1 |
《中国地热能发展报告(2018)》白皮书发布[J]. 地质装备, 2019, 20(2): 3-6.
|
|
China geothermal energy development report (2018) [J]. Equipment for Geotechnical Engineering, 2019, 20(2): 3-6.
|
2 |
蔡义汉. 地热直接利用[M]. 天津: 天津大学出版社, 2004.
|
|
CAI Yihan. Geothermal direct-use[M]. Tianjin: Tianjin University Press, 2004.
|
3 |
ODDO J E, TOMSON M B. Why scale forms in the oil field and methods to predict it[J]. SPE Production & Facilities, 1994, 9(1): 47-54.
|
4 |
BOCH Ronny, LEIS Albrecht, HASLINGER Edith, et al. Scale-fragment formation impairing geothermal energy production: interacting H2S corrosion and CaCO3 crystal growth[J]. Geothermal Energy, 2017, 5(1): 1-19.
|
5 |
刘明言. 地热流体的腐蚀与结垢控制现状[J]. 新能源进展, 2015, 3(1): 38-46.
|
|
LIU Mingyan. A review on controls of corrosion and scaling in geothermal fluids[J]. Advances in New and Renewable Energy, 2015, 3(1): 38-46.
|
6 |
刘明言, 朱家玲. 地热能利用中的防腐防垢研究进展[J]. 化工进展, 2011, 30(5): 1120-1123.
|
|
LIU Mingyan, ZHU Jialing. Progress of corrosion and fouling prevention in utilization of geothermal energy[J]. Chemical Industry and Engineering Progress, 2011, 30(5): 1120-1123.
|
7 |
TOPCU Gokhan, KOÇ Gonca A, BABA Alper, et al. The injection of CO2 to hypersaline geothermal brine: a case study for Tuzla region[J]. Geothermics, 2019, 80: 86-91.
|
8 |
LEDÉSERT Béatrice A, HÉBERT Ronan L, MOUCHOT Justine, et al. Scaling in a geothermal heat exchanger at soultz-sous-forêts (upper Rhine graben, France): a XRD and SEM-EDS characterization of sulfide precipitates[J]. Geosciences, 2021, 11(7): 271.
|
9 |
李义曼, 庞忠和. 地热系统碳酸钙垢形成原因及定量化评价[J]. 新能源进展, 2018, 6(4): 274-281.
|
|
LI Yiman, PANG Zhonghe. Carbonate calcium scale formation and quantitative assessment in geothermal system[J]. Advances in New and Renewable Energy, 2018, 6(4): 274-281.
|
10 |
蔡正敏, 李刚, 李源, 等. 肯尼亚地热电站结垢问题的日常维护[J]. 科技视界, 2018(25): 41-43.
|
|
CAI Zhengmin, LI Gang, LI Yuan, et al. Maintenance of geothermal power plant in Kenya[J]. Science & Technology Vision, 2018(25): 41-43.
|
11 |
SATMAN Abdurrahman, UGUR Zuleyha, ONUR Mustafa. The effect of calcite deposition on geothermal well inflow performance[J]. Geothermics, 1999, 28(3): 425-444.
|
12 |
Gabriella STÁHL, György PÁTZAY, László WEISER, et al. Study of calcite scaling and corrosion processes in geothermal systems[J]. Geothermics, 2000, 29(1): 105-119.
|
13 |
SPINTHAKI Argyro, MATHEIS Juergen, HATER Wolfgang, et al. Antiscalant-driven inhibition and stabilization of “magnesium silicate” under geothermal stresses: the role of magnesium-phosphonate coordination chemistry[J]. Energy & Fuels, 2018, 32(11): 11749-11760.
|
14 |
Stefán ARNÓRSSON, SIGURDSSON Sven, Hördur SVAVARSSON. The chemistry of geothermal waters in Iceland. Ⅰ. Calculation of aqueous speciation from 0° to 370℃[J]. Geochimica et Cosmochimica Acta, 1982, 46(9): 1513-1532.
|
15 |
Gültekin TARCAN, Tuğbanur ÖZEN, Ünsal GEMICI, et al. Geochemical assessment of mineral scaling in Kzldere geothermal field, Turkey[J]. Environmental Earth Sciences, 2016, 75(19): 1317-1335.
|
16 |
REED M H, SPYCHER N F, PALANDRI J. Users guide for CHIM-XPT: a program for computing reaction processes in aqueous-mineral-gas systems and MINTAB guide[M]. version 2.43. Eugene, Oregon: University of Oregon, 2012.
|
17 |
Stefán ARNÓRSSON. Deposition of calcium carbonate minerals from geothermal waters—Theoretical considerations[J]. Geothermics, 1989, 18(1/2): 33-39.
|
18 |
O'SULLIVAN Michael J, PRUESS Karsten, LIPPMANN Marcelo J. State of the art of geothermal reservoir simulation[J]. Geothermics, 2001, 30(4): 395-429.
|
19 |
BÄCHLER D, KOHL T. Coupled thermal-hydraulic-chemical modelling of enhanced geothermal systems[J]. Geophysical Journal International, 2005, 161(2): 533-548.
|
20 |
RYLEY D J. The mass discharge of a geofluid from a geothermal reservoir—Well system with flashing flow in the bore[J]. Geothermics, 1980, 9(3/4): 221-235.
|
21 |
CHADHA P K, MALIN M R, PALACIO-PEREZ A. Modelling of two-phase flow inside geothermal wells[J]. Applied Mathematical Modelling, 1993, 17(5): 236-245.
|
22 |
BARELLI A, CORSI R, Del PIZZO G, et al. A two-phase flow model for geothermal wells in the presence of non-condensable gas[J]. Geothermics, 1982, 11(3): 175-191.
|
23 |
BANKOFF S G. A variable density single-fluid model for two-phase flow with particular reference to steam-water flow[J]. Journal of Heat Transfer, 1960, 82(4): 265-272.
|
24 |
PÁTZAY G, STÁHL G, KÁRMÁN F H, et al. Modeling of scale formation and corrosion from geothermal water[J]. Electrochimica Acta, 1998, 43(1/2): 137-147.
|
25 |
AKIN Taylan, Aygün GÜNEY, KARGI Hulusi. Modeling of calcite scaling and estimation of gas breakout depth in a geothermal well by using PHREEQC[C]//Fortieth Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, 2015:1-8.
|
26 |
HAIZLIP Jill, Aygün GÜNEY, HAKLIDIR Fusun Servin Tut, et al. The impact of high noncondensible gas concentrations on well performance Kizildere geothermal reservoir, TURKEY[C]// Thirty-Seventh Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California 2013:1-6.
|
27 |
BJORNSSON G. A multi-feedzone geothermal wellbore simulator[R]. Office of Scientific and Technical Information (OSTI), 1987.
|
28 |
GUNN Calum, FREESTON Derek. An integrated steady-state wellbore simulation and analysis package[C]//Proceedings of the 13th New Zealand Geothermal Workshop. Auckland, NZ: New Zealand Geothermal Workshop,1991: 161-166.
|
29 |
GARG Sabodh K, PRITCHETT John W, ALEXANDER James H. A new liquid hold-up correlation for geothermal wells[J]. Geothermics, 2004, 33(6): 795-817.
|
30 |
王龙洋, 蒙西, 乔俊飞. 基于改进集合经验模态分解和深度信念网络的出水总磷预测[J]. 化工学报, 2021(5): 2745-2753.
|
|
WANG Longyang, MENG Xi, QIAO Junfei. Prediction of effluent total phosphorus based on modified ensemble empirical mode decomposition and deep belief network[J]. CIESC Journal, 2021(5): 2745-2753.
|
31 |
ZHANG Guoqiang, EDDY Patuwo B, HU Michael Y. Forecasting with artificial neural networks[J]. International Journal of Forecasting, 1998, 14(1): 35-62.
|
32 |
AYDIN Hakki, AKIN Serhat, SENTURK Erdinc. A proxy model for determining reservoir pressure and temperature for geothermal wells[J]. Geothermics, 2020, 88: 101916.
|
33 |
A Álvarez del CASTILLO, SANTOYO E, GARCÍA-VALLADARES O. Α new void fraction correlation inferred from artificial neural networks for modeling two-phase flows in geothermal wells[J]. Computers & Geosciences, 2012, 41: 25-39.
|
34 |
赵黎丽. 两种人工智能方法应用于地热热泵系统辨识[J]. 系统仿真学报, 2004, 16(7): 1376-1379.
|
|
ZHAO Lili. Two artificial intelligent methods applied in the identification of geothermal heat pump system[J]. Acta Simulata Systematica Sinica, 2004, 16(7): 1376-1379.
|
35 |
梁海军, 郭啸峰, 高涛, 等. 河北博野某地热井结垢位置预测及影响因素分析[J]. 石油钻探技术, 2020, 48(5): 105-110.
|
|
LIANG Haijun, GUO Xiaofeng, GAO Tao, et al. Scaling spot prediction and analysis of influencing factors for a geothermal well in Boye County, Hebei Province[J]. Petroleum Drilling Techniques, 2020, 48(5): 105-110.
|
36 |
BASSAM A, ORTEGA-TOLEDO D, HERNANDEZ J A, et al. Artificial neural network for the evaluation of CO2 corrosion in a pipeline steel[J]. Journal of Solid State Electrochemistry, 2009, 13(5): 773-780.
|
37 |
张冰, 唐和礼, 黄冬梅, 等. 人工神经网络及智能算法在膜污染研究中的应用[J]. 膜科学与技术, 2021, 41(4): 160-169.
|
|
ZHANG Bing, TANG Heli, HUANG Dongmei, et al. Applications of artificial neural networks and intelligent algorithms in the research of membrane fouling: a critical review[J]. Membrane Science and Technology, 2021, 41(4): 160-169.
|
38 |
张驰, 郭媛, 黎明. 人工神经网络模型发展及应用综述[J]. 计算机工程与应用, 2021, 57(11): 57-69.
|
|
ZHANG Chi, GUO Yuan, LI Ming. Review of development and application of artificial neural network models[J]. Computer Engineering and Applications, 2021, 57(11): 57-69.
|