Energy Reviews, 2015, 48: 373-391. |
21 | 章学来, 张时华, 徐笑锋, 等. 相变储能在冷链物流中的应用与研究进展[J]. 保鲜与加工, 2021, 21(2): 145-150. |
ZHANG Xuelai, ZHANG Shihua, XU Xiaofeng, et al. Application and research progress of phase change energy storage in cold chain logistics[J]. Storage and Process, 2021, 21(2): 145-150. | |
22 | KENISARIN Murat M. Thermophysical properties of some organic phase change materials for latent heat storage: A review[J]. Solar Energy, 2014, 107: 553-575. |
23 | ZHANG Xinghui, SHI Qili, LUO Lingai, et al. Research progress on the phase change materials for cold thermal energy storage[J]. Energies, 2021, 14(24): 8233. |
24 | 杨晋, 殷勇高. 空调蓄冷用相变材料的研究进展[J]. 制冷学报, 2022, 43(3): 37-44. |
YANG Jin, YIN Yonggao. Research progress of phase change materials for cold thermal energy storage in air-conditioners[J]. Journal of Refrigeration, 2022, 43(3): 37-44. | |
25 | 张生娣, 曾金波, 李翔, 等.相变储能材料六水氯化钙的储热性能优化研究[J/OL]. 盐湖研究, 2022. . |
ZHANG Shengdi, ZENG Jinbo, LI Xiang,et al. Optimization of thermal storage performance of phase change energy storage material calcium chloride hexahydrate[J/OL]. Journal of Salt Lake Research, 2022. . | |
26 | 华维三, 章学来, 刘锋, 等. 相变材料复合八水氢氧化钡的制备及热性能[J]. 化工进展, 2018, 37(11): 4384-4389. |
HUA Weisan, ZHANG Xuelai, LIU Feng, et al. Preparation and thermal properties of composite barium hydroxide octahydrate for energy storage[J]. Chemical Industry and Engineering Progress, 2018, 37(11): 4384-4389. | |
27 | Fei LYU, ZHU Rongrong, TANG Wei, et al. Progress of ice slurry in food industry: application, production, heat and mass transfer[J]. International Journal of Food Science & Technology, 2022, 57(2): 842-855. |
28 | KAUFFELD M, WANG M J, GOLDSTEIN V, et al. Ice slurry applications[J]. International Journal of Refrigeration, 2010, 33(8): 1491-1505. |
29 | FANG Xianshi, HUANG Kailiang, FENG Guohui, et al. Experimental and numerical research on the performance of a seasonal ice storage device in summer residential rooms of northeast China[J]. Sustainable Cities and Society, 2021, 75: 103334. |
30 | HAO Ling, WEI Mingshan, XU Fei, et al. Study of operation strategies for integrating ice-storage district cooling systems into power dispatch for large-scale hydropower utilization[J]. Applied Energy, 2020, 261: 114477. |
31 | 王成君, 段志英, 王爱军, 等. 基于共晶系相变材料的研究进展[J]. 材料导报, 2021, 35(13): 13058-13066. |
WANG Chengjun, DUAN Zhiying, WANG Aijun, et al. Research progress of eutectic phase change materials[J]. Materials Reports, 2021, 35(13): 13058-13066. | |
32 | YANG Ying, YAN Hongyuan, SHEN Haiying. Development of a low temperature phase transforming composed material for cool storage[J]. Journal of Superconductivity and Novel Magnetism, 2010, 23(6): 1115-1117. |
33 | 游辉, 谢晶. 低温相变蓄冷材料及其应用于冷链的研究进展[J]. 食品与发酵工业, 2021, 47(18): 287-293. |
YOU Hui, XIE Jing. Research progress of low temperature phase change storage materials and their applications in cold chain[J]. Food and Fermentation Industries, 2021, 47(18): 287-293. | |
34 | 高如启. LNG动力冷藏车蓄冷用乙醇浆体制备与流动特性研究[D]. 杭州: 浙江大学, 2022. |
GAO Ruqi. Preparation and flow characteristics analysis of ethanol slurry for cold storage of LNG powered refrigerated vehicle[D]. Hangzhou: Zhejiang University, 2022. | |
35 | LI Yuyang, ZHANG Xuelai, MUNYALO Jotham Muthoka, et al. Preparation and thermophysical properties of low temperature composite phase change material octanoic-lauric acid/expanded graphite[J]. Journal of Molecular Liquids, 2019, 277: 577-583. |
36 | HUANG Li, PIONTEK Udo. Improving performance of cold-chain insulated container with phase change material: An experimental investigation[J]. Applied Sciences, 2017, 7(12): 1288. |
37 | LIU Kai, HE Zhifeng, LIN Pengcheng, et al. Highly-efficient cold energy storage enabled by brine phase change material gels towards smart cold chain logistics[J]. Journal of Energy Storage, 2022, 52: 104828. |
38 | 谭宏博, 梁骞, 田宝聪. 我国低温冷藏车的研究综述[J]. 制冷与空调, 2007(4): 5-8. |
TAN Hongbo, LIANG Qian, TIAN Baocong. Review of research on refrigerated vehicle in China[J]. Refrigeration and Air-Conditioning, 2007(4): 5-8. | |
39 | 刘广海, 吴俊章, ALAN Foster, 等. GU-PCM2型控温式相变蓄冷冷藏车设计与空载性能试验[J]. 农业工程学报, 2019, 35(6): 288-295. |
LIU Guanghai, WU Junzhang, FOSTER Alan, et al. Design and no-load performance test of GU-PCM2 temperature controlled phase change storage refrigerator[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(6): 288-295. | |
40 | ZHANG Jianwu, LI Zixiao, TONG Shanhu. System performance and economic analysis of a phase change material based cold energy storage container for cold chain transportation[J]. International Journal of Photoenergy, 2022, 2022: 6836686. |
41 | CALATI Michele, ZILIO Claudio, RIGHETTI Giulia, et al. Latent thermal energy storage for refrigerated trucks[J]. International Journal of Refrigeration, 2022, 136: 124-133. |
42 | TAHER M A BEN, AHACHAD M, MAHDAOUI M, et al. A survey of computational and experimental studies on refrigerated trucks[J]. Journal of Energy Storage, 2022, 47: 103575. |
43 | NIU Zixuan, QI Shengyang, SHUAIB Suhaib Shuaib Adam, et al. Flexible, stimuli-responsive and self-cleaning phase change fiber for thermal energy storage and smart textiles[J]. Composites Part B: Engineering, 2022, 228: 109431. |
44 | PRAJAPATI Deepak G, KANDASUBRAMANIAN Balasubramanian. A review on polymeric-based phase change material for thermo-regulating fabric application[J]. Polymer Reviews, 2020, 60(3): 389-419. |
45 | YAZDANIRAD Saeid, DEHGHAN Habibollah. Designing of the cooling vest from paraffin compounds and evaluation of its impact under laboratory hot conditions[J]. International Journal of Preventive Medicine, 2016, 7: 47. |
46 | HOU Jin, YANG Zhiwei, XU Peng, et al. Design and performance evaluation of novel personal cooling garment[J]. Applied Thermal Engineering, 2019, 154: 131-139. |
47 | HAN Xu, YUAN Li, LI Yong, et al. Experimental studies on phase change and temperature-adjusting performance of phase change fabric clothing[J]. Advances in Mechanical Engineering, 2017, 9(6): 168781401770390. |
48 | 刘殷, 山传雷. 微胶囊相变粘胶纤维及其应用性能研究[J]. 化工新型材料, 2022, 50(8): 194-197. |
LIU Yin, SHAN Chuanlei. Property and application of microencapsulated phase-change viscose fiber and its blend fabric[J]. New Chemical Materials, 2022, 50(8): 194-197. | |
49 | KE Guizhen, WANG Xin, PEI Jiafeng. Fabrication and properties of electrospun PAN/LA-SA/TiO2 composite phase change fiber[J]. Polymer-Plastics Technology and Engineering, 2018, 57(10): 958-964. |
50 | SONG Shaokun, ZHAO Tingting, ZHU Wanting, et al. Natural microtubule-encapsulated phase-change material with simultaneously high latent heat capacity and enhanced thermal conductivity[J]. ACS Applied Materials & Interfaces, 2019, 11(23): 20828-20837. |
51 | 郭制安, 隋智慧, 李亚萍, 等. 相变双向调温纺织材料制备技术研究进展[J]. 化工进展, 2022, 41(7): 3648-3659. |
GUO Zhian, SUI Zhihui, LI Yaping, et al. Research progress on preparation technology of phase-change bidirectional temperature-regulating textile materials[J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3648-3659. | |
52 | OLSON L, LOTHIAN C, ÅDÉN U, et al. Phase-changing Glauber salt solution for medical applications in the 28~32℃ interval[J]. Materials (Basel, Switzerland), 2021, 14(23): 7106. |
53 | PRASHANTHA Y N, SUMAN RAO P N, NESARGI Saudamini, et al. Therapeutic hypothermia for moderate and severe hypoxic ischaemic encephalopathy in newborns using low-cost devices-ice packs and phase changing material[J]. Paediatrics and International Child Health, 2019, 39(4): 234-239. |
54 | ZHANG Qi, WU Yi, FANG Xiaoming, et al. A recyclable thermochromic elastic phase change oleogel for cold compress therapy[J]. Applied Thermal Engineering, 2017, 124: 1224-1232. |
55 | 聂瑞, 王飞腾, 陈丽红. 建筑用相变微胶囊/硅藻土复合材料的制备及性能研究[J]. 合成材料老化与应用, 2021, 50(4): 97-98, 113. |
NIE Rui, WANG Feiteng, CHEN Lihong. Preparation and properties of phase change microcapsules/diatomite composites for building[J]. Synthetic Materials Aging and Application, 2021, 50(4): 97-98, 113. | |
56 | WANG Xu, YU Hang, LI Lu, et al. Experimental assessment on a kind of composite wall incorporated with shape-stabilized phase change materials (SSPCMs)[J]. Energy and Buildings, 2016, 128: 567-574. |
57 | FU Lulu, WANG Qianhao, YE Rongda, et al. A calcium chloride hexahydrate/expanded perlite composite with good heat storage and insulation properties for building energy conservation[J]. Renewable Energy, 2017, 114: 733-743. |
58 | AKEIBER Hussein J, HOSSEINI Seyed Ehsan, HUSSEN Hasanen M, et al. Thermal performance and economic evaluation of a newly developed phase change material for effective building encapsulation[J]. Energy Conversion and Management, 2017, 150: 48-61. |
59 | KURDI A, ALMOATHAM N, MIRZA M, et al. Potential phase change materials in building wall construction: A review[J]. Materials (Basel, Switzerland), 2021, 14(18): 5328. |
60 | RAKKAPPAN Solaimalai Raja, SIVAN Suresh, AHMED Shaik Naveed, et al. Preparation, characterisation and energy storage performance study on 1-decanol-expanded graphite composite PCM for air-conditioning cold storage system[J]. International Journal of Refrigeration, 2021, 123: 91-101. |
61 | ERDEMIR Dogan, ALTUNTOP Necdet, ÇENGEL Yunus A. Experimental investigation on the effect of ice storage system on electricity consumption cost for a hypermarket[J]. Energy and Buildings, 2021, 251: 111368. |
62 | ZHENG Huifan, TIAN Guoji, ZHAO Yahui, et al. Experimental study on the preparation and cool storage performance of a phase change micro-capsule cold storage material[J]. Energy and Buildings, 2022, 262: 111999. |
63 | 王芳. 基于相变蓄冷技术的小型移动保鲜库设计及试验研究[D]. 杭州: 浙江科技学院, 2021. |
WANG Fang. Design and experimental study of small mobile fresh preservation storage based on phase change cold storage technology[D]. Hangzhou: Zhejiang University of Science & Technology, 2021. | |
64 | 周晓棠, 李吉生, 赵庆珠. 家用空调中冰蓄冷的应用及实验研究[J]. 制冷学报, 2001(3): 1-4. |
ZHOU Xiaotang, LI Jisheng, ZHAO Qingzhu. Experimental study on residential ice-storage air conditioning system[J]. Refrigeration Journal, 2001(3): 1-4. | |
65 | Javier BATLLES F, GIL Bartosz, USHAK Svetlana, et al. Development and results from application of PCM-based storage tanks in a solar thermal comfort system of an institutional building: A case study[J]. Energies, 2020, 13(15): 3877. |
66 | Peter SIVÁK, Peter TAUŠ, Radim RYBÁR, et al. Analysis of the combined ice storage (PCM) heating system installation with special kind of solar absorber in an older house[J]. Energies, 2020, 13(15): 3878. |
67 | AFSHARPANAH F, CHERAGHIAN G, AKBARZADEH HAMEDANI F, et al. Utilization of carbon-based nanomaterials and plate-fin networks in a cold PCM container with application in air conditioning of buildings[J]. Nanomaterials (Basel, Switzerland), 2022, 12(11): 1927. |
68 | ZHENG Lin, ZHANG Wei, LIANG Fei. A review about phase change material cold storage system applied to solar-powered air-conditioning system[J]. Advances in Mechanical Engineering, 2017, 9(6). |
69 | HUANG Bin, ZHENG Ziao, LU Gaofeng, et al. Design and experimental investigation of a PCM based cooling storage unit for emergency cooling in data center[J]. Energy and Buildings, 2022, 259: 111871. |
70 | MA Xiaowei, ZHANG Quan, ZOU Sikai. An experimental and numerical study on the thermal performance of a loop thermosyphon integrated with latent thermal energy storage for emergency cooling in a data center[J]. Energy, 2022, 253: 123946. |
71 | LIANG Lin, CHEN Xi. Preparation and thermal properties of eutectic hydrate salt phase change thermal energy storage material[J]. International Journal of Photoenergy, 2018, 2018: 6432047. |
72 | 李夔宁, 郭宁宁, 王贺. 有机相变蓄冷复合材料的研究[J]. 化工新型材料, 2009, 37(4): 87-88. |
LI Kuining, GUO Ningning, WANG He. Research on the organic phase change material for energy storage[J]. New Chemical Materials, 2009, 37(4): 87-88. | |
73 | JAGADEESWARA REDDY Vennapusa, AKHILA Konala, DIXIT Prakhar, et al. Thermal buffering performance evaluation of fatty acids blend/fatty alcohol based eutectic phase change material and simulation[J]. Journal of Energy Storage, 2021, 38: 102499. |
74 | CHEN Xiao, CHENG Piao, TANG Zhaodi, et al. Carbon-based composite phase change materials for thermal energy storage, transfer, and conversion[J].Advanced Science, 2021, 8(9): 2001274. |
75 | XU Xiaofeng, ZHANG Xuelai. Simulation and experimental investigation of a multi-temperature insulation box with phase change materials for cold storage[J]. Journal of Food Engineering, 2021, 292: 110286. |
76 | CHEN Jiajie, LING Ziye, FANG Xiaoming, et al. Experimental and numerical investigation of form-stable dodecane/hydrophobic fumed silica composite phase change materials for cold energy storage[J]. Energy Conversion and Management, 2015, 105: 817-825. |
77 | LIU Lingkun, SU Di, TANG Yaojie, et al. Thermal conductivity enhancement of phase change materials for thermal energy storage: A review[J]. Renewable and Sustainable Energy Reviews, 2016, 62: 305-317. |
78 | MEHRA Nitin, MU Liwen, JI Tuo, et al. Thermal transport in polymeric materials and across composite interfaces[J]. Applied Materials Today, 2018, 12: 92-130. |
79 | LIN Niangzhi, LI Chuanchang, ZHANG Dongyao, et al. Enhanced cold storage performance of Na2SO4·10H2O/expanded graphite composite phase change materials[J]. Sustainable Energy Technologies and Assessments, 2021, 48: 101596. |
80 | MOUSAVI Soroush, KASAEIAN Alibakhsh, SHAFII Mohammad Behshad, et al. Numerical investigation of the effects of a copper foam filled with phase change materials in a water-cooled photovoltaic/thermal system[J]. Energy Conversion and Management, 2018, 163: 187-195. |
81 | HE Qinbo, WANG Shuangfeng, TONG Mingwei, et al. Experimental study on thermophysical properties of nanofluids as phase-change material (PCM) in low temperature cool storage[J]. Energy Conversion and Management, 2012, 64: 199-205. |
82 | 朱思贤, 邹得球, 鲍家明, 等. 相变材料的过冷特性及调控研究进展[J]. 材料导报, 2020, 34(19): 19075-19082. |
ZHU Sixian, ZOU Deqiu, BAO Jiaming, et al. Supercooling characteristics and its adjustment of phase change material: A review[J]. Materials Reports, 2020, 34(19): 19075-19082. | |
83 | PUUPPONEN Salla, Ari SEPPÄLÄ. Cold-crystallization of polyelectrolyte absorbed polyol for long-term thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2018, 180: 59-66. |
84 | FAUCHEUX Matthieu, MULLER Guillaume, HAVET Michel, et al. Influence of surface roughness on the supercooling degree: Case of selected water/ethanol solutions frozen on aluminium surfaces[J]. International Journal of Refrigeration, 2006, 29(7): 1218-1224. |
85 | 袁新辉, 崔文彬, 孙建航, 等. 相变蓄热材料成核触发方法和机理综述[J]. 化工新型材料, 2022, 50(11): 49-55. |
YUAN Xinhui, CUI Wenbin, SUN Jianhang, et al. Review of methods and mechanisms for triggering nucleation of phase-change heat storage materials[J]. New Chemical Materials, 2022, 50(11): 49-55. | |
86 | SHAMSEDDINE I, PENNEC F, BIWOLE P, et al. Supercooling of phase change materials: A review[J]. Renewable and Sustainable Energy Reviews, 2022, 158: 112172. |
87 | WU Tong, XIE Ning, NIU Junyi, et al. Preparation of a low-temperature nanofluid phase change material: MgCl2-H2O eutectic salt solution system with multi-walled carbon nanotubes (MWCNTs)[J]. International Journal of Refrigeration, 2020, 113: 136-144. |
88 | TANG Aikun, CHEN Wenchao, SHAO Xia, et al. Experimental investigation of aluminum nitride/carbon fiber-modified composite phase change materials for battery thermal management[J]. International Journal of Energy Research, 2022, 46(9): 12737-12757. |
89 | ZOU Ting, FU Wanwan, LIANG Xianghui, et al. Preparation and performance of form-stable TBAB hydrate/SiO2 composite PCM for cold energy storage[J]. International Journal of Refrigeration, 2019, 101: 117-124. |
90 | ZHANG Bo, HE Zhenhui. The preparation of AgI/Au/foam-Cu as a framework of composite for water-based cool storage phase-change material with low supercooling[J]. Thermochimica Acta, 2019, 674: 52-57. |
91 | LIU Yudong, WANG Jiangqing, SU Chuangjian, et al. Nucleation rate and supercooling degree of water-based graphene oxide nanofluids[J]. Applied Thermal Engineering, 2017, 115: 1226-1236. |
92 | ZHANG Chenglin, LI Lei, YANG Xiaohu, et al. Study on the nucleating agents for gallium to reduce its supercooling[J]. International Journal of Heat and Mass Transfer, 2020, 148: 119055. |
93 | WANG Jiawei, JIA Xilai, ATINAFU Dimberu G, et al. Synthesis of “graphene-like” mesoporous carbons for shape-stabilized phase change materials with high loading capacity and improved latent heat[J]. Journal of Materials Chemistry A, 2017, 5(46): 24321-24328. |
94 | FEI Hua, DU Wenqing, HE Qian, et al. Study of phase-transition characteristics of new composite phase change materials of capric acid-palmitic acid/expanded graphite[J]. ACS Omega, 2020, 5(42): 27522-27529. |
95 | SHAHBAZ K, ALNASHEF I M, LIN R J T, et al. A novel calcium chloride hexahydrate-based deep eutectic solvent as a phase change materials[J]. Solar Energy Materials and Solar Cells, 2016, 155: 147-154. |
96 | ZHANG Chao, ZHANG Zeyu, YE Rongda, et al. Characterization of MgCl2·6H2O-based eutectic/expanded perlite composite phase change material with low thermal conductivity[J]. Materials (Basel, Switzerland), 2018, 11(12): 2369. |
97 | IKUTEGBE Charles A, Refat AL-SHANNAQ, FARID Mohammed M. Microencapsulation of low melting phase change materials for cold storage applications[J]. Applied Energy, 2022, 321: 119347. |
98 | Eszter HAJBA-HORVÁTH, Bence NÉMETH, László TRIF, et al. Low temperature energy storage by bio-originated calcium alginate-octyl laurate microcapsules[J]. Journal of Thermal Analysis and Calorimetry, 2022: 1-10. |
99 | HIMASHREE P, SENGAR Animesh Singh, SUNIL C K. Food thickening agents: Sources, chemistry, properties and applications: A review[J]. International Journal of Gastronomy and Food Science, 2022, 27: 100468. |
100 | HE Meizhi, YANG Luwei, ZHANG Zhentao. Experimental studies on cycling stable characteristics of inorganic phase change material CaCl2·6H2O-MgCl2·6H2O modified with SrCl2·6H2O and CMC[J]. IOP Conference Series: Earth and Environmental Science, 2018, 108: 022058. |
101 | 刘超. 六水氯化钙重结晶的相分层机理和控制研究[J]. 中国建材科技, 2015, 24(3): 52-53. |
LIU Chao. Study on stratification mechanism and conformity of calcium chloride hexahydrate during recrystallization[J]. China Building Materials Science & Technology, 2015, 24(3): 52-53. | |
102 | 杨晋, 殷勇高, 陈万河, 等. 硫酸钠水合盐相变蓄冷材料的制备及性能优化[J]. 化工进展, 2022, 41(11): 5977-5985. |
YANG Jin, YIN Yonggao, CHENG Wanghe,et al. Preparation and performance optimization of sodium sulfate hydrate phase change thermal storage materials[J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5977-5985. | |
103 | ZHAI X Q, WANG X L, WANG T, et al. A review on phase change cold storage in air-conditioning system: Materials and applications[J]. Renewable and Sustainable Energy Reviews, 2013, 22: 108-120. |
104 | SAITO Akio. Recent advances in research on cold thermal energy storage[J]. International Journal of Refrigeration, 2002, 25(2): 177-189. |
105 | 杨光, 胡仰耆, 郑乐晓. 盘管式内、外融冰系统技术运用差别分析[J]. 暖通空调, 2010, 40(6): 76-81. |
YANG Guang, HU Yangqi, ZHENG Lexiao. Analysis of differences between internal-melt and external-melt types of ice-on-coil thermal storage system technology in application[J]. Heating Ventilating & Air Conditioning, 2010, 40(6): 76-81. | |
106 | 翟淼. 静态制冰和动态制冰蓄冷空调系统综合节能分析研究[D]. 上海: 同济大学, 2009. |
DI Miao. Comprehensive energy saving analysis of static ice making and dynamic ice storage air conditioning systems[D]. Shanghai: Tongji University, 2009. | |
107 | SADEGHIANJAHROMI Ali, WANG Chichuan. Heat transfer enhancement in fin-and-tube heat exchangers: A review on different mechanisms[J]. Renewable and Sustainable Energy Reviews, 2021, 137: 110470. |
108 | HAWLADER M N A, WAHED M A. Analyses of ice slurry formation using direct contact heat transfer[J]. Applied Energy, 2009, 86(7/8): 1170-1178. |
109 | WIJEYSUNDERA N E, HAWLADER M N A, ANDY Chan Wee Boon, et al. Ice-slurry production using direct contact heat transfer[J]. International Journal of Refrigeration, 2004, 27(5): 511-519. |
110 | 王凌士, 张学军, 王晓蕾, 等. LNG冷能用于气体直接接触法制取冰浆研究[J]. 低温工程, 2012(2): 26-30. |
WANG Lingshi, ZHANG Xuejun, WANG Xiaolei, et al. Study on ice slurry production by air direct contact method on basis of utilizing LNG cold energy[J]. Cryogenics, 2012(2): 26-30. | |
111 | FUMOTO Koji, SATO Toshiki, KAWANAMI Tsuyoshi, et al. Ice slurry generation for direct contact cooling[J]. Journal of Thermal Science and Engineering Applications, 2016, 8(2): 021007. |
112 | KAUFFELD M, WANG M J, GOLDSTEIN V, et al. Ice slurry applications[J]. International Journal of Refrigeration, 2010, 33(8): 1491-1505. |
113 | LOU Xujing, WANG Hui. Role of copper foam on solidification performance of ice-cool storage sphere system[J]. Journal of Energy Storage, 2022, 47: 103552. |
114 | RAJAN Ambi Banu Kalai, ANANDAN Shanmuga Sundaram. Performance analysis of cold storage system with nanofiller phase change material[J]. Biomass Conversion and Biorefinery, 2021: 1-10. |
115 | Refat AL-SHANNAQ, YOUNG Brent, FARID Mohammed. Cold energy storage in a packed bed of novel graphite/PCM composite spheres[J]. Energy, 2019, 171: 296-305. |
116 | SHAO Jingjing, DARKWA Jo, ZHANG Xinlu. Numerical investigations into thermal performance of phase change emulsion in a fin-and-tube heat exchanger[J]. International Journal of Low-Carbon Technologies, 2021, 16(3): 998-1007. |
117 | SAFARI Vahid, KAMKARI Babak, ABOLGHASEMI Hossein. Investigation of the effects of shell geometry and tube eccentricity on thermal energy storage in shell and tube heat exchangers[J]. Journal of Energy Storage, 2022, 52: 104978. |
118 | Merve GÖLTAŞ, Barış GÜREL, Ali KEÇEBAŞ, et al. Thermo-hydraulic performance improvement with nanofluids of a fish-gill-inspired plate heat exchanger[J]. Energy, 2022, 253: 124207. |
119 | 黄江常. 水/膨胀石墨复合相变材料的制备及其管翅式蓄冷器性能研究[D]. 广州: 华南理工大学, 2021. |
HUANG Jiangchang. Preparation of water/expanded graphite composite phase change material and study on its tube-fin cold storage device[D]. Guangzhou: South China University of Technology, 2021. | |
120 | FENG Jinxin, LING Ziye, HUANG Jiangchang, et al. Experimental research and numerical simulation of the thermal performance of a tube-fin cold energy storage unit using water/modified expanded graphite as the phase change material[J]. Energy Storage and Saving, 2022, 1(2): 71-79. |
121 | NÓBREGA Cláudia R E S, ISMAIL Kamal A R, LINO Fátima A M. Thermal performance of bare and finned tubes submersed in nano-PCM mixture[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2021, 43(1): 1-14. |
122 | GOYAL Anurag, KOZUBAL E, WOODS J, et al. Design and performance evaluation of a dual-circuit thermal energy storage module for air conditioners[J].Applied Energy,2021, 292: 116843. |
[1] | 罗明昀, 凌子夜, 方晓明, 张正国. 基于相变储热技术的电池热管理系统研究进展[J]. 化工进展, 2022, 41(3): 1594-1607. |
[2] | 周涛涛, 熊志波, 吴志根, 李尚. 膨胀石墨/石蜡复合相变材料的导电及发热特性[J]. 化工进展, 2022, 41(2): 892-900. |
[3] | 禹兴海, 唐海慰, 李艳安, 韩玉琦, 闵雪梅. 一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能[J]. 化工进展, 2022, 41(11): 5936-5945. |
[4] | 尹少武, 康鹏, 韩嘉维, 张朝, 王立, 童莉葛. 基于相变材料的锂离子电池热管理性能[J]. 化工进展, 2022, 41(10): 5518-5529. |
[5] | 舒钊, 钟珂, 肖鑫, 贾洪伟, 吕凤勇, 常沙. 多孔纳米基复合相变材料在建筑节能中的应用进展[J]. 化工进展, 2021, 40(S2): 265-278. |
[6] | 张润霞, 顾兆林, 王赞社, 康彦青, 白梦梦. 空气能蓄冷用相变材料研制及热物性表征[J]. 化工进展, 2021, 40(7): 3892-3899. |
[7] | 徐众, 侯静, 吴恩辉, 李军, 黄平, 唐亚兰. 石墨对活性炭/脂肪酸复合相变材料潜热和导电性能的影响[J]. 化工进展, 2021, 40(7): 3878-3891. |
[8] | 于楠, 陈超, 蔺洁, 韩枫涛, 邹平, 贺祎鹏, 胡庆玲. 应用于太阳能相变蓄热PC构件升温养护建筑的复合相变材料热物性[J]. 化工进展, 2021, 40(1): 297-304. |
[9] | 徐众, 侯静, 李军, 吴恩辉, 黄平, 刘黔蜀, 胥大伟. 膨胀石墨/有机质复合相变材料的制备及性能[J]. 化工进展, 2020, 39(7): 2758-2767. |
[10] | 贾蒲悦, 武卫东, 王益聪. 新型0℃相变蓄冷材料制备及蓄冷特性[J]. 化工进展, 2019, 38(06): 2862-2869. |
[11] | 赵宁波, 郑洪涛, 闻雪友. 液态纳米燃料及其强化燃烧研究进展[J]. 化工进展, 2018, 37(04): 1364-1373. |
[12] | 苑坤杰, 张正国, 方晓明, 高学农, 方玉堂. 水合无机盐及其复合相变储热材料的研究进展[J]. 化工进展, 2016, 35(06): 1820-1826. |
[13] | 崔晓钰,于 洋,朱 悦,李治华,孙慎德,韩 华. 振荡热管传热性能与工质物性关系分析[J]. 化工进展, 2013, 32(09): 2035-2042. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |