化工进展 ›› 2023, Vol. 42 ›› Issue (7): 3760-3769.DOI: 10.16085/j.issn.1000-6613.2022-1613
收稿日期:
2022-09-02
修回日期:
2022-11-18
出版日期:
2023-07-15
发布日期:
2023-08-14
通讯作者:
朱玲
作者简介:
杨子育(1996—),女,硕士研究生,研究方向为高效油泥处理及资源化利用。E-mail:2020520002@bipt.edu.cn。
基金资助:
YANG Ziyu(), ZHU Ling(), WANG Wenlong, YU Chaofan, SANG Yimin
Received:
2022-09-02
Revised:
2022-11-18
Online:
2023-07-15
Published:
2023-08-14
Contact:
ZHU Ling
摘要:
近年来,含油污泥已经成为了威胁全球的危险废物之一,如果未经妥善处置,不但会对环境造成极大的破坏,还会对人体产生危害。阴燃作为一种新型的含油污泥处理技术,很好地契合了资源化、减量化、无害化的含油污泥处理目标。阴燃通过自维持燃烧处理含油污泥中的污染物,无需外部能源,极大地降低了处理成本,操作简单,二次污染很小。阴燃法不仅能发挥出多种热处理技术的优势,实现含油污泥的减量化,并且还能够回收含油污泥中的部分油分,具有极大的资源化潜力,是一种极具前景的含油污泥处理技术,在国内外均已有成功的工程应用案例。本文对阴燃的原理、研究发展进程及工程应用方面进行了阐述,分别论述了气体流量、污染物浓度、初始含水率、多孔介质掺混比例、土壤粒径对阴燃成功率及含油污泥处理效果的影响,并对该技术的发展方向提出展望。
中图分类号:
杨子育, 朱玲, 王文龙, 于超凡, 桑义敏. 阴燃法处理含油污泥的研究及应用进展[J]. 化工进展, 2023, 42(7): 3760-3769.
YANG Ziyu, ZHU Ling, WANG Wenlong, YU Chaofan, SANG Yimin. Research and application progress of smoldering combustion technology for oily sludge[J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3760-3769.
处理方法 | 机理及特点 | 处理效果 | 优点 | 缺点 |
---|---|---|---|---|
热解法[ | 在绝氧或缺氧的环境下运行,使含油污泥中的石油烃类及其他有机物发生高温裂解反应,处理温度在500~1000℃ | 减量化:30%~50%。油品回收率:60%~80%。残油率:0.3%左右 | 二次污染较小 | 耗能高、设备复杂、处理规模小 |
焚烧法[ | 在供氧条件下,高温燃烧含油污泥使其成为稳定的残渣,处理温度在500~1200℃ | 减量化:90%~95%。由于碳化残油率极低 | 处理体量大、焚烧热能可利用 | 二次污染严重、能耗大、成本高 |
干化法[ | 利用热源使含油污泥加热到水的相变温度以上,使水分转化为水蒸气排出,减小含水率,处理温度在80~600℃ | 减量化:75%~80%。残油率高,需要与其他方法联用 | 操作简单、能耗低 | 处理效果差、二次污染严重、有爆炸风险 |
阴燃法[ | 无焰的非均相燃烧,自维持阴燃过程通过反应自身产热实现含油污泥的干化、燃烧过程,处理温度在500~700℃ | 减量化:80%~86%。油品回收率:35%~65%。残油率:0.1%~0.3% | 成本低、处理彻底、二次污染较小、三化效果好 | 技术不成熟、实现条件苛刻 |
表1 热处理技术比较
处理方法 | 机理及特点 | 处理效果 | 优点 | 缺点 |
---|---|---|---|---|
热解法[ | 在绝氧或缺氧的环境下运行,使含油污泥中的石油烃类及其他有机物发生高温裂解反应,处理温度在500~1000℃ | 减量化:30%~50%。油品回收率:60%~80%。残油率:0.3%左右 | 二次污染较小 | 耗能高、设备复杂、处理规模小 |
焚烧法[ | 在供氧条件下,高温燃烧含油污泥使其成为稳定的残渣,处理温度在500~1200℃ | 减量化:90%~95%。由于碳化残油率极低 | 处理体量大、焚烧热能可利用 | 二次污染严重、能耗大、成本高 |
干化法[ | 利用热源使含油污泥加热到水的相变温度以上,使水分转化为水蒸气排出,减小含水率,处理温度在80~600℃ | 减量化:75%~80%。残油率高,需要与其他方法联用 | 操作简单、能耗低 | 处理效果差、二次污染严重、有爆炸风险 |
阴燃法[ | 无焰的非均相燃烧,自维持阴燃过程通过反应自身产热实现含油污泥的干化、燃烧过程,处理温度在500~700℃ | 减量化:80%~86%。油品回收率:35%~65%。残油率:0.1%~0.3% | 成本低、处理彻底、二次污染较小、三化效果好 | 技术不成熟、实现条件苛刻 |
1 | 马骏, 孙培, 孙超, 等. 含油污泥不同处理工艺的研究进展[J]. 山东化工, 2021, 50(5): 109-110, 118. |
MA Jun, SUN Pei, SUN Chao, et al. Research progress on different treatment processes of oily sludge[J]. Shandong Chemical Industry, 2021, 50(5): 109-110, 118. | |
2 | 李文英, 李阳, 马艳飞, 等. 含油污泥资源化处理方法进展[J]. 化工进展, 2020, 39(10): 4191-4199. |
LI Wenying, LI Yang, MA Yanfei, et al. Progress of resource treatment methods for oily sludge[J]. Chemical Industry and Engineering Progress, 2020, 39(10): 4191-4199. | |
3 | EGAZAR’YANTS S V, VINOKUROV V A, VUTOLKINA A V, et al. Oil sludge treatment processes[J]. Chemistry and Technology of Fuels and Oils, 2015, 51(5): 506-515. |
4 | 刘强, 赵浪, 董嘉伟. 含油污泥热解处理技术研究[J]. 胶体与聚合物, 2021, 39(3): 112-114. |
LIU Qiang, ZHAO Lang, DONG Jiawei. Research on pyrolysis treatment technology of oily sludge[J]. Chinese Journal of Colloid and Polymer, 2021, 39(3): 112-114. | |
5 | 张爽, 王琳珲, 赵泽雨, 等. 中国石油海外项目含油污泥处理标准探讨[J]. 油气田环境保护, 2022, 32(2): 11-15. |
ZHANG Shuang, WANG Linhui, ZHAO Zeyu, et al. Discussion on oily sludge treatment standard of CNPC overseas projects[J]. Environmental Protection of Oil & Gas Fields, 2022, 32(2): 11-15. | |
6 | 王君. 基于热处理的含油污泥资源化利用技术[D]. 杭州: 浙江大学, 2018. |
WANG Jun. Resource recovery from oily sludge through thermal treatment technology[D]. Hangzhou: Zhejiang University, 2018. | |
7 | 李孟杰, 李清方, 王作华. 油田含油污泥处理技术浅谈[J]. 清洗世界, 2021, 37(2): 110-111. |
LI Mengjie, LI Qingfang, WANG Zuohua. Treatment technology of oily sludge in oil field[J]. Cleaning World, 2021, 37(2): 110-111. | |
8 | 王君, 刘天璐, 黄群星, 等. 储运含油污泥慢速热解特性分析[J]. 化工学报, 2017, 68(3): 1138-1145. |
WANG Jun, LIU Tianlu, HUANG Qunxing, et al. Slow pyrolysis characteristics of petroleum sludge[J]. CIESC Journal, 2017, 68(3): 1138-1145. | |
9 | DI Xiaojing, PAN Haodan, LI Donghao, et al. Thermochemical recycling of oily sludge by catalytic pyrolysis: A review[J]. Scanning, 2021, 2021: 1131858. |
10 | 焦文超, 郭晓丹. 异位热解技术处理塔河油田含油污泥[J]. 化工环保, 2021, 41(3): 318-323. |
JIAO Wenchao, GUO Xiaodan. Treatment of oily sludge in Tahe oilfield by heterotopic pyrolysis[J]. Environmental Protection of Chemical Industry, 2021, 41(3): 318-323. | |
11 | 张玉娟, 康宇龙, 黄甫慧君, 等. 三相物理萃取法处理含油污泥工艺研究[J]. 应用化工, 2015, 44(6): 1061-1063. |
ZHANG Yujuan, KANG Yulong, HUANGFU Huijun, et al. Study on oily sludge treatment conditions by triphase extraction method[J]. Applied Chemical Industry, 2015, 44(6): 1061-1063. | |
12 | 梁宏宝, 韩东, 陈博, 等. 萃取法处理含油污泥实验研究[J]. 油气田地面工程, 2018, 37(9): 5-9. |
LIANG Hongbao, HAN Dong, CHEN Bo, et al. Experimental study on oily sludge treatment by the extraction method[J]. Oil-Gas Field Surface Engineering, 2018, 37(9): 5-9. | |
13 | 刘宝洪, 王通, 赵瑞玉, 等. 溶剂萃取法在含油污泥处理中的应用与研究进展[J]. 现代化工, 2013, 33(9): 32-35. |
LIU Baohong, WANG Tong, ZHAO Ruiyu, et al. Application and development of solvent extraction in treatment of oily sludge[J]. Modern Chemical Industry, 2013, 33(9): 32-35. | |
14 | 肖楠, 朱玲, 王春雨, 等. 含油污泥化学清洗处理实验研究与工艺参数优化[J]. 环境工程学报, 2019, 13(5): 1202-1208. |
XIAO Nan, ZHU Ling, WANG Chunyu, et al. Experimental study and process parameters optimization for oily sludge treatment by chemical cleaning[J]. Chinese Journal of Environmental Engineering, 2019, 13(5): 1202-1208. | |
15 | DUAN Ming, WANG Xiaodong, FANG Shenwen, et al. Treatment of Daqing oily sludge by thermochemical cleaning method[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 554: 272-278. |
16 | 张楠, 王宇晶, 刘涉江, 等. 含油污泥化学热洗技术研究现状与进展[J]. 化工进展, 2021, 40(3): 1276-1283. |
ZHANG Nan, WANG Yujing, LIU Shejiang, et al. Progress and prospects on the thermochemical cleaning of oily sludge[J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1276-1283. | |
17 | 全翠, 贾翔雨, 高宁博. 油田含油污泥处理及资源化技术研究进展[C]//中国环境科学学会2021年科学技术年会——环境工程技术创新与应用分会场论文集(二). 天津. 2021: 316-324. |
QUAN Cui, JIA Xiangyu, GAO Ningbo. Research progress of oily sludge treatment and resource utilization technology[C]//. Environmental Engineering Technology Innovation and Application Sub-Conference of 2021 Annual Science and Technology Conference of Chinese Society for Environmental Sciences—Environmental Engineering Technology Innovation and Application Conference Proceedings (Ⅱ). Tianjin. 2021: 316-324. | |
18 | 刘发强, 曲天煜, 张媛. 炼油厂含油污泥处理技术进展[J]. 工业水处理, 2017, 37(12): 1-5. |
LIU Faqiang, QU Tianyu, ZHANG Yuan. Technical progress in the treatment of oil-bearing sludge in refineries[J]. Industrial Water Treatment, 2017, 37(12): 1-5. | |
19 | 海云龙, 阎维平, 张旭辉. 流化床富氧焚烧含油污泥技术经济性分析[J]. 化工环保, 2016, 36(2): 211-215. |
Yunlong HAI, YAN Weiping, ZHANG Xuhui. Technical and economic analysis of oxygen-enriched incineration of oily sludge in fluidized bed[J]. Environmental Protection of Chemical Industry, 2016, 36(2): 211-215. | |
20 | 孙晓红, 耿孝恒, 郭海莹, 等. 含油污泥主要危害及处理工艺研究[J]. 广州化工, 2018, 46(12): 99-101. |
SUN Xiaohong, GENG Xiaoheng, GUO Haiying, et al. Study on main harm and treatment process of oily sludge[J]. Guangzhou Chemical Industry, 2018, 46(12): 99-101. | |
21 | 王玉华, 陈传帅, 孟娟, 等. 含油污泥处置技术的新发展及其应用现状[J]. 安全与环境工程, 2018, 25(3): 103-110. |
WANG Yuhua, CHEN Chuanshuai, MENG Juan, et al. Development and application of disposal techniques on oil sludge[J]. Safety and Environmental Engineering, 2018, 25(3): 103-110. | |
22 | 罗飞, 贺利乐. 生物法降解含油污泥反应器流场及工作参数研究[J]. 中国环境科学, 2022, 42(4): 1754-1761. |
LUO Fei, HE Lile. Study on flow field and working parameters of bioreactor for oily sludge degradation[J]. China Environmental Science, 2022, 42(4): 1754-1761. | |
23 | 张军, 贾悦, 刘博, 等. 油气集输过程中含油污泥减量化[J]. 化工进展, 2020, 39(S2): 372-378. |
ZHANG Jun, JIA Yue, LIU Bo, et al. Oily sludge reduction in oil and gas gathering process[J]. Chemical Industry and Engineering Progress, 2020, 39(S2): 372-378. | |
24 | 雷大鹏, 单晖峰, 杨登, 等. 工程化阴燃技术治理含油污泥工程示范[J]. 环境工程, 2022, 40(10): 150-155, 168. |
LEI Dapeng, SHAN Huifeng, YANG Deng, et al. Demonstration project of oil sludge treatment with engineered smoldering technology[J]. Environmental Engineering, 2022, 40(10): 150-155, 168. | |
25 | GAN Zongwei, ZHAO Cheng, LI Yuzhong, et al. Experimental investigation on smoldering combustion for oil sludge treatment: Influence of key parameters and product analysis[J]. Fuel, 2022, 316: 123354. |
26 | 张万虎, 刘星涛. 高浓度有机污染土壤处理技术研究进展[J]. 化工管理, 2020(21): 106-107. |
ZHANG Wanhu, LIU Xingtao. Research progress on treatment technology of soil with high concentration organic pollution[J]. Chemical Enterprise Management, 2020(21): 106-107. | |
27 | 王天宇, 蒋文明, 刘杨. 含油污泥阴燃处理技术研究与进展[J]. 化工学报, 2020, 71(4): 1411-1423. |
WANG Tianyu, JIANG Wenming, LIU Yang. Research and progress of smoldering combustion technology for oily sludge[J]. CIESC Journal, 2020, 71(4): 1411-1423. | |
28 | 贾甜丽, 洪梅, 贾艾媛, 等. 高浓度有机污染土壤自燃修复技术的影响因素[J]. 科学技术与工程, 2019, 19(25): 379-385. |
JIA Tianli, HONG Mei, JIA Aiyuan, et al. Effect factors of self-sustaining treatment for active remediation remediation technique in high concentration organic contaminated soil[J]. Science Technology and Engineering, 2019, 19(25): 379-385. | |
29 | 杜玉吉, 刘文杰, 王海刚, 等. 污染土壤原位热修复应用进展及综合评价[J]. 环境保护与循环经济, 2018, 38(12): 26-31. |
DU Yuji, LIU Wenjie, WANG Haigang, et al. Progress and comprehensive evaluation of in situ thermal remediation of contaminated soil[J]. Environmental Protection and Circular Economy, 2018, 38(12): 26-31. | |
30 | 李沅宁, 郭渊明, 侯晓松, 等. 石油污染土壤原位修复技术的研究进展[J]. 应用化工, 2022, 51(6): 1736-1740. |
LI Yuanning, GUO Yuanming, HOU Xiaosong, et al. Research progress of in-situ remediation technology of petroleum contaminated soil[J]. Applied Chemical Industry, 2022, 51(6): 1736-1740. | |
31 | CARVALHO Elaine R, GURGEL VERAS Carlos A, CARVALHOJR João A. Experimental investigation of smouldering in biomass[J]. Biomass and Bioenergy, 2002, 22(4): 283-294. |
32 | HOWELL John Reid, HALL Matthew J, ELLZEY Janet L. Combustion of hydrocarbon fuels within porous inert media[J]. Progress in Energy and Combustion Science, 1996, 22(2): 121-145. |
33 | VANTELON Jean Pierre, LODEHO Bénigne, PIGNOUX Stephane, et al. Experimental observations on the thermal degradation of a porous bed of tires[J]. Proceedings of the Combustion Institute, 2005, 30(2): 2239-2246. |
34 | PIRONI Paolo, SWITZER Christine, REIN Guillermo, et al. Small-scale forward smouldering experiments for remediation of coal tar in inert media[J]. Proceedings of the Combustion Institute, 2009, 32(2): 1957-1964. |
35 | SWITZER C, PIRONI P, GERHARD J I, et al. Self-sustaining smoldering combustion: A novel remediation process for non-aqueous-phase liquids in porous media[J]. Environmental Science & Technology, 2009, 43(15): 5871-5877. |
36 | PIRONI Paolo, SWITZER Christine, GERHARD Jason I, et al. Self-sustaining smoldering combustion for NAPL remediation: Laboratory evaluation of process sensitivity to key parameters[J]. Environmental Science & Technology, 2011, 45(7): 2980-2986. |
37 | SWITZER Christine, PIRONI Paolo, GERHARD Jason I, et al. Volumetric scale-up of smouldering remediation of contaminated materials[J]. Journal of Hazardous Materials, 2014, 268: 51-60. |
38 | SCHOLES Grant C, GERHARD Jason I, GRANT Gavin P, et al. Smoldering remediation of coal-tar-contaminated soil: Pilot field tests of STAR[J]. Environmental Science & Technology, 2015, 49(24): 14334-14342. |
39 | Savron. Origin of savron[Z]. https://www.savronsolutions.com/origin/. |
40 | 贾甜丽, 洪梅, 贾艾媛, 等. 高浓度有机污染土壤自燃修复技术的影响因素[J]. 科学技术与工程, 2019, 19(25): 379-385. |
JIA Tianli, HONG Mei, JIA Aiyuan, et al. Effect factors of self-sustaining treatment for active remediation remediation technique in high concentration organic contaminated soil[J]. Science Technology and Engineering, 2019, 19(25): 379-385. | |
41 | 陈晓丽, 李龙, 雷大鹏, 等. 阴燃技术在土壤修复中应用的中试[J]. 化工设计通讯, 2019, 45(10): 37-38. |
CHEN Xiaoli, LI Long, LEI Dapeng, et al. Pilot test of smoldering technology applied in soil remediation[J]. Chemical Engineering Design Communications, 2019, 45(10): 37-38. | |
42 | 黄静, 刘建坤, 蒋廷学, 等. 含油污泥热解技术研究进展[J]. 化工进展, 2019, 38(S1): 232-239. |
HUANG Jing, LIU Jiankun, JIANG Tingxue, et al. Research progress on pyrolysis of oily sludge[J]. Chemical Industry and Engineering Progress, 2019, 38(S1): 232-239. | |
43 | 刘洋. 含油污泥的处理方法[J]. 油气田地面工程, 2012, 31(2): 73. |
LIU Yang. Treatment of oily sludge[J]. Oil-Gasfield Surface Engineering, 2012, 31(2): 73. | |
44 | 林琳. 含油污泥热处理技术研究进展[J]. 资源节约与环保, 2020(7): 128-129. |
LIN Lin. Research progress on heat treatment technology of oily sludge[J]. Resources Economization and Environmental Protection, 2020(7): 128-129. | |
45 | 成明锴, 李琛, 付建红, 等. 污泥阴燃过程及残渣特性分析研究[J]. 洁净煤技术, 2020, 26(5): 166-172. |
CHENG Mingkai, LI Chen, FU Jianhong, et al. Study on the smouldering treatment of sewage sludge and its residue property[J]. Clean Coal Technology, 2020, 26(5): 166-172. | |
46 | WANG Tianyu, JIANG Wenming, LIU Yang, et al. Experimental research on smoldering combustion for oily sludge[J]. IOP Conference Series: Earth and Environmental Science, 2020, 569(1): 012019. |
47 | SOLINGER R L. Starx technology for waste oil sludge treatment investigated with numerical modelling[D]. Electronic Thesis and Dissertation Repository, 2016: 4153. |
48 | DING Da, SONG Xin, WEI Changlong, et al. A review on the sustainability of thermal treatment for contaminated soils[J]. Environmental Pollution, 2019, 253: 449-463. |
49 | REIN G. Smouldering fires and natural fuels, Chapter 2[M]. 2013. |
50 | VIDONISH Julia E, ALVAREZ Pedro J J, ZYGOURAKIS Kyriacos. Pyrolytic remediation of oil-contaminated soils: Reaction mechanisms, soil changes, and implications for treated soil fertility[J]. Industrial & Engineering Chemistry Research, 2018, 57(10): 3489-3500. |
51 | 詹咏, 张领军, 谢加才, 等. 热解终温对含油污泥三相产物特性的影响[J]. 环境工程学报, 2021, 15(7): 2409-2416. |
ZHAN Yong, ZHANG Lingjun, XIE Jiacai, et al. Effect of final pyrolysis temperature on characteristics of three-phase products of oily sludge[J]. Chinese Journal of Environmental Engineering, 2021, 15(7): 2409-2416. | |
52 | 葛传芹, 雷大鹏, 刘杉, 等. 采用异位阴燃修复技术处理含油固废中试实验[J]. 环境工程学报, 2022, 16(2): 601-611. |
GE Chuanqin, LEI Dapeng, LIU Shan, et al. Pilot studies on treatment of oily solid waste with ex situ smoldering remediation technology[J]. Chinese Journal of Environmental Engineering, 2022, 16(2): 601-611. | |
53 | 杨高玄, 占敬敬. 阴燃处理华北油田含油污泥的研究[J]. 应用化工, 2022, 51(2): 317-321. |
YANG Gaoxuan, ZHAN Jingjing. Study on the treatment of oily sludge in North China oilfield by smoldering[J]. Applied Chemical Industry, 2022, 51(2): 317-321. | |
54 | 赵成. 阴燃方法治理含油污泥的可行性探究及评价[D]. 济南: 山东大学, 2020. |
ZHAO Cheng. Feasibility study and evaluation of method of smoldering combustion for oil sludge treatment[D]. Jinan: Shandong University, 2020. | |
55 | YERMÁN L, WALL H, TORERO José L. Experimental investigation on the destruction rates of organic waste with high moisture content by means of self-sustained smoldering combustion[J]. Proceedings of the Combustion Institute, 2017, 36(3): 4419-4426. |
56 | YERMÁN L, WALL H, TORERO J, et al. Smoldering combustion as a treatment technology for feces: Sensitivity to key parameters[J]. Combustion Science and Technology, 2016, 188(6): 968-981. |
57 | WANG Jiahao, GRANT Gavin P, GERHARD Jason I. The influence of porous media heterogeneity on smouldering remediation[J]. Journal of Contaminant Hydrology, 2021, 237: 103756. |
58 | GRANT Gavin P, MAJOR David, SCHOLES Grant C, et al. Smoldering combustion (STAR) for the treatment of contaminated soils: Examining limitations and defining success[J]. Remediation Journal, 2016, 26(3): 27-51. |
59 | Savron. Remediation of petroleum hydrocarbons at a former refinery in Michigan[Z] https://www.savronsolutions.com/wp-content/uploads/2019/09/savron-case-study-in-situ-refined-phc-2016.pdf. |
60 | Savron. Demonstration system to treat hydrocarbon-impacted soils and tank bottom sludges[Z] https://www.savronsolutions.com/wp-content/uploads/2022/06/savron-case-study-starx-california-hottpad-demonstration.pdf. |
61 | 张汝壮. 污染土壤热修复技术及其对土壤性质的影响[J]. 科技导报, 2020, 38(17): 134-140. |
ZHANG Ruzhuang. Thermal remediation of contaminated soils—A review of thermal remediation technologies and influence on soil properties[J]. Science and Technology Review, 2020, 38(17): 134-140. |
[1] | 陈翔宇, 卞春林, 肖本益. 温度分级厌氧消化工艺的研究进展[J]. 化工进展, 2023, 42(9): 4872-4881. |
[2] | 许中硕, 周盼盼, 王宇晖, 黄威, 宋新山. 硫铁矿介导的自养反硝化研究进展[J]. 化工进展, 2023, 42(9): 4863-4871. |
[3] | 朱紫旋, 陈俊江, 张星星, 李祥, 刘文如, 吴鹏. 基于短程反硝化厌氧氨氧化新型污水生物脱氮工艺的研究进展[J]. 化工进展, 2023, 42(4): 2091-2100. |
[4] | 杨娟娟, 何林, 贺常晴, 李鑫钢, 隋红. 含油污泥多相复合调质降黏破乳分离过程[J]. 化工进展, 2023, 42(2): 614-623. |
[5] | 段一航, 高宁博, 全翠. 水热处理对含油污泥热解特性及动力学影响[J]. 化工进展, 2023, 42(2): 603-613. |
[6] | 杜金泽, 李源森, 蔡思超, 何林, 王成扬, 李鑫钢. 有机精馏釜残无害化处理与资源化转化研究进展与思考[J]. 化工进展, 2023, 42(2): 559-574. |
[7] | 苏景振, 詹健. 生物炭对水环境中微塑料的去除研究进展[J]. 化工进展, 2023, 42(10): 5445-5458. |
[8] | 蒋华义, 胡娟, 齐红媛, 游琰真, 王玉龙, 武哲. 磁性纳米粒子类型和质量浓度对微波热解含油污泥的影响[J]. 化工进展, 2022, 41(7): 3908-3914. |
[9] | 王宇晶, 张楠, 刘涉江, 苗辰, 刘秀丽. 热化学清洗含油污泥的效果评价及机理[J]. 化工进展, 2022, 41(6): 3333-3340. |
[10] | 郭之晗, 徐云翔, 李天皓, 黄子川, 刘文如, 沈耀良. 好氧颗粒污泥长期稳定运行研究进展[J]. 化工进展, 2022, 41(5): 2686-2697. |
[11] | 陈诗雨, 许志成, 杨婧, 徐浩, 延卫. 微生物燃料电池在废水处理中的研究进展[J]. 化工进展, 2022, 41(2): 951-963. |
[12] | 樊相汝, 羊依金, 郭旭晶, 张全碧. 软锰矿-含油污泥基活性炭对亚甲基蓝的吸附特性[J]. 化工进展, 2022, 41(12): 6664-6671. |
[13] | 贾文龙, 宋硕硕, 李长俊, 吴瑕, 杨帆, 张员瑞. 超临界CO2萃取含油污泥研究现状与进展[J]. 化工进展, 2022, 41(12): 6573-6585. |
[14] | 郑发, 李浩文, 林法伟, 张岩, 吴越强, 陈钊, 马文臣, 陈冠益. 大庆罐底油泥热解特性及污染物释放特性[J]. 化工进展, 2022, 41(1): 476-484. |
[15] | 张莉红, 李杰, 王亚娥, 谢慧娜, 赵炜, 李婧. Feammox: 一种新型自养生物脱氮技术[J]. 化工进展, 2022, 41(1): 391-399. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |