化工进展 ›› 2023, Vol. 42 ›› Issue (7): 3884-3892.DOI: 10.16085/j.issn.1000-6613.2022-1655
鲁少杰(), 刘佳(), 冀芊竹, 李萍, 韩月阳, 陶敏, 梁文俊
收稿日期:
2022-09-07
修回日期:
2022-12-19
出版日期:
2023-07-15
发布日期:
2023-08-14
通讯作者:
刘佳
作者简介:
鲁少杰(1997—),男,硕士研究生,研究方向为生物法净化VOCs。E-mail:lushaojie1997@163.com。
基金资助:
LU Shaojie(), LIU Jia(), JI Qianzhu, LI Ping, HAN Yueyang, TAO Min, LIANG Wenjun
Received:
2022-09-07
Revised:
2022-12-19
Online:
2023-07-15
Published:
2023-08-14
Contact:
LIU Jia
摘要:
以硅藻土(DE)为骨架,聚乙烯醇(PVA)、海藻酸钠(SA)为固定化材料,采用微生物固定化技术制备出一种包含高效降解菌和具有营养缓释功能的复合填料。探究了装填复合填料生物滴滤塔(BTF)净化二甲苯的性能。复合填料比表面积为4.53m2/g,具有良好的持水能力,且复合填料的重复使用性较好,连续处理8批污染物后,去除效率保持在95%以上。负载复合填料的BTF经过11d运行,出口浓度低于GB 16297—1996中规定的排放限值[ρ(二甲苯)=70mg/m3],结果表明此时BTF完成启动;进气浓度为1200mg/m3,空床停留时间(EBRT)分别为53s、38s、28s时,去除效率为98%、86%、78%;在EBRT为28s,进气浓度为700mg/m3、250mg/m3时,去除效率分别为91%、99%;在9天内外界不提供养分时,去除效率无明显下降。系统停运2天和7天,分别可在运行9.5h和1天内恢复原来的净化性能。实验结果表明复合填料具有较好理化性质,对二甲苯去除性能好,抗冲击负荷及停滞能力强,可为其应用提供一定参考价值。
中图分类号:
鲁少杰, 刘佳, 冀芊竹, 李萍, 韩月阳, 陶敏, 梁文俊. 硅藻土基复合填料制备及滴滤塔去除二甲苯的性能[J]. 化工进展, 2023, 42(7): 3884-3892.
LU Shaojie, LIU Jia, JI Qianzhu, LI Ping, HAN Yueyang, TAO Min, LIANG Wenjun. Preparation of diatomaceous earth-based composite filler and its xylene removal performance by a biotrickling filter[J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3884-3892.
阶段 | 时间 /天 | 空床停留时间 (EBRT)/s | 二甲苯质量浓度 /mg·m-3 | 循环液 |
---|---|---|---|---|
Ⅰ | 1~41 | 53 | 1200 | 营养液 |
Ⅱ | 42~50 | 53 | 1200 | 营养液 |
51~57 | 停滞 | |||
58~64 | 53 | 1200 | ||
65~75 | 38 | 1200 | ||
76~84 | 28 | 1200 | ||
Ⅲ | 85~91 | 28 | 700 | 营养液 |
92~93 | 停滞 | |||
94~109 | 28 | 700 | ||
110~123 | 28 | 250 | ||
Ⅳ | 124~132 | 28 | 250 | 去离子水 |
表1 生物滴滤塔运行条件
阶段 | 时间 /天 | 空床停留时间 (EBRT)/s | 二甲苯质量浓度 /mg·m-3 | 循环液 |
---|---|---|---|---|
Ⅰ | 1~41 | 53 | 1200 | 营养液 |
Ⅱ | 42~50 | 53 | 1200 | 营养液 |
51~57 | 停滞 | |||
58~64 | 53 | 1200 | ||
65~75 | 38 | 1200 | ||
76~84 | 28 | 1200 | ||
Ⅲ | 85~91 | 28 | 700 | 营养液 |
92~93 | 停滞 | |||
94~109 | 28 | 700 | ||
110~123 | 28 | 250 | ||
Ⅳ | 124~132 | 28 | 250 | 去离子水 |
反应器 | 污染物 | 填料 | 停滞方式 | 停运时间/d | 恢复时间 |
---|---|---|---|---|---|
生物过滤塔[ | 二甲苯 | 木炭 | 完全停滞 | 10 | 4d |
生物过滤塔[ | 甲苯 | 聚氨酯泡沫 | 完全停滞 | 10 | 10d |
生物过滤塔[ | 甲烷 | 石料 | 持续提供不含VOCs的潮湿空气 | 30 | 15d |
生物过滤塔[ | 氯苯 | 凝胶胶囊 | 完全停滞 | 6 20 | 3d 8d |
生物滴滤塔[ | 硫化氢 | 聚氨酯泡沫 | 完全停滞 | 2 5 | 32h 12d |
生物滴滤塔 | 二甲苯 | 本实验填料 | 完全停滞 | 2 7 | 9.5h 1d |
表2 生物过滤塔和生物滴滤塔停滞后重启性能
反应器 | 污染物 | 填料 | 停滞方式 | 停运时间/d | 恢复时间 |
---|---|---|---|---|---|
生物过滤塔[ | 二甲苯 | 木炭 | 完全停滞 | 10 | 4d |
生物过滤塔[ | 甲苯 | 聚氨酯泡沫 | 完全停滞 | 10 | 10d |
生物过滤塔[ | 甲烷 | 石料 | 持续提供不含VOCs的潮湿空气 | 30 | 15d |
生物过滤塔[ | 氯苯 | 凝胶胶囊 | 完全停滞 | 6 20 | 3d 8d |
生物滴滤塔[ | 硫化氢 | 聚氨酯泡沫 | 完全停滞 | 2 5 | 32h 12d |
生物滴滤塔 | 二甲苯 | 本实验填料 | 完全停滞 | 2 7 | 9.5h 1d |
1 | LING Z H, GUO Hai. Contribution of VOC sources to photochemical ozone formation and its control policy implication in Hong Kong[J]. Environmental Science & Policy, 2014, 38: 180-191. |
2 | 赵诗琳, 孟范平, 林雨霏, 等. 二甲苯吸附剂及其在泄漏事故水域的适用性评述[J]. 化工进展, 2019, 38(6): 2813-2824. |
ZHAO Shilin, MENG Fanping, LIN Yufei, et al. Sorbents for seprating xylene and their applicability in waters after the accidental spills: A review[J]. Chemical Industry and Engineering Progress, 2019, 38(6): 2813-2824. | |
3 | ZHANG Yun, LIU Jia, DENG Wei, et al. Research on pressure drop solution and pilot-scale application of bio-trickling filter for the treatment of butan-2-yl ethanoate[J]. Process Biochemistry, 2019, 79:118-126. |
4 | 杜佳辉, 刘佳, 杨菊平,等. 生物法联合工艺治理VOCs的研究进展[J]. 化工进展, 2021, 40(5):2802-2812. |
DU Jiahui, LIU Jia, YANG Juping, et al. Recent advances in biological combined technology for VOCs treatment[J]. Chemical Industry and Engineering Progress, 2021, 40(5):2802-2812. | |
5 | Eldon RENE R, MURTHY D V S, SWAMINATHAN T. Performance evaluation of a compost biofilter treating toluene vapours[J]. Process Biochemistry, 2005, 40(8):2771-2779. |
6 | AMIN Mohammad Mehdi, RAHIMI Amir, BINA Bijan, et al. Performance evaluation of a scoria-compost biofilter treating xylene vapors[J]. Journal of Environmental Health Science and Engineering, 2014, 12(1):140. |
7 | LEE Sanghun, LI Congna, HEBER Albert J, et al. Biofiltration of a mixture of ethylene, ammonia, n-butanol, and acetone gases[J]. Bioresource Technology, 2013, 127: 366-377. |
8 | Manuel CÁCERES, DORADO Antonio D, GENTINA Juan C, et al. Oxidation of methane in biotrickling filters inoculated with methanotrophic bacteria[J]. Environmental Science and Pollution Research, 2017, 24(33): 25702-25712. |
9 | 李海玲, 陈丽华, 肖朝虎, 等. 微生物固定化载体材料的研究进展[J]. 现代化工, 2020, 40(8): 58-61, 66. |
LI Hailing, CHEN Lihua, XIAO Chaohu, et al. Research progress in microorganisms immobilized carrier materials[J]. Modern Chemical Industry, 2020, 40(8): 58-61, 66. | |
10 | KUMAR Munna, GIRI Balendu Shekher, KIM Ki Hyun, et al. Performance of a biofilter with compost and activated carbon based packing material for gas-phase toluene removal under extremely high loading rates[J]. Bioresource Technology, 2019, 285:121317. |
11 | CHENG Zhuowei, FENG Ke, XU Danhua, et al. An innovative nutritional slow-release packing material with functional microorganisms for biofiltration: Characterization and performance evaluation[J]. Journal of Hazardous Materials, 2019, 366:16-26. |
12 | FENG Rongfang, ZHAO Gang, YANG Yonggang, et al. Enhanced biological removal of intermittent VOCs and deciphering the roles of sodium alginate and polyvinyl alcohol in biofilm formation[J]. PLoS One, 2019, 14(5): e0217401. |
13 | YANG Nanyang, WANG Can, HAN Mengfei. Gel-encapsulated microorganisms used as a strategy to rapidly recover biofilters after starvation interruption[J]. Journal of Environmental Management, 2020, 261:110237. |
14 | 季文标, 陈雪松, 陈水荣, 等. 固定化生物滴滤塔处理模拟喷漆废气的中试研究[J]. 浙江冶金, 2009(2): 21-23. |
JI Wenbiao, CHEN Xuesong, CHEN Shuirong, et al. Pilot study on the treatment of simulated paint spraying exhaust gas by immobilized biological trickling filter tower[J]. Journal of Zhejiang Metallurgy, 2009(2): 21-23. | |
15 | ERDEM Emin, Gülay ÇÖLGEÇEN, DONAT Ramazan. The removal of textile dyes by diatomite earth[J]. Journal of Colloid and Interface Science, 2005, 282(2): 314-319. |
16 | 白云峰, 孟欣, 秦杰, 等. 我国硅藻土产业发展前景及对策建议[J]. 居业, 2018, 10(9): 2-3. |
BAI Yunfeng, MENG Xin, QIN Jie, et al. Prospects for the development of diatomaceous earth industry in China and suggestions for countermeasures[J]. Create Living, 2018, 10(9): 2-3. | |
17 | XIE Fazhi, WU Fengchang, LIU Guijian, et al. Removal of phosphate from eutrophic lakes through adsorption by in situ formation of magnesium hydroxide from diatomite[J]. Environmental Science & Technology, 2014, 48(1): 582-590. |
18 | 杨勤桃, 农接亮, 解庆林, 等. 改性硅藻土在污水处理中的应用研究进展[J].化工新型材料, 2022, 50(1): 298-302. |
YANG Qintao, NONG Jieliang, XIE Qinglin, et al. Research progress on application of modified diatomite in wastewater treatment [J]. New Chemical Materials, 2022, 50(1): 298-302. | |
19 | 冯荣芳. 生物滴滤池对非稳态VOCs废气的净化性能与生物膜特性研究[D]. 广州: 华南理工大学, 2019. |
FENG Rongfang. Purification performance of biotrickling filters on unsteady state VOCs-containing waste gases and properties of biofilm[D]. Guangzhou: South China University of Technology, 2019. | |
20 | 朱仁成, 张雅丽, 徐淑敏, 等. 废气生物净化用填料的研究进展[J]. 环境科学与技术, 2015, 38(7): 146-151, 181. |
ZHU Rencheng, ZHANG Yali, XU Shumin, et al. Review in biological filters for the waste gas purification[J]. Environmental Science & Technology, 2015, 38(7): 146-151, 181. | |
21 | 杨亮, 李韦霖, 宋鑫钥, 等. 基于聚乙烯醇复合膜的改性研究进展[J]. 印染助剂, 2022, 39(11): 5-11. |
YANG Liang, LI Weilin, SONG Xinyue, et al. Research progress on modification of polyvinyl alcohol compositive film[J]. Textile Auxiliaries, 2022, 39(11): 5-11. | |
22 | 聂发辉, 吴道, 黄慧倩. 海藻酸钠复合材料吸附污染物研究进展[J]. 化工新型材料, 2022, 50(6): 307-312. |
Fahui NEI, WU Dao, HUANG Huiqian. Research progress on sodium alginate composites adsorption[J]. New Chemical Materials, 2022, 50(6): 307-312. | |
23 | 徐梦洁, 张秀梅, 胡银春, 等.双交联聚乙烯醇/海藻酸钠水凝胶的制备与表征[J]. 高分子材料科学与工程, 2020, 36(4): 55-60, 66. |
XU Mengjie, ZHANG Xiumei, HU Yinchun, et al. Preparation and characterization of double crosslinked polyvinyl alcohol/sodium alginate hydrogels[J]. Polymer Materials Science & Engineering, 2020, 36(4): 55-60, 66. | |
24 | 王宏丽, 陈风雷, 胡雪梅. 纳米羟基磷灰石/海藻酸钠/聚乙烯醇多孔支架材料的制备与表征[J]. 西南大学学报(自然科学版), 2013, 35(1): 160-164. |
WANG Hongli, CHEN Fenglei, HU Xuemei. Preparation and characterization of a nano-hydoxyapatite/sodium alginate-polyvinyl alcohol composite scaffold[J]. Journal of Southwest University (Natural Science Edition), 2013, 35(1): 160-164. | |
25 | 张敏. 化学交联海藻酸盐—明胶水凝胶的研究[D]. 天津: 天津大学, 2006. |
ZHANG Min. Study on covalently cross-linked alginate-gelatin hydrogels[D]. Tianjin: Tianjin University, 2006. | |
26 | TENG Shaoxiang, WANG Shuguang, GONG Wenxin, et al. Removal of fluoride by hydrous manganese oxide-coated alumina: Performance and mechanism[J]. Journal of Hazardous Materials, 2009, 168(2/3): 1004-1011. |
27 | 蒋瑶珮, 杨涛, 费国霞, 等. 医用聚乙烯醇/海藻酸钠/氧化石墨烯水凝胶的制备及性能[J]. 高分子材料科学与工程, 2018, 34(7): 150-155. |
JIANG Yaopei, YANG Tao, FEI Guoxia, et al. Synthesis and properties of graphene oxide/sodium alginate/polyvinyl alcohol hydrogel [J]. Polymer Materials Science & Engineering, 2018, 34(7): 150-155. | |
28 | JORIO Hasnaa, BIBEAU Louise, VIEL Guy, et al. Effects of gas flow rate and inlet concentration on xylene vapors biofiltration performance[J]. Chemical Engineering Journal, 2000, 76(3): 209-221. |
29 | ELMRINI Hicham, BREDIN Nathalie, SHAREEFDEEN Zarook, et al. Biofiltration of xylene emissions: Bioreactor response to variations in the pollutant inlet concentration and gas flow rate[J]. Chemical Engineering Journal, 2004, 100(1/2/3): 149-158. |
30 | Anil MATHUR K, SUNDARAMURTHY J, BALOMAJUMDER C. Kinetics of the removal of mono-chlorobenzene vapour from waste gases using a trickle bed air biofilter[J]. Journal of Hazardous Materials, 2006, 137(3): 1560-1568. |
31 | SARAVANAN V, RAJAMOHAN N. Treatment of xylene polluted air using press mud-based biofilter[J]. Journal of Hazardous Materials, 2009, 162(2/3): 981-988. |
32 | YANG Nanyang, WANG Can, HAN Mengfei, et al. Performance improvement of a biofilter by using gel-encapsulated microorganisms assembled in a 3D mesh material[J]. Chemosphere, 2020, 251: 126618. |
33 | MOUSSAVI Gholamreza, BAHADORI Mohammad Bagher, FARZADKIA Mehdi, et al. Performance evaluation of a thermophilic biofilter for the removal of MTBE from waste air stream: Effects of inlet concentration and EBRT[J]. Biochemical Engineering Journal, 2009, 45(2): 152-156. |
34 | ROMERO HERNANDEZ A C, RODRÍGUEZ SUSA M S, ANDRÈS Y, et al. Steady- and transient-state H2S biofiltration using expanded schist as packing material[J]. New Biotechnology, 2013, 30(2): 210-218. |
35 | KIM Jung Hoon, RENE Eldon R, PARK Hung Suck. Biological oxidation of hydrogen sulfide under steady and transient state conditions in an immobilized cell biofilter[J]. Bioresource Technology, 2008, 99(3): 583-588. |
36 | SINGH Kiran, GIRI B S, SAHI Amrita, et al. Biofiltration of xylene using wood charcoal as the biofilter media under transient and high loading conditions[J]. Bioresource Technology, 2017, 242: 351-358. |
37 | SINGH R S, RAI B N, UPADHYAY S N. Removal of toluene vapour from air stream using a biofilter packed with polyurethane foam[J]. Process Safety and Environmental Protection, 2010, 88(5): 366-371. |
38 | FERDOWSI Milad, VEILLETTE Marc, RAMIREZ Antonio Avalos, et al. Performance evaluation of a methane biofilter under steady state, transient state and starvation conditions[J]. Water Air & Soil Pollution, 2016, 227(6): 168. |
39 | NAMINI M T, ABDEHAGH Niloufar, HEYDARIAN Seyed Mohammad, et al. Hydrogen sulfide removal performance of a bio-trickling filter employing Thiobacillus thiparus immobilized on polyurethane foam under various starvation regimes[J]. Biotechnology and Bioprocess Engineering, 2012, 17(6): 1278-1283. |
40 | HASSAN Ashraf ALY, SORIAL George A. Removal of benzene under acidic conditions in a controlled Trickle Bed Air Biofilter[J]. Journal of Hazardous Materials, 2010, 184(1/2/3): 345-349. |
41 | 聂阳, 朱仁成, 李顺义, 等. 微包埋恶臭假单胞菌复合填料制备及性能评价[J]. 环境工程学报, 2019, 13(3): 678-684. |
NIE Yang, ZHU Rencheng, LI Shunyi, et al. Preparation and performance evaluation of a composite filler micro-embedded with the Pseudomonas putida [J]. Chinese Journal of Environmental Engineering, 2019, 13(3): 678-684. |
[1] | 宋伟涛, 宋慧平, 范朕连, 樊飙, 薛芳斌. 粉煤灰在防腐涂料中的研究进展[J]. 化工进展, 2023, 42(9): 4894-4904. |
[2] | 张耀丹, 孙若溪, 陈鹏程. 以级联反应为基础的多酶共固定载体研究进展[J]. 化工进展, 2023, 42(6): 3167-3176. |
[3] | 陈伟良, 高鑫, 李洪, 李鑫钢. 泡沫碳化硅波纹规整填料骨架结构对其传质性能的影响机理[J]. 化工进展, 2023, 42(5): 2289-2297. |
[4] | 毛梦雷, 孟令玎, 高蕊, 孟子晖, 刘文芳. 多孔框架材料固定化酶研究进展[J]. 化工进展, 2023, 42(5): 2516-2535. |
[5] | 张涵, 张肖静, 马冰冰, 佴灿, 刘烁烁, 马永鹏, 宋亚丽. 以城市废弃污泥为种泥启动厌氧氨氧化工艺的可行性[J]. 化工进展, 2023, 42(2): 1080-1088. |
[6] | 刘雅娟. 浸没式PAC-AMBRs系统中PAC缓解膜污染的研究进展[J]. 化工进展, 2023, 42(1): 457-468. |
[7] | 池伟利, 杨宏. 厌氧氨氧化包埋填料处理稀土尾矿废水的中试脱氮和优化[J]. 化工进展, 2023, 42(1): 506-516. |
[8] | 孟令玎, 毛梦雷, 廖奇勇, 孟子晖, 刘文芳. 碳酸酐酶和甲酸脱氢酶的稳定性研究进展[J]. 化工进展, 2022, 41(S1): 436-447. |
[9] | 许亚兵, 王宝山, 汪光宗, 张洋. 生物电化学系统对制药废水中难生化有机物的降解[J]. 化工进展, 2022, 41(9): 5055-5064. |
[10] | 唐婷, 周文凤, 王志, 朱晨杰, 许敬亮, 庄伟, 应汉杰, 欧阳平凯. 多酶共固定化技术在糖类催化中的研究进展[J]. 化工进展, 2022, 41(5): 2636-2648. |
[11] | 毛梦雷, 孙丹阳, 孟子晖, 刘文芳. 氧化石墨烯和过渡金属碳/氮化合物固定化酶[J]. 化工进展, 2022, 41(4): 1941-1955. |
[12] | 张彦, 汪伟, 谢锐, 巨晓洁, 刘壮, 褚良银. 负载酶@ZIF-8复合物的聚合物微颗粒可控制备[J]. 化工进展, 2022, 41(4): 2022-2028. |
[13] | 韩红明, 从海峰, 李洪, 高鑫, 李鑫钢. 螺旋液桥降膜规整填料螺线间隙液桥形成与流动[J]. 化工进展, 2022, 41(2): 584-592. |
[14] | 申红艳, 刘有智, 朱海林, 赵凌波. 硅藻土基表面有机化氢氧化镁的制备及性能[J]. 化工进展, 2022, 41(2): 848-853. |
[15] | 王娜, 宋秀兰, 昝博韬. 复合菌群利用模拟APG协同FNA预处理剩余污泥水解液合成PHA[J]. 化工进展, 2022, 41(2): 1017-1024. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |