化工进展 ›› 2023, Vol. 42 ›› Issue (8): 4005-4014.DOI: 10.16085/j.issn.1000-6613.2023-0510
收稿日期:
2023-04-03
修回日期:
2023-07-14
出版日期:
2023-08-15
发布日期:
2023-09-19
通讯作者:
黄寻,魏子栋
作者简介:
向阳(1992—),男,博士研究生,研究方向为有机电合成。E-mail: 15077020402@163.com。
基金资助:
XIANG Yang(), HUANG Xun(), WEI Zidong()
Received:
2023-04-03
Revised:
2023-07-14
Online:
2023-08-15
Published:
2023-09-19
Contact:
HUANG Xun, WEI Zidong
摘要:
与传统有机合成技术相比,电合成技术具有原子利用率高、反应条件温和、易控制、污染小等优势,近年来成为有机合成领域的研究热点。电化学反应主要发生在电极-溶液界面,反应物在界面处的传质、吸附和表面反应行为决定了电化学反应的活性和选择性。本文从不同的尺度综述了近年来国内外关于提升有机电合成活性和选择性的最新研究进展,重点讨论了催化剂电子结构调控、电极-溶液界面设计以及反应与传递耦合等策略对有机电合成活性和产物选择性提升的影响,提出了有机电化学反应机理、催化剂构效关系、电合成反应器、反应与分离耦合等重点研究方向,为推进有机电合成发展提供思路。
中图分类号:
向阳, 黄寻, 魏子栋. 电催化有机合成反应的活性和选择性调控研究进展[J]. 化工进展, 2023, 42(8): 4005-4014.
XIANG Yang, HUANG Xun, WEI Zidong. Recent progresses in the activity and selectivity improvement of electrocatalytic organic synthesis[J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4005-4014.
1 | LIU Yuanwei, LOU Zhen xin, WU Xuefeng, et al. Molecularly distorted local structure in Bi2CuO4 oxide to stabilize lattice oxygen for efficient formate electrosynthesis[J]. Advanced Materials, 2022, 34(39): e2202568. |
2 | HORN Evan J, ROSEN Brandon R, BARAN Phil S. Synthetic organic electrochemistry: An enabling and innately sustainable method[J]. ACS Central Science, 2016, 2(5): 302-308. |
3 | MA Cong, FANG Ping, LIU Zhaoran, et al. Recent advances in organic electrosynthesis employing transition metal complexes as electrocatalysts[J]. Science Bulletin, 2021, 66(23): 2412-2429. |
4 | CHAKRABORTY Priyanka, MANDAL Rajib, GARG Nidhi, et al. Recent advances in transition metal-catalyzed asymmetric electrocatalysis[J]. Coordination Chemistry Reviews, 2021, 444: 214065. |
5 | NOVAES Luiz F T, LIU Jinjian, SHEN Yifan, et al. Electrocatalysis as an enabling technology for organic synthesis[J]. Chemical Society Reviews, 2021, 50(14): 7941-8002. |
6 | AKHADE Sneha A, Singh Nirala, GUTIÉRREZ Oliver Y, et al. Electrocatalytic hydrogenation of biomass-derived organics: A review[J]. Chemical Reviews, 2020, 120(20): 11370-11419. |
7 | REN Yongwen, YU Chang, TAN Xinyi, et al. Strategies to suppress hydrogen evolution for highly selective electrocatalytic nitrogen reduction: Challenges and perspectives[J]. Energy & Environmental Science, 2021, 14(3): 1176-1193. |
8 | ZHANG Yiqiong, WANG Dongdong, WANG Shuangyin. High-entropy alloys for electrocatalysis: Design, characterization, and applications[J]. Small, 2022, 18(7): 2104339. |
9 | SI Di, XIONG Bingyan, CHEN Lisong, et al. Highly selective and efficient electrocatalytic synthesis of glycolic acid in coupling with hydrogen evolution[J]. Chem Catalysis, 2021, 1(4): 941-955. |
10 | TOMBOC Gracita M, Kwon Taehyun, Joo Jinwhan, et al. High entropy alloy electrocatalysts: A critical assessment of fabrication and performance[J]. Journal of Materials Chemistry A, 2020, 8(30): 14844-14862. |
11 | GEORGE Easo P, RAABE Dierk, RITCHIE Robert O. High-entropy alloys[J]. Nature Reviews Materials, 2019, 4(8): 515-534. |
12 | FAN Linfeng, JI Yaxin, WANG Genxiang, et al. High entropy alloy electrocatalytic electrode toward alkaline glycerol valorization coupling with acidic hydrogen production[J]. Journal of the American Chemical Society, 2022, 144(16): 7224-7235. |
13 | XU Dong, ZHANG Shinan, CHEN Jiesheng, et al. Design of the synergistic rectifying interfaces in Mott-Schottky catalysts[J]. Chemical Reviews, 2023, 123(1): 1-30. |
14 | ZENG Ye, CAO Zhen, LIAO Jizhang, et al. Construction of hydroxide pn junction for water splitting electrocatalysis[J]. Applied Catalysis B: Environmental, 2021, 292: 120160. |
15 | YANG Ganceng, JIAO Yanqing, YAN Haijing, et al. Interfacial engineering of MoO2-FeP heterojunction for highly efficient hydrogen evolution coupled with biomass electrooxidation[J]. Advanced Materials, 2020, 32(17): e2000455. |
16 | YUAN Menglei, CHEN Junwu, BAI Yiling, et al. Unveiling electrochemical urea synthesis by co-activation of CO2 and N2 with Mott-Schottky heterostructure catalysts[J]. Angewandte Chemie International Edition, 2021, 60(19): 10910-10918. |
17 | HUANG Xun, ZHANG Ling, LI Cunpu, et al. High selective electrochemical hydrogenation of cinnamaldehyde to cinnamyl alcohol on RuO2-SnO2-TiO2/Ti electrode[J]. ACS Catalysis, 2019, 9(12): 11307-11316. |
18 | SHERAZ AHMAD Muhammad, HOONG NG Kim, CHEN Ching-Lung, et al. Nitrogen-phosphorous co-doped palladium electrocatalyst for glycerol electro-oxidation reaction (GEOR): An efficient system for mesoxalic acid and dihydroxyacetone production[J]. Fuel, 2023, 333: 126471. |
19 | WU Ruizhi, MENG Qinglei, YAN Jiang, et al. Electrochemical strategy for the simultaneous production of cyclohexanone and benzoquinone by the reaction of phenol and water[J]. Journal of the American Chemical Society, 2022, 144(4): 1556-1571. |
20 | ZHANG An, LIANG Yongxiang, ZHANG Han, et al. Doping regulation in transition metal compounds for electrocatalysis[J]. Chemical Society Reviews, 2021, 50(17): 9817-9844. |
21 | 卢贝丽, 刘杏, 尹铸, 等. 掺杂多孔碳材料催化硝基苯还原反应的研究进展[J]. 化工进展, 2021, 40(2): 778-788. |
LU Beili, LIU Xing, YIN Zhu, et al. Recent development on doped porous carbon materials for catalytic reduction of nitrobenzene[J]. Chemical Industry and Engineering Progress, 2021, 40(2): 778-788. | |
22 | SUN Yuxia, SHIN Hyeyoung, WANG Fangyuan, et al. Highly selective electrocatalytic oxidation of amines to nitriles assisted by water oxidation on metal-doped α-Ni(OH)2 [J]. Journal of the American Chemical Society, 2022, 144(33): 15185-15192. |
23 | ZHOU Hua, LI Zhenhua, XU Simin, et al. Selectively upgrading lignin derivatives to carboxylates through electrochemical oxidative C(OH)—C bond cleavage by a Mn-doped cobalt oxyhydroxide catalyst[J]. Angewandte Chemie International Edition, 2021, 60(16): 8976-8982. |
24 | WANG Hui, YONG Dingyu, CHEN Shichuan, et al. Oxygen-vacancy-mediated exciton dissociation in BiOBr for boosting charge-carrier-involved molecular oxygen activation[J]. Journal of the American Chemical Society, 2018, 140(5): 1760-1766. |
25 | WANG Qichen, LEI Yongpeng, WANG Dingsheng, et al. Defect engineering in earth-abundant electrocatalysts for CO2 and N2 reduction[J]. Energy & Environmental Science, 2019, 12(6): 1730-1750. |
26 | ZHOU Peng, GUO Sixuan, LI Linbo, et al. Selective electrochemical hydrogenation of phenol with earth-abundant Ni—MoO2 heterostructured catalysts: Effect of oxygen vacancy on product selectivity[J]. Angewandte Chemie International Edition, 2023, 62(8): e202214881. |
27 | WEI Xiaoxiao, WEN Xiaojian, LIU Yingying, et al. Oxygen vacancy-mediated selective C-N coupling toward electrocatalytic urea synthesis[J]. Journal of the American Chemical Society, 2022, 144(26): 11530-11535. |
28 | LU Yuxuan, LIU Tianyang, DONG Chung-Li, et al. Tailoring competitive adsorption sites by oxygen-vacancy on cobalt oxides to enhance the electrooxidation of biomass[J]. Advanced Materials, 2022, 34(2): e2107185. |
29 | JIA Ranran, WANG Yuting, WANG Changhong, et al. Boosting selective nitrate electroreduction to ammonium by constructing oxygen vacancies in TiO2 [J]. ACS Catalysis, 2020, 10(6): 3533-3540. |
30 | LUO Xiaoxue, TANG Xiaoxia, NI Jingtian, et al. Electrochemical oxidation of styrene to benzaldehyde by discrimination of spin-paired π electrons[J]. Chemical Science, 2023, 14(7): 1679-1686. |
31 | ZHANG Yiqiong, ZHOU Bo, WEI Zengxi, et al. Coupling glucose-assisted Cu(Ⅰ)/Cu(Ⅱ) redox with electrochemical hydrogen production[J]. Advanced Materials, 2021, 33(48): e2104791. |
32 | HAN Xiaotong, SHENG Hongyuan, YU Chang, et al. Electrocatalytic oxidation of glycerol to formic acid by CuCo2O4 spinel oxide nanostructure catalysts[J]. ACS Catalysis, 2020, 10(12): 6741-6752. |
33 | XIN Yu, WANG Fengliang, CHEN Liyu, et al. Superior bifunctional cobalt/nitrogen-codoped carbon nanosheet arrays on copper foam enable stable energy-saving hydrogen production accompanied with glucose upgrading[J]. Green Chemistry, 2022, 24(17): 6544-6555. |
34 | DU Puyu, ZHANG Jingjing, LIU Yanhui, et al. Hydrogen generation from catalytic glucose oxidation by Fe-based electrocatalysts[J]. Electrochemistry Communications, 2017, 83: 11-15. |
35 | LIN Chong, ZHANG Panjing, WANG Shengying, et al. Engineered porous Co-Ni alloy on carbon cloth as an efficient bifunctional electrocatalyst for glucose electrolysis in alkaline environment[J]. Journal of Alloys and Compounds, 2020, 823: 153784. |
36 | LIN Chong, LI Huiqin, ZHANG Panjing, et al. Boosting water electrolysis with anodic glucose oxidation reaction over engineered cobalt nickel hydroxide nanosheet on carbon cloth[J]. Journal of Electroanalytical Chemistry, 2020, 861: 113946. |
37 | LI Guangyao, XU Yanqi, PAN Hong, et al. A bimetallic synergistic effect on the atomic scale of defect-enriched NiV-layered double hydroxide nanosheets for electrochemical phenol hydroxylation[J]. Journal of Materials Chemistry A, 2022, 10(12): 6748-6761. |
38 | WU Shutao, ZHANG Hongliang, HUANG Xun, et al. Acrylonitrile conversion on metal cathodes: How surface adsorption determines the reduction pathways[J]. Industrial & Engineering Chemistry Research, 2021, 60(23): 8324-8330. |
39 | KARIMI F, MOHAMMADI F, ASHRAFIZADEH S N. An experimental study of the competing cathodic reactions in electrohydrodimerization of acrylonitrile[J]. Journal of the Electrochemical Society, 2011, 158(12): 129-135. |
40 | KARIMI F, ASHRAFIZADEH S N, MOHAMMADI F. Process parameter impacts on adiponitrile current efficiency and cell voltage of an electromembrane reactor using emulsion-type catholyte[J]. Chemical Engineering Journal, 2012, 183: 402-407. |
41 | LI Zhenhua, LI Xiaofan, ZHOU Hua, et al. Electrocatalytic synthesis of adipic acid coupled with H2 production enhanced by a ligand modification strategy[J]. Nature Communications, 2022, 13: 5009. |
42 | LI Zhenhua, YAN Yifan, XU Simin, et al. Alcohols electrooxidation coupled with H2 production at high current densities promoted by a cooperative catalyst[J]. Nature Communications, 2022, 13: 147. |
43 | WU Shutao, ZHANG Hongliang, HUANG Xun, et al. Coupling electrochemical H2O2 production and the in situ selective oxidation of organics over a bifunctional TS-1@Co—N—C catalyst[J]. Chemical Communications, 2022, 58(64): 8942-8945. |
44 | 郑堂飞, 蒋金霞, 王健, 等. 基于限域特性的电催化剂调控[J]. 物理化学学报, 2021, 37(11): 101-113. |
ZHENG Tangfei, JIANG Jinxia, WANG Jian, et al. Regulation of electrocatalysts based on confinement-induced properties[J]. Acta Physico-Chimica Sinica, 2021, 37(11): 101-113. | |
45 | LI Heng, XUE Yanfang, GE Qingmei, et al. Chiral electroorganic chemistry: An interdisciplinary research across electrocatalysis and asymmetric synthesis[J]. Molecular Catalysis, 2021, 499: 111296. |
46 | LIN Qifeng, LI Longji, LUO Sanzhong. Asymmetric electrochemical catalysis[J]. Chemistry:A European Journal, 2019, 25(43): 10033-10044. |
47 | YUE Yingna, MENG Wangjun, LIU Li, et al. Amino acid-functionalized multi-walled carbon nanotubes: A metal-free chiral catalyst for the asymmetric electroreduction of aromatic ketones[J]. Electrochimica Acta, 2018, 260: 606-613. |
48 | HUNSOM Mali, SAILA Payia. Product distribution of electrochemical conversion of glycerol via Pt electrode: Effect of initial pH[J]. International Journal of Electrochemical Science, 2013, 8(9): 11288-11300. |
49 | VERMA Anand M, LAVERDURE Laura, MELANDER Marko M, et al. Mechanistic origins of the pH dependency in Au-catalyzed glycerol electro-oxidation: Insight from first-principles calculations[J]. ACS Catalysis, 2022, 12(1): 662-675. |
50 | ZHOU Ling, LI Yingying, LU Yuxuan, et al. pH-induced selective electrocatalytic hydrogenation of furfural on Cu electrodes[J]. Chinese Journal of Catalysis, 2022, 43(12): 3142-3153. |
51 | WANG Hong, WEI Xin, ZHANG Yujun, et al. Electrochemical analysis and convection-enhanced mass transfer synergistic effect of MnO x /Ti membrane electrode for alcohol oxidation[J]. Chinese Journal of Chemical Engineering, 2019, 27(1): 150-156. |
52 | ZHU Yunfeng, GAO Liang, ZONG Baoning, et al. A review of adiponitrile industrial production processes and associated atom economies[J]. Chinese Science Bulletin, 2015, 60(16): 1488-1501. |
53 | 刘佩璇. CO2电化学还原高性能反应器及Cu基双金属催化剂的设计研究[D]. 上海: 东华大学, 2021. |
LIU Peixuan. Design and research on high-performance reactor and Cu-based bimetallic catalyst for electrochemical reduction of carbon dioxide[D]. Shanghai: Donghua University, 2021. | |
54 | ZHANG Yuchi, LI Wenjing, CAO Yucai, et al. Selective electrosynthesis of 2,5-diformylfuran in a continuous-flow system[J]. ChemSusChem, 2022, 15(3): e202102596. |
55 | DELIMA Roxanna S, SHERBO Rebecca S, DVORAK David J, et al. Supported palladium membrane reactor architecture for electrocatalytic hydrogenation[J]. Journal of Materials Chemistry A, 2019, 7(46): 26586-26595. |
56 | SHERBO Rebecca S, KURIMOTO Aiko, BROWN Christopher M, et al. Efficient electrocatalytic hydrogenation with a palladium membrane reactor[J]. Journal of the American Chemical Society, 2019, 141(19): 7815-7821. |
57 | LI Jiao, LI Jianxin, WANG Hong, et al. Electrocatalytic oxidation of n-propanol to produce propionic acid using an electrocatalytic membrane reactor[J]. Chemical Communications, 2013, 49(40): 4501-4503. |
58 | ZHANG Hongliang, WU Shutao, HUANG Xun, et al. Integrating H2O2 generation from electrochemical oxygen reduction with the selective oxidation of organics in a dual-membrane reactor[J]. Chemical Engineering Journal, 2022, 428: 131534. |
59 | MO Yiming, LU Zhaohong, Rughoobur Girish, et al. Microfluidic electrochemistry for single-electron transfer redox-neutral reactions[J]. Science, 2020, 368(6497): 1352-1357. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 高雨飞, 鲁金凤. 非均相催化臭氧氧化作用机理研究进展[J]. 化工进展, 2023, 42(S1): 430-438. |
[6] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[7] | 赵景超, 谭明. 表面活性剂对电渗析减量化工业含盐废水的影响[J]. 化工进展, 2023, 42(S1): 529-535. |
[8] | 李化全, 王明华, 邱贵宝. 硫酸酸解钙钛矿相精矿的行为[J]. 化工进展, 2023, 42(S1): 536-541. |
[9] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[10] | 许友好, 王维, 鲁波娜, 徐惠, 何鸣元. 中国炼油创新技术MIP的开发策略及启示[J]. 化工进展, 2023, 42(9): 4465-4470. |
[11] | 王谨航, 何勇, 史伶俐, 龙臻, 梁德青. 气体水合物阻聚剂研究进展[J]. 化工进展, 2023, 42(9): 4587-4602. |
[12] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[13] | 王晋刚, 张剑波, 唐雪娇, 刘金鹏, 鞠美庭. 机动车尾气脱硝催化剂Cu-SSZ-13的改性研究进展[J]. 化工进展, 2023, 42(9): 4636-4648. |
[14] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[15] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |