化工进展 ›› 2023, Vol. 42 ›› Issue (1): 107-117.DOI: 10.16085/j.issn.1000-6613.2022-0478
刘君康1(), 王宏超1,2, 熊通1, 晏刚1(), 郭宁2, 刘睿2
收稿日期:
2022-03-25
修回日期:
2022-04-27
出版日期:
2023-01-25
发布日期:
2023-02-20
通讯作者:
晏刚
作者简介:
刘君康(1999—),男,硕士研究生,研究方向为换热器优化。E-mail:742580641@qq.com。
LIU Junkang1(), WANG Hongchao1,2, XIONG Tong1, YAN Gang1(), GUO Ning2, LIU Rui2
Received:
2022-03-25
Revised:
2022-04-27
Online:
2023-01-25
Published:
2023-02-20
Contact:
YAN Gang
摘要:
换热器的性能提升对制冷与热泵系统能效的提升具有重大影响,其中翅片管换热器的流路优化由于无需额外的成本、易于操作,是换热器性能提升的重要研究方向。本文总结了国内外学者对翅片管换热器流路的优化方法和评价指标。主要方法有基于空气侧风速分布的优化以及制冷剂侧流量的优化,基于管路结构的优化(包括管径、管路分合点、可变流路),基于微元换热最大化的优化,基于不可逆损失最小的㶲分析、熵产最小化、热阻平衡法以及遗传算法的优化。总结得出可变流路可以同时满足蒸发器与冷凝器的最佳流路,是冷暖两用制冷与热泵系统流路优化的最佳选择;此外,热阻平衡法可以同时优化蒸发器与冷凝器的流路,是当前适用性较好的优化方法。评价指标中等泵功率下换热量的大小与热阻平衡是较为通用的评价指标。基于上述分析,针对翅片管换热器的优化方法以及评价指标提出了展望与建议。
中图分类号:
刘君康, 王宏超, 熊通, 晏刚, 郭宁, 刘睿. 热泵空调翅片管换热器流路优化研究进展[J]. 化工进展, 2023, 42(1): 107-117.
LIU Junkang, WANG Hongchao, XIONG Tong, YAN Gang, GUO Ning, LIU Rui. Review on research status of circuit optimization of finned tube heat exchanger in heat pump and air conditioning[J]. Chemical Industry and Engineering Progress, 2023, 42(1): 107-117.
研究人员 | 年份 | 研究方法 | 优化方法 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
风速分布 | 流量 | 管径 | 分合点 | 变流路 | 微元换热 最大化 | 㶲分析 | 熵产 最小化 | 热阻 平衡法 | 遗传算法 | |||
Liang等[ | 2000 | 仿真 | √ | |||||||||
Liang等[ | 2001 | 仿真 | √ | |||||||||
Domanski等[ | 2006 | 仿真 | √ | √ | ||||||||
陶于兵等[ | 2007 | 仿真 | √ | |||||||||
Wu等[ | 2007 | 仿真 | √ | |||||||||
高晶丹[ | 2012 | 仿真 | √ | |||||||||
Ye等[ | 2012 | 仿真 | √ | √ | ||||||||
Yashar等[ | 2012 | 仿真/实验 | √ | √ | ||||||||
张春路等[ | 2014 | 仿真 | √ | |||||||||
Horton等[ | 2014 | 仿真/实验 | √ | √ | ||||||||
王强等[ | 2016 | 仿真/实验 | √ | |||||||||
张东辉等[ | 2016 | 仿真 | √ | √ | ||||||||
Lee等[ | 2016 | 仿真 | √ | √ | √ | √ | ||||||
曾淑剑等[ | 2017 | 仿真 | √ | √ | ||||||||
刘睿等[ | 2018 | 仿真 | √ | √ | ||||||||
赵定乾[ | 2018 | 仿真 | √ | |||||||||
Chen等[ | 2018 | 仿真/实验 | √ | |||||||||
Lu等[ | 2018 | 仿真 | √ | √ | ||||||||
Cen等[ | 2018 | 仿真 | √ | |||||||||
Ploskas[ | 2018 | 仿真 | √ | |||||||||
贺常相等[ | 2019 | 仿真/实验 | √ | √ | √ | |||||||
张浩等[ | 2019 | 仿真 | √ | √ | ||||||||
Li等[ | 2019 | 仿真 | √ | |||||||||
Ishaque等[ | 2020 | 仿真/实验 | √ | |||||||||
赵夫峰等[ | 2020 | 实验 | √ | √ | ||||||||
张浩等[ | 2021 | 仿真/实验 | √ | √ | ||||||||
Sim等[ | 2021 | 仿真 | √ |
表1 翅片管换热器流路优化方法
研究人员 | 年份 | 研究方法 | 优化方法 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
风速分布 | 流量 | 管径 | 分合点 | 变流路 | 微元换热 最大化 | 㶲分析 | 熵产 最小化 | 热阻 平衡法 | 遗传算法 | |||
Liang等[ | 2000 | 仿真 | √ | |||||||||
Liang等[ | 2001 | 仿真 | √ | |||||||||
Domanski等[ | 2006 | 仿真 | √ | √ | ||||||||
陶于兵等[ | 2007 | 仿真 | √ | |||||||||
Wu等[ | 2007 | 仿真 | √ | |||||||||
高晶丹[ | 2012 | 仿真 | √ | |||||||||
Ye等[ | 2012 | 仿真 | √ | √ | ||||||||
Yashar等[ | 2012 | 仿真/实验 | √ | √ | ||||||||
张春路等[ | 2014 | 仿真 | √ | |||||||||
Horton等[ | 2014 | 仿真/实验 | √ | √ | ||||||||
王强等[ | 2016 | 仿真/实验 | √ | |||||||||
张东辉等[ | 2016 | 仿真 | √ | √ | ||||||||
Lee等[ | 2016 | 仿真 | √ | √ | √ | √ | ||||||
曾淑剑等[ | 2017 | 仿真 | √ | √ | ||||||||
刘睿等[ | 2018 | 仿真 | √ | √ | ||||||||
赵定乾[ | 2018 | 仿真 | √ | |||||||||
Chen等[ | 2018 | 仿真/实验 | √ | |||||||||
Lu等[ | 2018 | 仿真 | √ | √ | ||||||||
Cen等[ | 2018 | 仿真 | √ | |||||||||
Ploskas[ | 2018 | 仿真 | √ | |||||||||
贺常相等[ | 2019 | 仿真/实验 | √ | √ | √ | |||||||
张浩等[ | 2019 | 仿真 | √ | √ | ||||||||
Li等[ | 2019 | 仿真 | √ | |||||||||
Ishaque等[ | 2020 | 仿真/实验 | √ | |||||||||
赵夫峰等[ | 2020 | 实验 | √ | √ | ||||||||
张浩等[ | 2021 | 仿真/实验 | √ | √ | ||||||||
Sim等[ | 2021 | 仿真 | √ |
1 | MOROSUK T, TSATSARONIS G. Advanced exergetic evaluation of refrigeration machines using different working fluids[J]. Energy, 2009, 34(12): 2248-2258. |
2 | VOLOSHCHUK V, GULLO P, SEREDA V. Advanced exergy-based performance enhancement of heat pump space heating system[J]. Energy, 2020, 205: 117953. |
3 | ABRAHAM P, SHARQAWY M H, SHAWKAT M E. Thermal and hydraulic characteristics of multiple row spiral finned tube heat exchangers[J]. International Journal of Refrigeration, 2021, 130: 56-66. |
4 | SHAFIEY DEHAJ M, HAJABDOLLAHI H. Fin and tube heat exchanger: constructal thermo-economic optimization[J]. International Journal of Heat and Mass Transfer, 2021, 173: 121257. |
5 | SARANGI S K, MISHRA D P. Effect of winglet location on heat transfer of a fin-and-tube heat exchanger[J]. Applied Thermal Engineering, 2017, 116: 528-540. |
6 | LIU Aoke, WANG Guanghui, WANG Dingbiao, et al. Study on the thermal and hydraulic performance of fin-and-tube heat exchanger based on topology optimization[J]. Applied Thermal Engineering, 2021, 197: 117380. |
7 | JIN Shijie, WANG Xiaochun, MA Xinlei, et al. Study on the performance of small tube diameter R290 fin-tube evaporator[J]. Procedia Engineering, 2017, 205: 1578-1583. |
8 | 邓斌, 陶文铨, 林澜. 冷凝器流程布置方案的研究与探讨[J]. 制冷学报, 2006, 27(2): 31-38. |
DENG Bin, TAO Wenquan, LIN Lan. Research and discussion on the arrangement scheme of condenser circuit[J]. Journal of Refrigeration, 2006, 27(2): 31-38. | |
9 | 黄东, 李权旭, 吴蓓, 等. 流路布置对热泵空调中冷凝和蒸发两用换热器性能的影响[J]. 西安交通大学学报, 2008, 42(9): 1107-1112. |
HUANG Dong, LI Quanxu, WU Bei, et al. Influence of circuit arrangement on performance of condensing and evaporating heat exchanger in heat pump air conditioner[J]. Journal of Xi'an Jiaotong University, 2008, 42(9): 1107-1112. | |
10 | 黄东, 贾杰楠. 室外换热器流路布置对热泵空调器的性能影响分析[J].西安交通大学学报, 2010, 44(7): 33-37. |
HUANG Dong, JIA Jienan. Effect of refrigerant circuit arrangement of outdoor heat exchanger on performance of heat pump air conditioner[J]. Journal of Xi'an Jiaotong University, 2010, 44(7): 33-37. | |
11 | LEE W J, JEONG J H. Heat transfer performance variations of condensers due to non-uniform air velocity distributions[J]. International Journal of Refrigeration, 2016, 69: 85-95. |
12 | ISHAQUE S, SIDDIQUI M I H, KIM M H. Effect of heat exchanger design on seasonal performance of heat pump systems[J]. International Journal of Heat and Mass Transfer, 2020, 151: 119404. |
13 | 王强, 刘燕龙, 刘祖一, 等. 不均匀风速分布下翅片管换热器的优化分析与实验[J]. 制冷学报, 2016, 37(6): 13-19. |
WANG Qiang, LIU Yanlong, LIU Zuyi, et al. An optimized design and experimental research on finned-tube evaporator with nonuniform air distribution[J]. Journal of Refrigeration, 2016, 37(6): 13-19. | |
14 | 张春路, 高洁. 非均匀风速下翅片管换热器冷剂流路稳健设计[J]. 同济大学学报(自然科学版), 2014, 42(1): 103-108. |
ZHANG Chunlu, GAO Jie. Robust design of fin-and-tube heat exchanger's refrigerant circuitry subject to different air maldistributions[J]. Journal of Tongji University (Natural Science), 2014, 42(1): 103-108. | |
15 | BACH C K, GROLL E A, BRAUN J E, et al. Mitigation of air flow maldistribution in evaporators[J]. Applied Thermal Engineering, 2014, 73(1): 879-887. |
16 | LIANG S Y, WONG T N, NATHAN G K. Numerical and experimental studies of refrigerant circuitry of evaporator coils[J]. International Journal of Refrigeration, 2001, 24(8): 823-833. |
17 | 刘睿, 任晓庆, 王宏超, 等. 不同流量下室外换热器流路的优化设计[C]//中国制冷空调工业协会第九届中国制冷空调行业信息大会论文集. 青岛: 中国制冷空调工业协会, 2018: 62-65. |
LIU Rui, REN Xiaoqing, WANG Hongchao, et al. Optimal design of circuit of outdoor heat exchanger under different flow rates[C]// Proceedings of the 9th China Refrigeration and Air Conditioning Industry Information Conference of China Refrigeration and Air Conditioning Industry Association. Qingdao: China Refrigeration and Air Conditioning Industry Association, 2018: 62-65. | |
18 | 陶于兵, 何雅玲, 唐连伟, 等. 管翅式换热器管路布置优化设计的数值研究[J]. 化工进展, 2007, 26(6): 893-898. |
TAO Yubing, HE Yanling, TANG Lianwei, et al. Numerical study on optimization design of circuit arrangement for tube-fin heat exchanger[J]. Chemical Industry and Engineering Progress, 2007, 26(6): 893-898. | |
19 | 曾淑剑. 房间空调器之室外机冷凝器最优流路设计[J]. 家电科技, 2017(5): 50-53. |
ZENG Shujian. Optimized design of the flow passage for the outdoor condenser of the room air conditioning[J]. China Appliance Technology, 2017(5): 50-53. | |
20 | KEAWKAMROP T, ASIRVATHAM L G, DALKILIÇ A S, et al. An experimental investigation of the air-side performance of crimped spiral fin-and-tube heat exchangers with a small tube diameter[J]. International Journal of Heat and Mass Transfer, 2021, 178: 121571. |
21 | 高晶丹, 吴伟, 丁国良, 等. 空调器用小管径翅片管蒸发器的优化设计方法[J]. 化工学报, 2012, 63(S2): 42-48. |
GAO Jingdan, WU Wei, DING Guoliang, et al. Principle of designing fin-and-tube evaporator with small diameter tubes for air conditioner[J]. CIESC Journal, 2012, 63(S2): 42-48. | |
22 | 赵定乾, 任滔, 丁国良, 等. 房间空调器采用3mm铜管的设计与性能分析[J]. 制冷技术, 2018, 38(3): 36-41. |
ZHAO Dingqian, REN Tao, DING Guoliang, et al. Design and performance analysis of room air conditioner with 3 mm copper tubes[J]. Chinese Journal of Refrigeration Technology, 2018, 38(3): 36-41, 47. | |
23 | 张东辉, 杨珊珊, 董瑞, 等. 流程布置对管翅式冷凝器综合性能的影响[J]. 江苏大学学报(自然科学版), 2016, 37(2): 168-173, 182. |
ZHANG Donghui, YANG Shanshan, DONG Rui, et al. Effect of refrigerant circuitry on comprehensive performance for finned-tube condenser[J]. Journal of Jiangsu University (Natural Science Edition), 2016, 37(2): 168-173, 182. | |
24 | 贺常相, 樊超超, 韩丙龙, 等. 基于提升变频房间空调器APF的室外换热器流路设计[J]. 制冷与空调, 2019, 19(6): 92-98. |
HE Changxiang, FAN Chaochao, HAN Binglong, et al. Flow path design of outdoor heat exchanger for improving APF of variable speed room air conditioner[J]. Refrigeration and Air-Conditioning, 2019, 19(6): 92-98. | |
25 | SIM J, LEE H, JEONG J H. Optimal design of variable-path heat exchanger for energy efficiency improvement of air-source heat pump system[J]. Applied Energy, 2021, 290: 116741. |
26 | 张浩, 何哲旺, 武滔, 等. 一种提升空调换热的室外机分布式流路模型开发[J]. 制冷技术, 2019, 39(2): 40-45. |
ZHANG Hao, HE Zhewang, WU Tao, et al. Development of numerical model of distributed flow path for outdoor units to improve heat transfer of air conditioner[J]. Chinese Journal of Refrigeration Technology, 2019, 39(2): 40-45. | |
27 | 赵夫峰, 武滔, 何哲旺, 等. 空调室外换热器分布式流路设计与实验验证[J]. 制冷学报, 2020, 41(1): 96-102. |
ZHAO F F, WU T, HE Z W, et al. Design and experimental validation of distributed flow path for outdoor heat exchanger of air conditioner[J]. Journal of Refrigeration, 2020, 41(1): 96-102. | |
28 | LIANG S Y, WONG T N, NATHAN G K. Study on refrigerant circuitry of condenser coils with exergy destruction analysis[J]. Applied Thermal Engineering, 2000, 20(6): 559-577. |
29 | LEE W J, KIM H J, JEONG J H. Method for determining the optimum number of circuits for a fin-tube condenser in a heat pump[J]. International Journal of Heat and Mass Transfer, 2016, 98: 462-471. |
30 | CHEN Jianyong, LI Yunhai, DING Rong, et al. Comparative performance of air-conditioning systems with different refrigerant circuitries in liquid-separation condenser[J]. International Journal of Refrigeration, 2018, 92: 154-164. |
31 | YE H Y, LEE K S. Refrigerant circuitry design of fin-and-tube condenser based on entropy generation minimization[J]. International Journal of Refrigeration, 2012, 35(5): 1430-1438. |
32 | HESSELGREAVES J E. Rationalisation of second law analysis of heat exchangers[J]. International Journal of Heat and Mass Transfer, 2000, 43(22): 4189-4204. |
33 | 张浩, 侯泽飞, 李杏党, 等. “整数梯度下降”算法对热泵用翅片管蒸发器流路的优化[J]. 制冷学报, 2021, 42(3): 34-41. |
ZHANG Hao, HOU Zefei, LI Xingdang, et al. Refrigerant circuitry optimization for heat pump finned-tube evaporators with integer gradient descent algorithm[J]. Journal of Refrigeration, 2021, 42(3): 34-41. | |
34 | JIANG H B, AUTE V, RADERMACHER R. CoilDesigner: a general-purpose simulation and design tool for air-to-refrigerant heat exchangers[J]. International Journal of Refrigeration, 2006, 29(4): 601-610. |
35 | WU Zhigang, DING Guoliang, WANG Kaijian, et al. Application of a genetic algorithm to optimize the refrigerant circuit of fin-and-tube heat exchangers for maximum heat transfer or shortest tube[J]. International Journal of Thermal Sciences, 2008, 47(8): 985-997. |
36 | DOMANSKI P A, YASHAR D. Optimization of finned-tube condensers using an intelligent system[J]. International Journal of Refrigeration, 2007, 30(3): 482-488. |
37 | YASHAR D A, WOJTUSIAK J, KAUFMAN K, et al. A dual-mode evolutionary algorithm for designing optimized refrigerant circuitries for finned-tube heat exchangers[J]. HVAC&R Research, 2012, 18(5): 834-844. |
38 | YASHAR D A, LEE S, DOMANSKI P A. Rooftop air-conditioning unit performance improvement using refrigerant circuitry optimization[J]. Applied Thermal Engineering, 2015, 83: 81-87. |
39 | LU Biwang, WU Jianghong, LIANG Zhihao, et al. Circuitry arrangement optimization for multi-tube phase change material heat exchanger using genetic algorithm coupled with numerical simulation[J]. Energy Conversion and Management, 2018, 175: 213-226. |
40 | CEN Jiwen, HU Jianyao, JIANG Fang ming. An automatic refrigerant circuit generation method for finned-tube heat exchangers[J]. The Canadian Journal of Chemical Engineering, 2018, 96(12): 2661-2672. |
41 | PLOSKAS N, LAUGHMAN C, RAGHUNATHAN A U, et al. Optimization of circuitry arrangements for heat exchangers using derivative-free optimization[J]. Chemical Engineering Research and Design, 2018, 131: 16-28. |
42 | LI Zhenning, AUTE V, LING Jiazhen. Tube-fin heat exchanger circuitry optimization using integer permutation based genetic algorithm[J]. International Journal of Refrigeration, 2019, 103: 135-144. |
43 | KWAK Y, HWANG S, JEONG J H. Effect of part load operating conditions of an air conditioner on the number of refrigerant paths and heat transfer performance of a condenser[J]. Energy Conversion and Management, 2020, 203: 112257. |
44 | GUO Z Y, LI Z X. Size effect on single-phase channel flow and heat transfer at microscale[J]. International Journal of Heat and Fluid Flow, 2003, 24(3): 284-298. |
45 | MEHENDALE S S, JACOBI A M, SHAH R K. Fluid flow and heat transfer at micro- and meso-scales with application to heat exchanger design[J]. Applied Mechanics Reviews, 2000, 53(7): 175-193. |
46 | PALM B. Heat transfer in microchannels[J]. Microscale Thermophysical Engineering, 2001, 5(3): 155-175. |
47 | STEWART S W, SHELTON S V. Finned-tube condenser design optimization using thermoeconomic isolation[J]. Applied Thermal Engineering, 2010, 30(14/15): 2096-2102. |
[1] | 肖辉, 张显均, 兰治科, 王苏豪, 王盛. 液态金属绕流管束流动传热进展[J]. 化工进展, 2023, 42(S1): 10-20. |
[2] | 李梦圆, 郭凡, 李群生. 聚乙烯醇生产中回收工段第三、第四精馏塔的模拟与优化[J]. 化工进展, 2023, 42(S1): 113-123. |
[3] | 张瑞杰, 刘志林, 王俊文, 张玮, 韩德求, 李婷, 邹雄. 水冷式复叠制冷系统的在线动态模拟与优化[J]. 化工进展, 2023, 42(S1): 124-132. |
[4] | 赵晨, 苗天泽, 张朝阳, 洪芳军, 汪大海. 负压状态窄缝通道乙二醇水溶液传热特性[J]. 化工进展, 2023, 42(S1): 148-157. |
[5] | 徐晨阳, 都健, 张磊. 基于图神经网络的化学反应优劣评价[J]. 化工进展, 2023, 42(S1): 205-212. |
[6] | 王福安. 300kt/a环氧丙烷工艺反应器降耗减排分析[J]. 化工进展, 2023, 42(S1): 213-218. |
[7] | 陈匡胤, 李蕊兰, 童杨, 沈建华. 质子交换膜燃料电池气体扩散层结构与设计研究进展[J]. 化工进展, 2023, 42(S1): 246-259. |
[8] | 王正坤, 黎四芳. 双子表面活性剂癸炔二醇的绿色合成[J]. 化工进展, 2023, 42(S1): 400-410. |
[9] | 孙玉玉, 蔡鑫磊, 汤吉海, 黄晶晶, 黄益平, 刘杰. 反应精馏合成甲基丙烯酸甲酯工艺优化及节能[J]. 化工进展, 2023, 42(S1): 56-63. |
[10] | 李春利, 韩晓光, 刘加朋, 王亚涛, 王晨希, 王洪海, 彭胜. 填料塔液体分布器的研究进展[J]. 化工进展, 2023, 42(9): 4479-4495. |
[11] | 陈林, 徐培渊, 张晓慧, 陈杰, 徐振军, 陈嘉祥, 密晓光, 冯永昌, 梅德清. 液化天然气绕管式换热器壳侧混合工质流动及传热特性[J]. 化工进展, 2023, 42(9): 4496-4503. |
[12] | 刘炫麟, 王驿凯, 戴苏洲, 殷勇高. 热泵中氨基甲酸铵分解反应特性及反应器结构优化[J]. 化工进展, 2023, 42(9): 4522-4530. |
[13] | 罗成, 范晓勇, 朱永红, 田丰, 崔楼伟, 杜崇鹏, 王飞利, 李冬, 郑化安. 中低温煤焦油加氢反应器不同分配器中液体分布的CFD模拟[J]. 化工进展, 2023, 42(9): 4538-4549. |
[14] | 王晨, 白浩良, 康雪. 大功率UV-LED散热与纳米TiO2光催化酸性红26耦合系统性能[J]. 化工进展, 2023, 42(9): 4905-4916. |
[15] | 李卫华, 于倩雯, 尹俊权, 吴寅凯, 孙英杰, 王琰, 王华伟, 杨玉飞, 龙於洋, 黄启飞, 葛燕辰, 何依洋, 赵灵燕. 酸雨环境下填埋飞灰吨袋破损后重金属的溶出行为[J]. 化工进展, 2023, 42(9): 4917-4928. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |