化工进展 ›› 2022, Vol. 41 ›› Issue (10): 5530-5540.DOI: 10.16085/j.issn.1000-6613.2021-2667
丁俊毅1(), 陈营东1, 王书浩1, 严文韬1, 周勇1,2(), 高从堦1
收稿日期:
2021-12-31
修回日期:
2022-02-07
出版日期:
2022-10-20
发布日期:
2022-10-21
通讯作者:
周勇
作者简介:
丁俊毅(1997—),男,硕士研究生,研究方向为膜科学与技术。E-mail:1149857769@qq.com。
基金资助:
DING Junyi1(), CHEN Yingdong1, WANG Shuhao1, YAN Wentao1, ZHOU Yong1,2(), GAO Congjie1
Received:
2021-12-31
Revised:
2022-02-07
Online:
2022-10-20
Published:
2022-10-21
Contact:
ZHOU Yong
摘要:
聚合物膜可以在甲醇/染料废液处理中发挥重要作用。为了保证膜在甲醇处理过程中的高性能,提高膜的耐甲醇溶胀性是必要的。然而,关于耐甲醇溶胀膜的研究相对较少。在此,提出将活性聚合物(聚异丁烯胺,PIBA)引入分离层,制备新型耐甲醇溶胀聚酰胺(PA)薄膜复合(TFC)膜。PIBA的掺入增加了膜的表面粗糙度、活性层厚度和活性层背面的致密性。PIBA提高了膜的耐甲醇溶胀性能:当PIBA的添加量从0增加到1g/L时,溶胀率从46.81%下降到15.00%。因此,PA/PIBA膜表现出比PA膜更高的染料(藏红T)截留率(99.53%与94.62%)。此外,在20bar(1bar=0.1MPa)的操作压力下,PA/PIBA膜保持了高通量[84.62L/(m2·h)]和良好的长期运行稳定性。最后,由于聚异丁烯(PIB)在先前的工作中同样用于提高膜的耐甲醇溶胀性,本工作将PIBA与PIB进行了比较,得出PIBA优于PIB。这项工作为开发一种用于甲醇流出物处理的分离膜提供了新途径。
中图分类号:
丁俊毅, 陈营东, 王书浩, 严文韬, 周勇, 高从堦. 基于聚异丁烯胺改性的耐甲醇溶胀新型薄膜复合膜[J]. 化工进展, 2022, 41(10): 5530-5540.
DING Junyi, CHEN Yingdong, WANG Shuhao, YAN Wentao, ZHOU Yong, GAO Congjie. Methanol swelling-resistant novel TFC membrane based on polyisobutylene amine modification[J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5530-5540.
膜样品 | 水相溶液 | 有机相溶液 | |||
---|---|---|---|---|---|
MPD浓度 /g·L-1 | CSA浓度 /g·L-1 | pH(TEA) | TMC浓度 /g·L-1 | PIBA浓度 /g·L-1 | |
P0 | 20 | 40 | 10 | 1 | 0 |
P1 | 20 | 40 | 10 | 1 | 0.2 |
P2 | 20 | 40 | 10 | 1 | 0.4 |
P3 | 20 | 40 | 10 | 1 | 0.6 |
P4 | 20 | 40 | 10 | 1 | 0.8 |
P5 | 20 | 40 | 10 | 1 | 1 |
表1 不同活性PA层样品的制备参数
膜样品 | 水相溶液 | 有机相溶液 | |||
---|---|---|---|---|---|
MPD浓度 /g·L-1 | CSA浓度 /g·L-1 | pH(TEA) | TMC浓度 /g·L-1 | PIBA浓度 /g·L-1 | |
P0 | 20 | 40 | 10 | 1 | 0 |
P1 | 20 | 40 | 10 | 1 | 0.2 |
P2 | 20 | 40 | 10 | 1 | 0.4 |
P3 | 20 | 40 | 10 | 1 | 0.6 |
P4 | 20 | 40 | 10 | 1 | 0.8 |
P5 | 20 | 40 | 10 | 1 | 1 |
膜 | 表面平均孔径/nm | 表面孔隙密度/个·μm-2 | 表面孔隙率/% |
---|---|---|---|
P0 | 19.9±8.5 | 153±23 | 5.40±0.14 |
P3 | 18.2±7.6 | 109±11 | 2.77±0.25 |
表2 P0膜和P3膜背面孔结构参数
膜 | 表面平均孔径/nm | 表面孔隙密度/个·μm-2 | 表面孔隙率/% |
---|---|---|---|
P0 | 19.9±8.5 | 153±23 | 5.40±0.14 |
P3 | 18.2±7.6 | 109±11 | 2.77±0.25 |
名称 | 价格/USD·g-1 | 结构式 |
---|---|---|
PIB | 1.876 | |
PIBA | 0.1705 |
表3 PIB与PIBA的结构式与价格对比
名称 | 价格/USD·g-1 | 结构式 |
---|---|---|
PIB | 1.876 | |
PIBA | 0.1705 |
1 | HYNES N R J, KUMAR J S, KAMYAB H, et al. Modern enabling techniques and adsorbents based dye removal with sustainability concerns in textile industrial sector—A comprehensive review[J]. Journal of Cleaner Production, 2020, 272: 122636. |
2 | JIA Fu, YIN Shiyuan, CHEN Lujie, et al. The circular economy in the textile and apparel industry: a systematic literature review[J]. Journal of Cleaner Production, 2020, 259: 120728. |
3 | STONE C, WINDSOR F M, MUNDAY M, et al. Natural or synthetic-how global trends in textile usage threaten freshwater environments[J]. Science of the Total Environment, 2020, 718: 134689. |
4 | SIVARAM N M, GOPAL P M, BARIK D. Toxic waste from textile industries[M]//Energy from toxic organic waste for heat and power generation. Amsterdam: Elsevier, 2019: 43-54. |
5 | KISHOR R, PURCHASE D, SARATALE G D, et al. Environment friendly degradation and detoxification of Congo red dye and textile industry wastewater by a newly isolated Bacillus cohnni (RKS9)[J]. Environmental Technology & Innovation, 2021, 22: 101425. |
6 | YUAN Yiqian, NING Xunan, ZHANG Yaping, et al. Chlorobenzene levels, component distribution, and ambient severity in wastewater from five textile dyeing wastewater treatment plants[J]. Ecotoxicology and Environmental Safety, 2020, 193: 110257. |
7 | ABOU TALEB M F, ABOU EL FADL F I, ALBALWI H. Adsorption of toxic dye in wastewater onto magnetic NVP/CS nanocomposite hydrogels synthesized using gamma radiation[J]. Separation and Purification Technology, 2021, 266: 118551. |
8 | ZHOU Yanbo, LU Jian, ZHOU Yi, et al. Recent advances for dyes removal using novel adsorbents: a review[J]. Environmental Pollution, 2019, 252: 352-365. |
9 | VAHEDI S, TAVAKOLI O, KHOOBI M, et al. Application of novel magnetic β-cyclodextrin-anhydride polymer nano-adsorbent in cationic dye removal from aqueous solution[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 80: 452-463. |
10 | PHUGARE S, PATIL P, GOVINDWAR S, et al. Exploitation of yeast biomass generated as a waste product of distillery industry for remediation of textile industry effluent[J]. International Biodeterioration & Biodegradation, 2010, 64(8): 716-726. |
11 | ROBINSON T, CHANDRAN B, NIGAM P. Studies on desorption of individual textile dyes and a synthetic dye effluent from dye-adsorbed agricultural residues using solvents[J]. Bioresource Technology, 2002, 84(3): 299-301. |
12 | KATHERESAN V, KANSEDO J, LAU S Y. Efficiency of various recent wastewater dye removal methods: a review[J]. Journal of Environmental Chemical Engineering, 2018, 6(4): 4676-4697. |
13 | TAN K B, VAKILI M, HORRI B A, et al. Adsorption of dyes by nanomaterials: recent developments and adsorption mechanisms[J]. Separation and Purification Technology, 2015, 150: 229-242. |
14 | WANG Jiade, YAO Jiachao, WANG Lou, et al. Multivariate optimization of the pulse electrochemical oxidation for treating recalcitrant dye wastewater[J]. Separation and Purification Technology, 2020, 230: 115851. |
15 | LIU C J, DONG G Y, TSURU T, et al. Organic solvent reverse osmosis membranes for organic liquid mixture separation: a review[J]. Journal of Membrane Science, 2021, 620: 118882. |
16 | WANG Chen, PARK M J, SEO D H, et al. Recent advances in nanomaterial-incorporated nanocomposite membranes for organic solvent nanofiltration[J]. Separation and Purification Technology, 2021, 268: 118657. |
17 | MINHAS M A, RAUF A, RAUF S, et al. Selective and efficient extraction of cationic dyes from industrial effluents through polymer inclusion membrane[J]. Separation and Purification Technology, 2021, 272: 118883. |
18 | SZEKELY G, JIMENEZ-SOLOMON M F, MARCHETTI P, et al.Sustainability assessment of organic solvent nanofiltration: from fabrication to application[J]. Green Chem, 2014, 16(10): 4440-4473. |
19 | LI Xiang, CHEN Binglun, CAI Weibin, et al. Highly stable PDMS-PTFPMS/PVDF OSN membranes for hexane recovery during vegetable oil production[J]. RSC Advances, 2017, 7(19): 11381-11388. |
20 | PRISKE M, LAZAR M, SCHNITZER C, et al. Recent applications of organic solvent nanofiltration[J]. Chemie Ingenieur Technik, 2016, 88(1/2): 39-49. |
21 | HERMANS S, MARIËN H, VAN GOETHEM C, et al. Recent developments in thin film (nano)composite membranes for solvent resistant nanofiltration[J]. Current Opinion in Chemical Engineering, 2015, 8: 45-54. |
22 | JIMENEZ SOLOMON M F, BHOLE Y, LIVINGSTON A G. High flux hydrophobic membranes for organic solvent nanofiltration (OSN)——interfacial polymerization, surface modification and solvent activation[J]. Journal of Membrane Science, 2013, 434: 193-203. |
23 | XIA L L, MCCUTCHEON J R. Understanding the influence of solvents on the intrinsic properties and performance of polyamide thin film composite membranes[J]. Separation and Purification Technology, 2020, 238: 116398. |
24 | XU Sunjie, SHEN Qian, XU Zhenliang, et al. Novel designed TFC membrane based on host-guest interaction for organic solvent nanofiltration (OSN)[J]. Journal of Membrane Science, 2019, 588: 117227. |
25 | JIMENEZ SOLOMON M F, BHOLE Y, LIVINGSTON A G. High flux membranes for organic solvent nanofiltration (OSN) —Interfacial polymerization with solvent activation[J]. Journal of Membrane Science, 2012, 423/424: 371-382. |
26 | LIU Chang, YANG Jing, GUO Bianbian, et al. Interfacial polymerization at the alkane/ionic liquid interface[J]. Angewandte Chemie International Edition, 2021, 60(26): 14636-14643. |
27 | SARANGO L, PASETA L, NAVARRO M, et al. Controlled deposition of MOFs by dip-coating in thin film nanocomposite membranes for organic solvent nanofiltration[J]. Journal of Industrial and Engineering Chemistry, 2018, 59: 8-16. |
28 | NAVARRO M, BENITO J, PASETA L, et al. Thin-film nanocomposite membrane with the minimum amount of MOF by the Langmuir-Schaefer technique for nanofiltration[J]. ACS Applied Materials & Interfaces, 2018, 10(1): 1278-1287. |
29 | DUONG P H H, ANJUM D H, PEINEMANN K V, et al. Thin porphyrin composite membranes with enhanced organic solvent transport[J]. Journal of Membrane Science, 2018, 563: 684-693. |
30 | Yuyan HAI, ZHANG Jinli, SHI Chang, et al. Thin film composite nanofiltration membrane prepared by the interfacial polymerization of 1,2,4,5-benzene tetracarbonyl chloride on the mixed amines cross-linked poly(ether imide) support[J]. Journal of Membrane Science, 2016, 520: 19-28. |
31 | XU Sunjie, SHEN Qian, TONG Yihao, et al. GWF-NH2 enhanced OSN membrane with trifluoromethyl groups in polyamide layer for rapid methanol recycling[J]. Separation and Purification Technology, 2020, 240: 116619. |
32 | CHAN E P, YOUNG A P, LEE J H, et al. Swelling of ultrathin crosslinked polyamide water desalination membranes[J]. Journal of Polymer Science Part B: Polymer Physics, 2013, 51(6): 385-391. |
33 | HERMANS S, DOM E, MARIËN H, et al. Efficient synthesis of interfacially polymerized membranes for solvent resistant nanofiltration[J]. Journal of Membrane Science, 2015, 476: 356-363. |
34 | ZHAO Yanyan, YUAN Qipeng. Effect of membrane pretreatment on performance of solvent resistant nanofiltration membranes in methanol solutions[J]. Journal of Membrane Science, 2006, 280(1/2): 195-201. |
35 | WANG Shuhao, GU Kaifeng, WANG Jian, et al. Enhanced the swelling resistance of polyamide membranes with reinforced concrete structure[J]. Journal of Membrane Science, 2019, 575: 191-199. |
36 | HABIB S, WEINMAN S T. A review on the synthesis of fully aromatic polyamide reverse osmosis membranes[J]. Desalination, 2021, 502: 114939. |
37 | LIND M L, GHOSH A K, JAWOR A, et al. Influence of zeolite crystal size on zeolite-polyamide thin film nanocomposite membranes[J]. Langmuir, 2009, 25(17): 10139-10145. |
38 | FREGE V. Swelling and morphology of the skin layer of polyamide composite membranes: an atomic force microscopy study[J]. Environmental Science & Technology, 2004, 38(11): 3168-3175. |
39 | KARAN S, JIANG Z, LIVINGSTON A G, et al. Sub-10nm polyamide nanofilms with ultrafast solvent transport for molecular separation[J]. Science, 2015, 348(6241): 1347-1351. |
40 | GEENS J, DER BRUGGEN B V, VANDECASTEELE C. Characterisation of the solvent stability of polymeric nanofiltration membranes by measurement of contact angles and swelling[J]. Chemical Engineering Science, 2004, 59(5): 1161-1164. |
41 | VAN GOETHEM C, VERBEKE R, HERMANS S, et al. Controlled positioning of MOFs in interfacially polymerized thin-film nanocomposites[J]. Journal of Materials Chemistry A, 2016, 4(42): 16368-16376. |
42 | WANG Shuhao, ZHOU Yong, GAO Congjie. Novel high boron removal polyamide reverse osmosis membranes[J]. Journal of Membrane Science, 2018, 554: 244-252. |
43 | GHOSH A K, JEONG B H, HUANG Xiaofei, et al. Impacts of reaction and curing conditions on polyamide composite reverse osmosis membrane properties[J]. Journal of Membrane Science, 2008, 311(1/2): 34-45. |
44 | SHEN Hongmei, WANG Shuhao, LI Yunhao, et al. MeSiCl3 functionalized polyamide thin film nanocomposite for low pressure RO membrane desalination[J]. Desalination, 2019, 463: 13-22. |
45 | SHI Mengqi, WANG Zhi, ZHAO Song, et al. A novel pathway for high performance RO membrane: preparing active layer with decreased thickness and enhanced compactness by incorporating tannic acid into the support[J]. Journal of Membrane Science, 2018, 555: 157-168. |
46 | YAN Hao, MIAO Xiaopei, XU Jian, et al. The porous structure of the fully-aromatic polyamide film in reverse osmosis membranes[J]. Journal of Membrane Science, 2015, 475: 504-510. |
47 | SHEN Hongmei, WANG Shuhao, XU Hao, et al. Preparation of polyamide thin film nanocomposite membranes containing silica nanoparticles via an in situ polymerization of SiCl4 in organic solution[J]. Journal of Membrane Science, 2018, 565: 145-156. |
48 | ZHENG Junfeng, LI Meng, YU Kai, et al. Sulfonated multiwall carbon nanotubes assisted thin-film nanocomposite membrane with enhanced water flux and anti-fouling property[J]. Journal of Membrane Science, 2017, 524: 344-353. |
49 | GUAN Jingyuan, FAN Lin, LIU Yanan, et al. Incorporating arginine-FeⅢ complex into polyamide membranes for enhanced water permeance and antifouling performance[J]. Journal of Membrane Science, 2020, 602: 117980. |
50 | MA D C, PEH S B, HAN G, et al. Thin-film nanocomposite (TFN) membranes incorporated with super-hydrophilic metal-organic framework (MOF) UiO-66: toward enhancement of water flux and salt rejection[J]. ACS Applied Materials & Interfaces, 2017, 9(8): 7523-7534. |
[1] | 贺美晋. 分子管理在炼油领域分离技术中的应用和发展趋势[J]. 化工进展, 2023, 42(S1): 260-266. |
[2] | 张祚群, 高扬, 白超杰, 薛立新. 二次界面聚合同步反扩散原位生长ZIF-8纳米粒子制备聚酰胺混合基质反渗透(RO)膜[J]. 化工进展, 2023, 42(S1): 364-373. |
[3] | 崔守成, 徐洪波, 彭楠. 两种MOFs材料用于O2/He吸附分离的模拟分析[J]. 化工进展, 2023, 42(S1): 382-390. |
[4] | 李世霖, 胡景泽, 王毅霖, 王庆吉, 邵磊. 电渗析分离提取高值组分的研究进展[J]. 化工进展, 2023, 42(S1): 420-429. |
[5] | 郭强, 赵文凯, 肖永厚. 增强流体扰动强化变压吸附甲硫醚/氮气分离的数值模拟[J]. 化工进展, 2023, 42(S1): 64-72. |
[6] | 廖志新, 罗涛, 王红, 孔佳骏, 申海平, 管翠诗, 王翠红, 佘玉成. 溶剂脱沥青技术应用与进展[J]. 化工进展, 2023, 42(9): 4573-4586. |
[7] | 林晓鹏, 肖友华, 管奕琛, 鲁晓东, 宗文杰, 傅深渊. 离子聚合物-金属复合材料(IPMC)柔性电极的研究进展[J]. 化工进展, 2023, 42(9): 4770-4782. |
[8] | 朱传强, 茹晋波, 孙亭亭, 谢兴旺, 李长明, 高士秋. 固体高分子脱硝剂选择性非催化还原NO x 特性[J]. 化工进展, 2023, 42(9): 4939-4946. |
[9] | 李雪佳, 李鹏, 李志霞, 晋墩尚, 郭强, 宋旭锋, 宋芃, 彭跃莲. 亲水和疏水改性膜的抗结垢和润湿能力的对比[J]. 化工进展, 2023, 42(8): 4458-4464. |
[10] | 徐杰, 夏隆博, 罗平, 邹栋, 仲兆祥. 面向膜蒸馏过程的全疏膜制备及其应用进展[J]. 化工进展, 2023, 42(8): 3943-3955. |
[11] | 李伯耿, 罗英武, 刘平伟. 聚合物产品工程研究内容与方法的思考[J]. 化工进展, 2023, 42(8): 3905-3909. |
[12] | 王报英, 王皝莹, 闫军营, 汪耀明, 徐铜文. 聚合物包覆膜在金属分离回收中的研究进展[J]. 化工进展, 2023, 42(8): 3990-4004. |
[13] | 潘宜昌, 周荣飞, 邢卫红. 高效分离同碳数烃的先进微孔膜:现状与挑战[J]. 化工进展, 2023, 42(8): 3926-3942. |
[14] | 周龙大, 赵立新, 徐保蕊, 张爽, 刘琳. 电场-旋流耦合强化多相介质分离研究进展[J]. 化工进展, 2023, 42(7): 3443-3456. |
[15] | 陆诗建, 刘苗苗, 杨菲, 张俊杰, 陈思铭, 刘玲, 康国俊, 李清方. 改良型CO2湿壁塔内气液两相流动规律及传质特性[J]. 化工进展, 2023, 42(7): 3457-3467. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |