1 |
Judit RIBERA-PI, Marina BADIA-FABREGAT, Jose ESPÍ, et al. Decreasing environmental impact of landfill leachate treatment by MBR, RO and EDR hybrid treatment[J]. Environmental Technology, 2021, 42(22): 3508-3522.
|
2 |
KIM Namhyeok, JEONG Seongwoo, GO Wooseok, et al. A Na+ ion-selective desalination system utilizing a NASICON ceramic membrane[J]. Water Research, 2022, 215: 118250.
|
3 |
SUN Hongfang, ZHU Daoxu, SHI Peng, et al. Sustainable treatment and resource recovery of anion exchange spent brine by pilot-scale electrodialysis and ultrafiltration[J]. Membranes, 2022, 12(3): 273.
|
4 |
杨博, 李玉忠, 崔琳, 等. Mg2+对脱硫废水电解-电渗析过程的影响[J]. 化工进展, 2017, 36(S1): 482-488.
|
|
YANG Bo, LI Yuzhong, CUI Lin, et al. Influence of magnesium ions on electrolysis-electrodialysis process of desulfurization wastewater[J]. Chemical Industry and Engineering Progress, 2017, 36(S1): 482-488.
|
5 |
葛倩倩, 葛亮, 汪耀明, 等. 离子交换膜的发展态势与应用展望[J]. 化工进展, 2016, 35(6): 1774-1785.
|
|
GE Qianqian, GE Liang, WANG Yaoming, et al. Perspective in ion exchange membranes[J]. Chemical Industry and Engineering Progress, 2016, 35(6): 1774-1785.
|
6 |
颜海洋, 汪耀明, 蒋晨啸, 等. 离子膜电渗析在高盐废水“零排放”中的应用、机遇与挑战[J]. 化工进展, 2019, 38(1): 672-681.
|
|
YAN Haiyang, WANG Yaoming, JIANG Chenxiao, et al. Ion exchange membrane electrodialysis for high salinity wastewater “zero liquid discharge”: applications, opportunities and challenges[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 672-681.
|
7 |
KHOIRUDDIN, ARIONO Danu, SUBAGJO, et al. Surface modification of ion-exchange membranes: Methods, characteristics, and performance[J]. Journal of Applied Polymer Science, 2017, 134(48): 45540.
|
8 |
LI Yujiao, SHI Shaoyuan, CAO Hongbin, et al. Improvement of the antifouling performance and stability of an anion exchange membrane by surface modification with graphene oxide (GO) and polydopamine (PDA)[J]. Journal of Membrane Science, 2018, 566: 44-53.
|
9 |
LIU Yanlan, AI Kelong, LU Lehui, et al. Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields[J]. Chemical Reviews, 2014, 114(9): 5057-5115.
|
10 |
RUAN Huimin, ZHENG Zhihao, PAN Jiefeng, et al. Mussel-inspired sulfonated polydopamine coating on anion exchange membrane for improving permselectivity and anti-fouling property[J]. Journal of Membrane Science, 2018, 550: 427-435.
|
11 |
ALKHOUZAAM Abedalkader, QIBLAWEY Hazim. Novel polysulfone ultrafiltration membranes incorporating polydopamine functionalized graphene oxide with enhanced flux and fouling resistance[J]. Journal of Membrane Science, 2021, 620: 118900.
|
12 |
YANG Haocheng, LIAO Kunjian, HUANG He, et al. Mussel-inspired modification of a polymer membrane for ultra-high water permeability and oil-in-water emulsion separation[J]. Journal of Materials Chemistry A, 2014, 2(26): 10225-10230.
|
13 |
Yan LYU, YANG Haocheng, LIANG Hongqing, et al. Nanofiltration membranes via co-deposition of polydopamine/ polyethylenimine followed by cross-linking[J]. Journal of Membrane Science, 2015, 476: 50-58.
|
14 |
LI Jian, YUAN Shushan, WANG Jing, et al. Mussel-inspired modification of ion exchange membrane for monovalent separation[J]. Journal of Membrane Science, 2018, 553: 139-150.
|
15 |
HE Ai, ZHANG Chao, Yan LYU, et al. Mussel-inspired coatings directed and accelerated by an electric field[J]. Macromolecular Rapid Communications, 2016, 37(17): 1460-1465.
|
16 |
MAO Cuicui, WANG Xiao, ZHANG Wei, et al. Super-hydrophilic TiO2-based coating of anion exchange membranes with improved antifouling performance[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 614: 126136.
|
17 |
BALL Vincent, GRACIO José, VILA Mercedes, et al. Comparison of synthetic dopamine-eumelanin formed in the presence of oxygen and Cu2+ cations as oxidants[J]. Langmuir, 2013, 29(41): 12754-12761.
|
18 |
SATA Toshikatsu, FUNAKOSHI Toshio, AKAI Koji. Preparation and transport properties of composite membranes composed of cation exchange membranes and polypyrrole[J]. Macromolecules, 1996, 29(11): 4029-4035.
|
19 |
SATA Toshikatsu. Properties of composite membranes from ion exchange membranes and conducting polymers—Ⅰ. Conductivity of composite membrane from cation exchange membranes and polypyrrole[J]. Electrochimica Acta, 1994, 39(1): 131-136.
|
20 |
ZHANG Chao, Yang OU, LEI Wenxi, et al. CuSO4/H2O2- induced rapid deposition of polydopamine coatings with high uniformity and enhanced stability[J]. Angewandte Chemie International Edition, 2016, 55(9): 3054-3057.
|
21 |
WANG Zhao, XIE Yijun, LI Yiwen, et al. Tunable, metal-loaded polydopamine nanoparticles analyzed by magnetometry[J]. Chemistry of Materials, 2017, 29(19): 8195-8201.
|
22 |
CHARKOUDIAN Louise K, FRANZ Katherine J. Fe(Ⅲ)-coordination properties of neuromelanin components: 5,6-dihydroxyindole and 5,6-dihydroxyindole-2-carboxylic acid[J]. Inorganic Chemistry, 2006, 45(9): 3657-3664.
|
23 |
ALMEIDA Luís C, Tânia FRADE, CORREIA Rui D, et al. Electrosynthesis of polydopamine-ethanolamine films for the development of immunosensing interfaces[J]. Scientific Reports, 2021, 11(1): 2237.
|
24 |
JIANG Jinhong, ZHU Liping, ZHU Lijing, et al. Surface characteristics of a self-polymerized dopamine coating deposited on hydrophobic polymer films[J]. Langmuir, 2011, 27(23): 14180-14187.
|
25 |
BALL V, GRACIO J, VILA M, et al. Comparison of synthetic dopamine-eumelanin formed in the presence of oxygen and Cu2+ cations as oxidants[J]. 2013, 29(41): 12754-12761.
|
26 |
XU Jun, WANG Zhi, WANG Jixiao, et al. Positively charged aromatic polyamide reverse osmosis membrane with high anti-fouling property prepared by polyethylenimine grafting[J]. Desalination, 2015, 365: 398-406.
|
27 |
GAO Zhenfu, LIU Songbai, WANG Zhan, et al. Composite NF membranes with anti-bacterial activity prepared by electrostatic self-assembly for dye recycle[J]. Journal of the Taiwan Institute of Chemical Engineers, 2020, 106: 34-50.
|
28 |
KIM Suyeob, Taewoo GIM, KANG Sung Min. Stability-enhanced polydopamine coatings on solid substrates by iron(Ⅲ) coordination[J]. Progress in Organic Coatings, 2014, 77(8): 1336-1339.
|