化工进展 ›› 2023, Vol. 42 ›› Issue (8): 3990-4004.DOI: 10.16085/j.issn.1000-6613.2023-0152
收稿日期:
2023-02-27
修回日期:
2023-04-17
出版日期:
2023-08-15
发布日期:
2023-09-19
通讯作者:
汪耀明,徐铜文
作者简介:
王报英(1990—),女,博士,研究方向为离子交换膜与膜过程的应用。E-mail:wangbaoying@ ustc.edu.cn。
基金资助:
WANG Baoying(), WANG Huangying, YAN Junying, WANG Yaoming(), XU Tongwen()
Received:
2023-02-27
Revised:
2023-04-17
Online:
2023-08-15
Published:
2023-09-19
Contact:
WANG Yaoming, XU Tongwen
摘要:
聚合物包覆膜是在支撑液膜的基础上发展来的一种新型液膜,主要由载体、基体聚合物和增塑剂组成。聚合物包覆膜由于具有选择性高、使用寿命长、稳定性高、设计灵活和成本较低等诸多优点,在金属分离回收领域逐渐引起极大关注。本文综述了聚合物包覆膜的组成和制备方法以及近年来国内外利用不同类型的载体、增塑剂和基体聚合物制备的聚合物包覆膜在金属分离回收中的研究进展,探讨了聚合物包覆膜内载体迁移和固定点跳跃的两种传输机理,阐述了聚合物包覆膜的分离强化方法,详细介绍了聚合物包覆膜耦合电渗析强化金属离子分离过程的主要优势。最后,总结了聚合物包覆膜在金属分离回收领域的未来发展亟需解决的问题,主要包括高性能、低成本载体的研发、膜微观结构与分离机理的深入探索以及如何推进聚合物包覆膜-电渗析技术的广泛应用等,对加快聚合物包覆膜的产业化进程具有指导意义。
中图分类号:
王报英, 王皝莹, 闫军营, 汪耀明, 徐铜文. 聚合物包覆膜在金属分离回收中的研究进展[J]. 化工进展, 2023, 42(8): 3990-4004.
WANG Baoying, WANG Huangying, YAN Junying, WANG Yaoming, XU Tongwen. Research progress of polymer inclusion membrane in metal separation and recovery[J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3990-4004.
载体类型 | 载体 | 聚合物 | 增塑剂 | 目标金属离子 | 参考文献 |
---|---|---|---|---|---|
碱性载体 | TIOA | PVC | — | Cd(Ⅱ) | [ |
TOA | PVC | POE | U(Ⅵ) | [ | |
Aliquat 336 | PVDF-HFP | 2-NPOE | Cr(Ⅵ) | [ | |
Aliquat 336 | CTA | BEHS | Ag(Ⅱ) | [ | |
Aliquat 336 | CTA | TBP | Co(Ⅱ) | [ | |
酸性和螯合性载体 | D2EHPA | CTA | — | Cd(Ⅱ)、Cu(Ⅱ)、Co(Ⅱ)和Ni(Ⅱ) | [ |
Cyanex 272 | PVC | 2-NPOE | Co(Ⅱ) | [ | |
M5640 | PVC | 2-NPOE | Cu(Ⅱ) | [ | |
LIX84I | PVC | 2-NPOE | Cu(Ⅱ)、Zn(Ⅱ)和Mg(Ⅱ) | [ | |
D2EHPA | PVC | DAO | Zn(Ⅱ) | [ | |
中性和溶剂化载体 | Cyphos IL 101 | PVDF-HFP | 2-NPOE | Cr(Ⅵ) | [ |
Cyphos IL 104 | PVDF-HFP | 2-NPOE | Au(Ⅲ) | [ | |
TOPO+TTA | CTA | — | Li(Ⅰ) | [ | |
Cyphos IL 101 | CTA | 2-NPOE | Zn(Ⅱ) | [ | |
Cyphos IL 101 | PVDF-HFP | 2-NPOE | V(Ⅴ) | [ | |
Cyphos IL 101 | PVC | 2-NPOE | Cr(Ⅵ) | [ | |
大环和大分子载体 | 杯[ | CTA | 2-NPOE | Cr(Ⅵ) | [ |
间苯二酚型杯[ | CTA | 2-NPOE | Zn(Ⅱ) | [ | |
杯[ | CTA | 2-NPOE | Cs(Ⅰ) | [ | |
1-烷基-2-甲基咪唑 | CTA | 2-NPPE | Cu(Ⅱ)、Zn(Ⅱ)、Co(Ⅱ)和Ni(Ⅱ) | [ | |
烷基咪唑 | CTA | 2-NPPE | Cu(Ⅱ)、Zn(Ⅱ)、Co(Ⅱ)和Ni(Ⅱ) | [ |
表1 文献中报道的PIM膜的载体及其对应的目标金属离子
载体类型 | 载体 | 聚合物 | 增塑剂 | 目标金属离子 | 参考文献 |
---|---|---|---|---|---|
碱性载体 | TIOA | PVC | — | Cd(Ⅱ) | [ |
TOA | PVC | POE | U(Ⅵ) | [ | |
Aliquat 336 | PVDF-HFP | 2-NPOE | Cr(Ⅵ) | [ | |
Aliquat 336 | CTA | BEHS | Ag(Ⅱ) | [ | |
Aliquat 336 | CTA | TBP | Co(Ⅱ) | [ | |
酸性和螯合性载体 | D2EHPA | CTA | — | Cd(Ⅱ)、Cu(Ⅱ)、Co(Ⅱ)和Ni(Ⅱ) | [ |
Cyanex 272 | PVC | 2-NPOE | Co(Ⅱ) | [ | |
M5640 | PVC | 2-NPOE | Cu(Ⅱ) | [ | |
LIX84I | PVC | 2-NPOE | Cu(Ⅱ)、Zn(Ⅱ)和Mg(Ⅱ) | [ | |
D2EHPA | PVC | DAO | Zn(Ⅱ) | [ | |
中性和溶剂化载体 | Cyphos IL 101 | PVDF-HFP | 2-NPOE | Cr(Ⅵ) | [ |
Cyphos IL 104 | PVDF-HFP | 2-NPOE | Au(Ⅲ) | [ | |
TOPO+TTA | CTA | — | Li(Ⅰ) | [ | |
Cyphos IL 101 | CTA | 2-NPOE | Zn(Ⅱ) | [ | |
Cyphos IL 101 | PVDF-HFP | 2-NPOE | V(Ⅴ) | [ | |
Cyphos IL 101 | PVC | 2-NPOE | Cr(Ⅵ) | [ | |
大环和大分子载体 | 杯[ | CTA | 2-NPOE | Cr(Ⅵ) | [ |
间苯二酚型杯[ | CTA | 2-NPOE | Zn(Ⅱ) | [ | |
杯[ | CTA | 2-NPOE | Cs(Ⅰ) | [ | |
1-烷基-2-甲基咪唑 | CTA | 2-NPPE | Cu(Ⅱ)、Zn(Ⅱ)、Co(Ⅱ)和Ni(Ⅱ) | [ | |
烷基咪唑 | CTA | 2-NPPE | Cu(Ⅱ)、Zn(Ⅱ)、Co(Ⅱ)和Ni(Ⅱ) | [ |
1 | ZULKEFELI N S, WENG S K, HALIM N S, et al. Removal of heavy metals by polymer inclusion membranes[J]. Current Pollution Reports, 2018, 4(2): 84-92. |
2 | XIAO J, LI J, XU Z. Challenges to future development of spent lithium ion batteries recovery from environmental and technological perspectives[J]. Environmental Science & Technology, 2020, 54(1): 9-25. |
3 | HUANG B, PAN Z, SU X, et al. Recycling of lithium-ion batteries: Recent advances and perspectives[J]. Journal of Power Sources, 2018, 399: 274-286. |
4 | ELIMELECH M, PHILLIP W A. The future of seawater desalination: energy, technology, and the environment[J]. Science, 2011, 333(6043): 712-717. |
5 | SCHIERMEIER Q. Water risk as world warms[J]. Nature, 2014, 505(7481): 10-11. |
6 | 陆雅萌, 王建英, 王朵, 等. 聚合物包容膜及其在萃取分离中的研究进展[J]. 膜科学与技术, 2020, 40(5): 136-143. |
LU Yameng, WANG Jianying, Wang Duo, et al. Research progress of polymer inclusion membranes in solvent extraction[J]. Membrane Science and Technology, 2020, 40(5): 136-143. | |
7 | MENG X, WANG C, REN T, et al. Electrodriven transport of chromium (Ⅵ) using 1-octanol/PVC in polymer inclusion membrane under low voltage[J]. Chemical Engineering Journal, 2018, 346: 506-514. |
8 | ALMEIDAl M I, CATTRALL R W, KOLEV S D. Recent trends in extraction and transport of metal ions using polymer inclusion membranes (PIMs)[J]. Journal of Membrane Science, 2012, 415: 9-23. |
9 | PAREDES C, MIGUEL E R S. Selective lithium extraction and concentration from diluted alkaline aqueous media by a polymer inclusion membrane and application to seawater[J]. Desalination, 2020, 487: 114500. |
10 | WANG D, CATTRAL R W, LI J, et al. A poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP)-based polymer inclusion membrane (PIM) containing LIX84I for the extraction and transport of Cu(Ⅱ) from its ammonium sulfate/ammonia solutions[J]. Journal of Membrane Science, 2017, 542: 272-279. |
11 | SUAH F B M, ROSLAN N A, DAHLAN N F, et al. A use of polymer inclusion membrane as anion exchange membrane for recovery of Cu(Ⅱ) ions based on an electrogenerative system[J]. Journal of Electrochemical Society, 2018, 165: H310-H315. |
12 | EYUPOGLU V, UNAL A, POLAT E, et al. An efficient cobalt separation using PVDF-co-HFP based ultrafiltration polymer inclusion membrane by room temperature ionic liquids[J]. Seperation and Purification Technology, 2022, 303: 122201. |
13 | LI C, JIA Y, LU X, et al. Transport of Zn (Ⅱ) through matrix enhanced polymer inclusion membrane containing OHA and D2EHPA[J]. Chemical Engineering Journal, 2023, 452: 139288. |
14 | SZCZEPANSKI P, GUO H P, DZIESZKOWSKI K, et al. New reactive ionic liquids as carriers in polymer inclusion membranes for transport and separation of Cd(Ⅱ), Cu(Ⅱ), Pb(Ⅱ), and Zn(Ⅱ) ions from chloride aqueous solutions[J]. Journal of Membrane Science, 2021, 638: 119674. |
15 | O’BRYAN Y, CATTRALL R W, TRUONG Y B, et al. The use of poly(vinylidenefluoride-co-hexafluoropropylene) for the preparation of polymer inclusion membranes. Application to the extraction of thiocyanate[J]. Journal of Membrane Science, 2016, 510: 481-488. |
16 | RAJEWSKI J. Transport of chromium(Ⅲ) from mixtures of chromium ions by CTA- and PVC-based inclusion membranes[J], Water Science and Technology, 2018, 78(8): 1792-1801. |
17 | KESKIN B, ZEYTUNCU-GÖKOĞLU B, KOYUNCU I. Polymer inclusion membrane applications for transport of metal ions: A critical review[J]. Chemosphere, 2021, 279: 130604. |
18 | AMEDURI B. From vinylidene fluoride (VDF) to the applications of VDF-containing polymers and copolymers: Recent developments and future trends[J]. Chemical Reviews, 2009, 109(12): 6632-6686. |
19 | O′BRYAN Y, TRUONG Y B, CATTRALL R W, et al. A new generation of highly stable and permeable polymer inclusion membranes (PIMs) with their carrier immobilized in a crosslinked semi-interpenetrating polymer network. Application to the transport of thiocyanate[J]. Journal of Membrane Science, 2017, 529: 55-62. |
20 | HOQUE B, KOLEV S D, CATTRALL R W, et al. A cross-linked polymer inclusion membrane for enhanced gold recovery from electronic waste[J]. Waste Management, 2021, 124: 54-62. |
21 | WU N, ALMEIDA M I G S, SIMEONOVA S, et al. Preparation and characterization of very thin polymer inclusion membranes (PIMs) and their application to the transport of thiocyanate[J]. Journal of Membrane Science, 2023, 668: 121249. |
22 | MOTSOANE N, MAIPHETLHO K, NCUBE S, et al. Technical development and optimisation of a passive sampler based on polymer inclusion membrane for uptake of copper, nickel, cobalt and cadmium in surface waters[J]. Environmental Technology & Innovation, 2020, 19: 100939. |
23 | POLAT C, EYÜPOĞLU V, SARA O N. The novel approach to Cd(Ⅱ) extraction by polymer inclusion membrane using TIOA as carrier[J]. AIP Conference Proceedings, 2016, 1726(1): 020110. |
24 | ZAHERI P, DAVARKHAH R. Selective separation of uranium from sulfuric acid media using a polymer inclusion membrane containing alamine 336[J]. Chemical Papers, 2020, 74(8): 2573-2581. |
25 | WANG B, LI Z, LANG Q, et al. A comprehensive investigation on the components in ionic liquid-based polymer inclusion membrane for Cr(Ⅵ) transport during electrodialysis[J]. Journal of Membrane Science, 2020, 604: 118016. |
26 | NASSER I I, AMOR F I E, DONATO L, et al. Removal and recovery of Ag(CN) 2 - from synthetic electroplating baths by polymer inclusion membrane containing Aliquat 336 as a carrier[J]. Chemical Engineering Journal, 2016, 295: 207-217. |
27 | YILDIZ Y, MANZAK A, TUTKUN O. Selective extraction of cobalt ions through polymer inclusion membrane containing Aliquat 336 as a carrier[J]. Desalination and Water Treatment, 2014, 57: 4616-4623. |
28 | MENG X, JIANG X, LONG Y, et al. Optical sensing membrane for determination of trace cadmium(Ⅱ), zinc(Ⅱ) and copper(Ⅱ) based on immobilization of 1-(2-pyridylazo)-2-naphthol on polymer inclusion membrane[J]. Microchemical Journal, 2021, 62: 105767. |
29 | BEST S P, KOLEV S D, GABRIEL J R, et al. Polymerisation effects in the extraction of Co(Ⅱ) into polymer inclusion membranes containing Cyanex 272. Structural studies of the Cyanex 272-Co(Ⅱ) complex[J]. Journal of Membrane Science, 2016, 497: 377-386. |
30 | QIU X, HU H, HU F, et al. Simultaneous recovery of copper(Ⅱ) from two different feed solutions based on a three-compartment module with selective polymer inclusion membranes[J]. Hydrometallurgy, 2019, 188: 64-72. |
31 | WANG D, HU J, LIU D, et al. Selective transport and simultaneous separation of Cu(Ⅱ), Zn(Ⅱ) and Mg(Ⅱ) using a dual polymer inclusion membrane system[J]. Journal of Membrane Science, 2017, 524: 205-213. |
32 | WITT K, RADZYMINSKA-LENARCIK E, KOSCIUSZKO A, et al. The influence of the morphology and mechanical properties of polymer inclusion membranes (PIMs) on zinc ion separation from aqueous solutions[J]. Polymers, 2018, 10(2): 134. |
33 | BONGGOTGETSAKUL Y Y, CATTRALR W, KOLEV S D. Recovery of gold from aqua regia digested electronic scrap using a poly(vinylidene fluoride-co-hexafluoropropene)(PVDF-HFP) based polymer inclusion membrane (PIM) containing Cyphos® IL 104[J]. Journal of Membrane Science, 2016, 514: 274-281. |
34 | CAI C, YANG F, ZHAO Z, et al. Promising transport and high-selective separation of Li(Ⅰ) from Na(Ⅰ) and K(Ⅰ) by a functional polymer inclusion membrane (PIM) system[J]. Journal of Membrane Science, 2019, 579: 1-10. |
35 | BACZYŃSKA M, SŁOMKA Z, RZELEWSKA M, et al. Characterization of polymer inclusion membranes (PIM) containing phosphonium ionic liquids and their application for separation of Zn(Ⅱ) from Fe(Ⅲ)[J]. Journal of Chemical Technology & Biotechnology, 2018, 93(6): 1767-1777. |
36 | YAFTIAN M R, ALMEIDA M I, CATTRALL R W, et al. Selective extraction of vanadium(V) from sulfate solutions into a polymer inclusion membrane composed of poly(vinylidenefluoride-co-hexafluoropropylene) and Cyphos® IL 101[J]. Journal of Membrane Science, 2018, 545: 57-65. |
37 | KAYA A, ONAC C, ALPOGUZ H K, et al. Removal of Cr(Ⅵ) through calixarene based polymer inclusion membrane from chrome plating bath water[J]. Chemical Engineering Journal, 2016, 283: 141-149. |
38 | UGUR A, SENER I, ALPOGUZ H K. The removal of Zn(Ⅱ) through Calix[4]Recorcinarene derivative based polymer inclusion membrane from aqueous solution[J]. Journal of Macromolecular Science, Part A, 2015, 52: 801-808. |
39 | RAUT D R, KANDWAL P, REBELLO G, et al. Evaluation of polymer inclusion membranes containing calix[4]-bis-2,3-naptho-crown-6 for Cs recovery from acidic feeds: Transport behavior, morphology and modeling studies[J]. Journal of Membrane Science, 2012, 407-408: 17-26. |
40 | RADZYMINSKA-LENARCIK E, ULEWICZ M. Application of polymer inclusion and membranes supported with 1-alkyl-2-methylimidazoles for separation of selected transition metal ions[J]. Desalination and Water Treatment, 2017, 64: 425-431. |
41 | RADZYMINSKA-LENARCIK E, ULEWICZl M. The use of the steric effect of the carrier molecule in the polymer inclusion membranes for the separation of cobalt(Ⅱ), nickel(Ⅱ), copper(Ⅱ), and zinc(Ⅱ) ions[J]. Polish Journal of Chemical Technology, 2015, 17(2): 51-56. |
42 | YOSHIDA W, BABA Y, KUBOTA F, et al. Selective transport of scandium(Ⅲ) across polymer inclusion membranes with improved stability which contain an amic acid carrier[J]. Journal of Membrane Science, 2019, 572: 291-299. |
43 | SCINDIA Y M, PANDEY A K, REDDY A V. Coupled-diffusion transport of Cr(Ⅵ) across anion-exchange membranes prepared by physical and chemical immobilization methods[J]. Journal of Membrane Science, 2005, 249(1/2): 143-152. |
44 | POŚPIECH B, WALKOWIAK W. Separation of copper(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) from chloride solutions by polymer inclusion membranes[J]. Seperation and Purification Technology, 2007, 57(3): 461-465. |
45 | POSPIECH B. Separation of cadmium(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) by transport through polymer inclusion membranes with phosphonium ionic liquid as ion carrier[J]. Archives of Metallurgy and Materials, 2015, 60: 2933-2938. |
46 | MACÍAS M, MIGUEL E R S. Optimization of Ni(Ⅱ) facilitated transport from aqueous solutions using a polymer inclusion membrane[J]. Water, Air, & Soil Pollution, 2021, 232(2): 1-16. |
47 | KOZLOWSKI C A, KOZLOWSKI J, PELLOWSKI W, et al. Separation of cobalt-60, strontium-90, and cesium-137 radioisotopes by competitive transport across polymer inclusion membranes with organophosphorous acids[J]. Desalination, 2006, 198(1/2/3): 141-148. |
48 | POSPIECH B. Hydrometallurgical recovery of cobalt(Ⅱ) from acidic chloride solutions by transport through polymer inclusion membranes[J]. Physicochemical Problems of Mineral Processing, 2013, 49: 641-649. |
49 | POSPIECH B. Selective recovery of cobalt(Ⅱ) towards lithium(I) from chloride media by transport across polymer inclusion membrane with triisooctylamine[J]. Polish Journal of Chemical Technology, 2014, 16(1): 15-20. |
50 | BABA Y, KUBOTA F, GOTO M, et al. Separation of cobalt(Ⅱ) from manganese(Ⅱ) using a polymer inclusion membrane with N-[N,N-di(2-ethylhexyl) aminocarbonylmethyl]glycine (D2EHAG) as the extractant/carrier[J]. Journal of Chemical Technology & Biotechnology, 2016, 91(5): 1320-1326. |
51 | XU L, ZENG X, HE Q, et al. Stable ionic liquid-based polymer inclusion membranes for lithium and magnesium separation[J]. Separation and Purification Technology, 2022, 288: 120626. |
52 | KOGELNIG D, REGELSBERGER A, STOJANOⅥCET A, et al. A polymer inclusion membrane based on the ionic liquid trihexyl(tetradecyl)phosphonium chloride and PVC for solid-liquid extraction of Zn(Ⅱ) from hydrochloric acid solution[J]. Monatshefte Für Chemie: Chemical Monthly, 2011, 142(8): 769-772. |
53 | BACZYŃSKA M, REGEL-ROSOCKA M, NOWICKI M, et al. Effect of the structure of polymer inclusion membranes on Zn(Ⅱ) transport from chloride aqueous solutions[J]. Journal of Applied Polymer Science, 2015, 132(30): 42319. |
54 | BENOSMANE N, HAMDI S M, HAMDI M, et al. Selective transport of metal ions across polymer inclusion membranes (PIMs) containing calix[4]resorcinarenes[J]. Seperation and Purification Technology, 2009, 65(2): 211-219. |
55 | GAJDA B, SKRZYPCZAK A, BOGACKI M B. Separation of cobalt(Ⅱ), nickel(Ⅱ), zinc(Ⅱ) and cadmium(Ⅱ) ions from chloride solution[J]. Physicochemical Problems of Mineral Processing, 2011, 46: 289-294. |
56 | KEBICHE-SENHADJI O, TINGRY S, SETA P, et al. Selective extraction of Cr(Ⅵ) over metallic species by polymer inclusion membrane (PIM) using anion (Aliquat 336) as carrier[J]. Desalination, 2010, 258(1/2/3): 59-65. |
57 | GHERASIM C, BOURCEANU G, OLARIU R, et al. A novel polymer inclusion membrane applied in chromium (Ⅵ) separation from aqueous solutions[J]. Journal of Hazardous Materials, 2011, 197: 244-253. |
58 | SELLAMI F, KEBICHE-SENHADJI O, MARAIS S, et al. Enhanced removal of Cr(Ⅵ) by polymer inclusion membrane based on poly (vinylidene fluoride) and Aliquat 336[J]. Seperation and Purification Technology, 2020, 248: 117038. |
59 | TURGUT H I, EYUPOGLU V, KUMBASAR R A, et al. Alkyl chain length dependent Cr(Ⅵ) transport by polymer inclusion membrane using room temperature ionic liquids as carrier and PVDF-co-HFP as polymer matrix[J]. Separation and Purification Technology, 2017, 175: 406-417. |
60 | WANG D, LIU J, CHEN J, et al. New insights into the interfacial behavior and swelling of polymer inclusion membrane (PIM) during Zn (Ⅱ) extraction process[J]. Chemical Engineering Science, 2020, 220: 115620. |
61 | MAHANTY B, MOHAPATRA P K, RAUT D R, et al. Polymer inclusion membrane containing a tripodal diglycolamide (T-DGA) ligand: actinide ion uptake and transport studies[J]. Industrial & Engineering Chemistry Research, 2016, 55: 2202-2209. |
62 | MIGUEL E R, MONROY-BARRETO M, AGUILAR J C, et al. Structural effects on metal ion migration across polymer inclusion membranes: Dependence of membrane properties and transport profiles on the weight and volume fractions of the components[J]. Journal of Membrane Science, 2011, 379(1/2): 416-425. |
63 | CUSSLER E L, ARIS R, BHOWN A. On the limits of facilitated diffusion[J]. Journal of Membrane Science, 2001, 43(2/3): 149-164. |
64 | WHITE K M, SMITH B D, DUGGAN P J, al el. Mechanism of facilitated saccharide transport through plasticized cellulose triacetate membranes[J]. Journal of Membrane Science, 2001, 194(2): 165-175. |
65 | MUNRO T A, SMITH B D. Facilitated transport of amino acids by fixed-site jumping[J]. Chemical Communications, 1997(2): 2167-2168. |
66 | RIGGS J A, SMITH B D. Facilitated transport of small carbohydrates through plasticized cellulose triacetate membranes. Evidence for fixed-site jumping transport mechanism[J]. Journal of the American Chemical Society, 1997, 119(11): 2765-2766. |
67 | LI Z, LIU Y, WANG B, et al. Insights into the facilitated transport mechanisms of Cr(Ⅵ) in ionic liquid-based polymer inclusion membrane-Electrodialysis (PIM-ED) process[J]. Chemical Engineering Journal, 2020, 397: 125324. |
68 | WANG B, LANG Q, TAN M, et al. Crosslinking improved ion transport in polymer inclusion membrane-electrodialysis process and the underlying mechanism[J]. AIChE Journal, 2022, 68(1): e17397. |
69 | KAYA A, ONAC C, ALPOĞUZ H K, et al. Reduced graphene oxide based a novel polymer inclusion membrane: Transport studies of Cr(Ⅵ)[J]. Journal of Molecular Liquids, 2016, 219: 1124-1130. |
70 | XIONG X, ALMEIDA M I, SIMEONOVA S, et al. The potential of polystyrene-block-polybutadiene-block-polystyrene triblock co-polymer as a base-polymer of polymer inclusion membranes (PIMs)[J]. Separation and Purification Technology, 2019, 229: 115800. |
71 | KAYA A, ONAC C, ALPOGUZ H K. A novel electro-driven membrane for removal of chromium ions using polymer inclusion membrane under constant D.C. electric current[J]. Journal of Hazardous Materials, 2016, 317: 1-7. |
72 | HENG S H, HAUSER P C. Electric field-driven extraction of lipophilic anions across a carrier-mediated polymer inclusion membrane[J]. Analytical Chemistry, 2011, 83(19): 7507-7513. |
73 | MENG X, LI J, LV Y, et al. Electro-membrane extraction of cadmium(Ⅱ) by bis(2-ethylhexyl) phosphate/kerosene/polyvinyl chloride polymer inclusion membrane[J]. Journal of Hazardous Materials, 2020, 386: 121990. |
74 | YAMINI Y, SEIDI S, REZAZADEH M. Electrical field-induced extraction and separation techniques: Promising trends in analytical chemistry—A review[J]. Analytica Chimica Acta, 2014, 814: 1-22. |
75 | WANG B, LIU F, ZHANG F, et al. Efficient separation and recovery of cobalt(Ⅱ) and lithium(Ⅰ) from spent lithium ion batteries (LIBs) by polymer inclusion membrane electrodialysis (PIMED)[J]. Chemical Engineering Journal, 2022, 430: 132924. |
[1] | 肖辉, 张显均, 兰治科, 王苏豪, 王盛. 液态金属绕流管束流动传热进展[J]. 化工进展, 2023, 42(S1): 10-20. |
[2] | 李梦圆, 郭凡, 李群生. 聚乙烯醇生产中回收工段第三、第四精馏塔的模拟与优化[J]. 化工进展, 2023, 42(S1): 113-123. |
[3] | 戚志程, 马润梅, 李双喜, 刘丽静, 闫欣欣. 高压法兰内开孔金属O形环密封性能及变形失效分析[J]. 化工进展, 2023, 42(S1): 166-174. |
[4] | 马伊, 曹世伟, 王家骏, 林立群, 邢延, 曹腾良, 卢峰, 赵振伦, 张志军. 低共熔溶剂回收废旧锂离子电池正极材料的研究进展[J]. 化工进展, 2023, 42(S1): 219-232. |
[5] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[6] | 张祚群, 高扬, 白超杰, 薛立新. 二次界面聚合同步反扩散原位生长ZIF-8纳米粒子制备聚酰胺混合基质反渗透(RO)膜[J]. 化工进展, 2023, 42(S1): 364-373. |
[7] | 崔守成, 徐洪波, 彭楠. 两种MOFs材料用于O2/He吸附分离的模拟分析[J]. 化工进展, 2023, 42(S1): 382-390. |
[8] | 李世霖, 胡景泽, 王毅霖, 王庆吉, 邵磊. 电渗析分离提取高值组分的研究进展[J]. 化工进展, 2023, 42(S1): 420-429. |
[9] | 张杰, 王放放, 夏忠林, 赵光金, 马双忱. “双碳”目标下SF6排放现状、减排手段分析及未来展望[J]. 化工进展, 2023, 42(S1): 447-460. |
[10] | 许春树, 姚庆达, 梁永贤, 周华龙. 共价有机框架材料功能化策略及其对Hg(Ⅱ)和Cr(Ⅵ)的吸附性能研究进展[J]. 化工进展, 2023, 42(S1): 461-478. |
[11] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[12] | 李化全, 王明华, 邱贵宝. 硫酸酸解钙钛矿相精矿的行为[J]. 化工进展, 2023, 42(S1): 536-541. |
[13] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[14] | 王晋刚, 张剑波, 唐雪娇, 刘金鹏, 鞠美庭. 机动车尾气脱硝催化剂Cu-SSZ-13的改性研究进展[J]. 化工进展, 2023, 42(9): 4636-4648. |
[15] | 高彦静. 单原子催化技术国际研究态势分析[J]. 化工进展, 2023, 42(9): 4667-4676. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |