1 |
MOHAN S, DINESHA P, KUMAR S. NO x reduction behaviour in copper zeolite catalysts for ammonia SCR systems: a review[J]. Chemical Engineering Journal, 2020, 384: 123253.
|
2 |
TANG Changjin, ZHANG Hongliang, DONG Lin. Ceria-based catalysts for low-temperature selective catalytic reduction of NO with NH3 [J]. Catalysis Science & Technology, 2016, 6(5): 1248-1264.
|
3 |
邢奕, 张文伯, 苏伟, 等. 中国钢铁行业超低排放之路[J]. 工程科学学报, 2021, 43(1): 1-9.
|
|
XING Yi, ZHANG Wenbo, SU Wei, et al. Research of ultra-low emission technologies of the iron and steel industry in China[J]. Chinese Journal of Engineering, 2021, 43(1): 1-9.
|
4 |
闫晓淼, 李玉然, 朱廷钰, 等. 钢铁烧结烟气多污染物排放及协同控制概述[J]. 环境工程技术学报, 2015, 5(2): 85-90.
|
|
YAN Xiaomiao, LI Yuran, ZHU Tingyu, et al. Review of emission and simultaneous control of multiple pollutants from iron-steel sintering flue gas[J]. Journal of Environmental Engineering Technology, 2015, 5(2): 85-90.
|
5 |
张洪亮, 施琦, 龙红明, 等. 烧结烟气中氮氧化物脱除工艺分析[J]. 钢铁, 2017, 52(5): 100-106.
|
|
ZHANG Hongliang, SHI Qi, LONG Hongming, et al. Analysis of NO x removal process in sintering flue gas[J]. Iron & Steel, 2017, 52(5): 100-106.
|
6 |
苏玉栋, 李咸伟, 范晓慧. 烧结过程中NO x 减排技术研究进展[J]. 烧结球团, 2013, 38(6): 41-44, 54.
|
|
SU Yudong, LI Xianwei, FAN Xiaohui. Research progress of NO x reduction technology in sintering process[J]. Sintering and Pelletizing, 2013, 38(6): 41-44, 54.
|
7 |
LING Shaohua, JING Changyong, ZHANG Lijuan. Analysis denitration technology for iron-steel sintering flue gas[C]//Proceedings of the 2015 International Symposium on Material, Energy and Environment Engineering. November 28-29, 2015. Changsha, China. Paris, France: Atlantis Press, 2015.
|
8 |
王淑勤, 刘丽凤, 程伟良. 低温SCR脱硝催化技术的应用进展[J]. 能源与环境, 2021(2): 65-69.
|
|
WANG Shuqin, LIU Lifeng, CHENG Weiliang. Application progress of low-temperature SCR denitrification catalytic technology[J]. Energy and Environment, 2021(2): 65-69.
|
9 |
刘福东, 单文坡, 石晓燕, 等. 用于NH3选择性催化还原NO x 的钒基催化剂[J]. 化学进展, 2012, 24(4): 445-455.
|
|
LIU Fudong, SHAN Wenpo, SHI Xiaoyan, et al. Vanadium-based catalysts for the selective catalytic reduction of NO x with NH3 [J]. Progress in Chemistry, 2012, 24(4): 445-455.
|
10 |
丁龙, 钱立新, 杨涛, 等. 烧结烟气中Zn对V2O5-WO3/TiO2催化剂脱除NO x 和二 英性能的影响[J]. 工程科学学报, 2021, 43(8): 1125-1135.
|
|
DING Long, QIAN Lixin, YANG Tao, et al. Influence of Zn in the iron ore sintering flue gas on the removal of NO x and dioxins by V2O5-WO3/TiO2 catalyst[J]. Chinese Journal of Engineering, 2021, 43(8): 1125-1135.
|
11 |
ZHANG Qijun, WU Yufeng, ZUO Tieyong. Titanium extraction from spent selective catalytic reduction catalysts in a NaOH molten-salt system: thermodynamic, experimental, and kinetic studies[J]. Metallurgical and Materials Transactions B, 2019, 50(1): 471-479.
|
12 |
侯学军, 章小明, 程文博, 等. 废钒钛基SCR催化剂的处置方法研究进展[J]. 化工进展, 2021, 40(10): 5313-5324.
|
|
HOU Xuejun, ZHANG Xiaoming, CHENG Wenbo, et al. Research on disposal methods of spent vanadium-titanium-based catalysts[J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5313-5324.
|
13 |
CHOI In Hyeok, MOON Gyeonghye, LEE Jin Young, et al. Extraction of tungsten and vanadium from spent selective catalytic reduction catalyst for stationary application by pressure leaching process[J]. Journal of Cleaner Production, 2018, 197: 163-169.
|
14 |
MOON Gyeonghye, KIM Jin Hyeong, LEE Jin Young, et al. Leaching of spent selective catalytic reduction catalyst using alkaline melting for recovery of titanium, tungsten, and vanadium[J]. Hydrometallurgy, 2019, 189: 105132.
|
15 |
LI Qichao, LIU Zhenyu, LIU Qingya. Kinetics of vanadium leaching from a spent industrial V2O5/TiO2 catalyst by sulfuric acid[J]. Industrial & Engineering Chemistry Research, 2014, 53(8): 2956-2962.
|
16 |
ZHANG Qijun, WU Yufeng, LI Lili, et al. Sustainable approach for spent V2O5-WO3/TiO2 catalysts management: selective recovery of heavy metal vanadium and production of value-added WO3-TiO2 photocatalysts[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(9): 12502-12510.
|
17 |
TANG Xingfu, LI Yonggang, HUANG Xiumin, et al. MnO x -CeO2 mixed oxide catalysts for complete oxidation of formaldehyde: effect of preparation method and calcination temperature[J]. Applied Catalysis B: Environmental, 2006, 62(3/4): 265-273.
|
18 |
KLIMCZAK M, KERN P, HEINZELMANN T, et al. High-throughput study of the effects of inorganic additives and poisons on NH3-SCR catalysts—Part Ⅰ: V2O5-WO3/TiO2 catalysts[J]. Applied Catalysis B: Environmental, 2010, 95(1/2): 39-47.
|
19 |
吴维昌. 标准电极电位数据手册[M]. 北京: 科学出版社, 1991.
|
|
WU Weichang. Manual of standard electrode potentials data[M]. Beijing: Science Press, 1991.
|
20 |
梁英教. 无机物热力学数据手册[M]. 沈阳: 东北大学出版社, 1993.
|
|
LIANG Yingjiao. Manual of inorganic thermodynamics data[M]. Shenyang: Northeast University Press, 1993.
|
21 |
叶大伦, 胡建华. 实用无机物热力学数据手册[M]. 2版. 北京: 冶金工业出版社, 2002.
|
|
YE Dalun, HU Jianhua. Manual of practical inorganic thermodynamics data[M]. 2nd ed. Beijing: Metallurgical Industry Press, 2002.
|
22 |
李照刚, 陈为亮, 张建军, 等. 响应曲面法优化软锰矿还原浸出的工艺[J]. 化学工程, 2018, 46(2): 72-78.
|
|
LI Zhaogang, CHEN Weiliang, ZHANG Jianjun, et al. Reductive leaching technology of pyrolusite optimized by response surface methodology[J]. Chemical Engineering (China), 2018, 46(2): 72-78.
|
23 |
LI Qian, RAO Xuefei, XU Bin, et al. Extraction of manganese and zinc from their compound ore by reductive acid leaching[J]. Transactions of Nonferrous Metals Society of China, 2017, 27(5): 1172-1179.
|
24 |
张兆雪. 稀土荧光粉废料碱熔—水浸—还原酸浸回收稀土工艺研究[D]. 赣州: 江西理工大学, 2016.
|
|
ZHANG Zhaoxue. Process research on recovery of rare earth of waste rare earth fluorescent powders by alkali fusion-washing-reduction acid leaching[D]. Ganzhou: Jiangxi University of Science and Technology, 2016.
|
25 |
LUO Jian, ZHANG Qiuhua, Javier GARCIA-MARTINEZ, et al. Adsorptive and acidic properties, reversible lattice oxygen evolution, and catalytic mechanism of cryptomelane-type manganese oxides as oxidation catalysts[J]. Journal of the American Chemical Society, 2008, 130(10): 3198-3207.
|
26 |
YE Bora, LEE Minwoo, JEONG Bora, et al. Partially reduced graphene oxide as a support of Mn-Ce/TiO2 catalyst for selective catalytic reduction of NO x with NH3 [J]. Catalysis Today, 2019, 328: 300-306.
|
27 |
LI Lulu, WU Yaohui, HOU Xueyan, et al. Investigation of two-phase intergrowth and coexistence in Mn-Ce-Ti-O catalysts for the selective catalytic reduction of NO with NH3: structure-activity relationship and reaction mechanism[J]. Industrial & Engineering Chemistry Research, 2019, 58(2): 849-862.
|