化工进展 ›› 2022, Vol. 41 ›› Issue (9): 5122-5131.DOI: 10.16085/j.issn.1000-6613.2021-2435
余正伟1,2,3(), 张晓霞2, 雷杰2, 李澳2, 王光应4, 丁祥1, 龙红明1,2(
)
收稿日期:
2021-11-26
修回日期:
2022-04-12
出版日期:
2022-09-25
发布日期:
2022-09-27
通讯作者:
龙红明
作者简介:
余正伟(1984—),男,博士,讲师,研究方向为固废资源化利用。E-mail:yuzhengwei@ahut.edu.cn。
基金资助:
YU Zhengwei1,2,3(), ZHANG Xiaoxia2, LEI Jie2, LI Ao2, WANG Guangying4, DING Xiang1, LONG Hongming1,2(
)
Received:
2021-11-26
Revised:
2022-04-12
Online:
2022-09-25
Published:
2022-09-27
Contact:
LONG Hongming
摘要:
废选择性催化还原(SCR)脱硝催化剂中含有大量的有价金属,直接废弃易造成资源浪费及环境污染。以废CeO x -MnO x 基SCR脱硝催化剂为原料,采用热力学分析结合湿法冶金实验方法,研究了浸出条件对Ce、Mn元素浸出率的影响。结果表明,废催化剂直接酸浸Ce、Mn元素浸出率低,还原-酸浸Ce、Mn元素热力学条件上可行,抗坏血酸对Ce、Mn高价氧化物有明显的还原作用。当抗坏血酸质量分数为30%、硫酸浓度2mol/L、液固比6∶1、搅拌速度350r/min、80℃恒温反应5h时,Ce、Mn的浸出率分别达到92.09%、95.51%。加入抗坏血酸后,部分Ce4+和Mn4+还原为Ce3+和Mn2+,Ce4+/Ce的比值由75.82%降低到71.62%,Mn4+/Mn的比值由29.39%降低到27.17%,同时削弱了高价Ce辅助低价Mn向高价Mn转化的作用,使得Ce、Mn高效浸出,为CeO x -MnO x 基废催化剂中Ce、Mn资源化利用奠定了基础。
中图分类号:
余正伟, 张晓霞, 雷杰, 李澳, 王光应, 丁祥, 龙红明. 废CeO x -MnO x 基SCR脱硝催化剂还原酸浸综合回收铈锰[J]. 化工进展, 2022, 41(9): 5122-5131.
YU Zhengwei, ZHANG Xiaoxia, LEI Jie, LI Ao, WANG Guangying, DING Xiang, LONG Hongming. Comprehensive recovery of cerium and manganese from waste CeO x -MnO x -based SCR denitrification catalysts by reductive acid leaching[J]. Chemical Industry and Engineering Progress, 2022, 41(9): 5122-5131.
TiO2 | MnO | CeO2 | SO3 | CaO | MgO | Na2O | K2O | 其他 |
---|---|---|---|---|---|---|---|---|
72.53 | 11.20 | 2.57 | 3.80 | 2.57 | 1.14 | 0.48 | 0.60 | 5.11 |
表1 废CeO x -MnO x 基SCR脱硝催化剂化学成分(质量分数,%)
TiO2 | MnO | CeO2 | SO3 | CaO | MgO | Na2O | K2O | 其他 |
---|---|---|---|---|---|---|---|---|
72.53 | 11.20 | 2.57 | 3.80 | 2.57 | 1.14 | 0.48 | 0.60 | 5.11 |
样品 | 化合价比例/% |
---|---|
Ce3+/Ce | 22.67 |
Ce4+/Ce | 77.33 |
Mn2+/Mn | 23.22 |
Mn3+/Mn | 41.88 |
Mn4+/Mn | 34.49 |
表2 以XPS能谱峰面积计算化合价比例
样品 | 化合价比例/% |
---|---|
Ce3+/Ce | 22.67 |
Ce4+/Ce | 77.33 |
Mn2+/Mn | 23.22 |
Mn3+/Mn | 41.88 |
Mn4+/Mn | 34.49 |
序号 | 平衡反应 | φ-pH关系式 |
---|---|---|
a | O2+4H++4e- | φ=1.2290-0.0592pH |
b | H++2e- | φ=-0.0592pH |
c | O2+2H++2e- | φ=0.682-0.0592pH |
d | C6H6O6+2H++2e- | φ=0.39-0.0592pH |
(1) | Ce3++3e- | φ=-2.3239+0.0197lg |
(2) | Ce4++e- | φ=1.7432+0.0592lg( |
(3) | Ce2O3+6H+ | pH=10.1936-3lg |
(4) | CeO2+4H+ | pH=-2.096-1/4lg |
(5) | 2CeO2+2H++2e- | φ=-0.5606-0.0592pH |
(6) | CeO2+4H++e- | φ=1.2485-0.2366pH-0.0592lg |
(7) | Ce2O3+6H++6e- | φ=-1.7209-0.0592pH |
表3 Ce-H2O系各反应在25℃下对应的φ-pH函数关系
序号 | 平衡反应 | φ-pH关系式 |
---|---|---|
a | O2+4H++4e- | φ=1.2290-0.0592pH |
b | H++2e- | φ=-0.0592pH |
c | O2+2H++2e- | φ=0.682-0.0592pH |
d | C6H6O6+2H++2e- | φ=0.39-0.0592pH |
(1) | Ce3++3e- | φ=-2.3239+0.0197lg |
(2) | Ce4++e- | φ=1.7432+0.0592lg( |
(3) | Ce2O3+6H+ | pH=10.1936-3lg |
(4) | CeO2+4H+ | pH=-2.096-1/4lg |
(5) | 2CeO2+2H++2e- | φ=-0.5606-0.0592pH |
(6) | CeO2+4H++e- | φ=1.2485-0.2366pH-0.0592lg |
(7) | Ce2O3+6H++6e- | φ=-1.7209-0.0592pH |
序号 | 平衡反应 | φ-pH关系式 |
---|---|---|
a | O2+4H++4e- | φ=1.2290-0.0592pH |
b | H++2e- | φ=-0.0592pH |
c | O2+2H++2e- | φ=0.682-0.0592pH |
d | C6H6O6+2H++2e- | φ=0.39-0.0592pH |
(8) | Mn2++2e- | φ=-1.185+0.0296lg |
(9) | Mn(OH)2+2H+ | pH=9.06-0.0592lg |
(10) | Mn(OH)2+2H++2e- | φ=-0.649-0.0592pH |
(11) | Mn3O4+2H++2e- | φ=0.216-0.0592pH |
(12) | Mn3O4+8H++2e- | φ=1.824-0.237pH-0.0887lg |
(13) | 3Mn2O3+2H++2e- | φ=0.743-0.0592pH |
(14) | Mn2O3+6H++2e- | φ=1.443-0.177pH-0.0592lg |
(15) | 2MnO2+2H++2e- | φ=0.819-0.0592pH |
(16) | φ=1.754-0.1789pH+0.01972lg | |
(17) | MnO2+4H++2e- | φ=1.224-0.1183pH-0.02956lg |
表4 Mn-H2O系各反应在25℃下对应的φ-pH函数关系
序号 | 平衡反应 | φ-pH关系式 |
---|---|---|
a | O2+4H++4e- | φ=1.2290-0.0592pH |
b | H++2e- | φ=-0.0592pH |
c | O2+2H++2e- | φ=0.682-0.0592pH |
d | C6H6O6+2H++2e- | φ=0.39-0.0592pH |
(8) | Mn2++2e- | φ=-1.185+0.0296lg |
(9) | Mn(OH)2+2H+ | pH=9.06-0.0592lg |
(10) | Mn(OH)2+2H++2e- | φ=-0.649-0.0592pH |
(11) | Mn3O4+2H++2e- | φ=0.216-0.0592pH |
(12) | Mn3O4+8H++2e- | φ=1.824-0.237pH-0.0887lg |
(13) | 3Mn2O3+2H++2e- | φ=0.743-0.0592pH |
(14) | Mn2O3+6H++2e- | φ=1.443-0.177pH-0.0592lg |
(15) | 2MnO2+2H++2e- | φ=0.819-0.0592pH |
(16) | φ=1.754-0.1789pH+0.01972lg | |
(17) | MnO2+4H++2e- | φ=1.224-0.1183pH-0.02956lg |
还原剂 | 温度/℃ | 浸出率/% | 残留率/% | |||
---|---|---|---|---|---|---|
Ce | Mn | Ti | 浸出渣 | |||
无 | 25 | 29.34 | 32.02 | 87.74 | 86.80 | |
无 | 80 | 59.72 | 72.55 | 87.83 | 81.70 | |
抗坏血酸 | 80 | 92.08 | 95.51 | 91.20 | 77.90 | |
Na2SO3 | 80 | 57.63 | 92.48 | 89.50 | 78.10 | |
H2O2 | 80 | 88.49 | 94.10 | 84.73 | 71.10 |
表5 还原剂种类对废CeO x -MnO x 基SCR脱硝催化剂还原酸浸Ce、Mn的影响
还原剂 | 温度/℃ | 浸出率/% | 残留率/% | |||
---|---|---|---|---|---|---|
Ce | Mn | Ti | 浸出渣 | |||
无 | 25 | 29.34 | 32.02 | 87.74 | 86.80 | |
无 | 80 | 59.72 | 72.55 | 87.83 | 81.70 | |
抗坏血酸 | 80 | 92.08 | 95.51 | 91.20 | 77.90 | |
Na2SO3 | 80 | 57.63 | 92.48 | 89.50 | 78.10 | |
H2O2 | 80 | 88.49 | 94.10 | 84.73 | 71.10 |
TiO2 | MnO | CeO2 | SO3 | CaO | MgO | 其他 |
---|---|---|---|---|---|---|
93.58 | 0.78 | 0.33 | 0.78 | 0.04 | 0.12 | 4.37 |
表6 废CeOx-MnOx基SCR脱硝催化剂还原-酸浸渣主要化学成分(质量分数,%)
TiO2 | MnO | CeO2 | SO3 | CaO | MgO | 其他 |
---|---|---|---|---|---|---|
93.58 | 0.78 | 0.33 | 0.78 | 0.04 | 0.12 | 4.37 |
样品 | Ce3+/Ce | Ce4+/Ce | Mn2+/Mn | Mn4+/Mn | Oβ/(Oα+Oβ) | Oα/(Oα+Oβ) |
---|---|---|---|---|---|---|
原料 | 22.67 | 77.33 | 23.22 | 34.49 | 10.88 | 89.12 |
抗坏血酸 加入量10% | 24.18 | 75.82 | 23.82 | 29.39 | 27.16 | 72.84 |
抗坏血酸 加入量20% | 25.27 | 74.73 | 25.89 | 28.93 | 27.97 | 72.03 |
抗坏血酸 加入量30% | 28.38 | 71.62 | 36.35 | 27.17 | 33.47 | 66.53 |
抗坏血酸 加入量40% | 28.14 | 71.86 | 36.03 | 26.89 | 21.70 | 78.30 |
表7 以XPS能谱峰面积计算化合价比例 (%)
样品 | Ce3+/Ce | Ce4+/Ce | Mn2+/Mn | Mn4+/Mn | Oβ/(Oα+Oβ) | Oα/(Oα+Oβ) |
---|---|---|---|---|---|---|
原料 | 22.67 | 77.33 | 23.22 | 34.49 | 10.88 | 89.12 |
抗坏血酸 加入量10% | 24.18 | 75.82 | 23.82 | 29.39 | 27.16 | 72.84 |
抗坏血酸 加入量20% | 25.27 | 74.73 | 25.89 | 28.93 | 27.97 | 72.03 |
抗坏血酸 加入量30% | 28.38 | 71.62 | 36.35 | 27.17 | 33.47 | 66.53 |
抗坏血酸 加入量40% | 28.14 | 71.86 | 36.03 | 26.89 | 21.70 | 78.30 |
1 | MOHAN S, DINESHA P, KUMAR S. NO x reduction behaviour in copper zeolite catalysts for ammonia SCR systems: a review[J]. Chemical Engineering Journal, 2020, 384: 123253. |
2 | TANG Changjin, ZHANG Hongliang, DONG Lin. Ceria-based catalysts for low-temperature selective catalytic reduction of NO with NH3 [J]. Catalysis Science & Technology, 2016, 6(5): 1248-1264. |
3 | 邢奕, 张文伯, 苏伟, 等. 中国钢铁行业超低排放之路[J]. 工程科学学报, 2021, 43(1): 1-9. |
XING Yi, ZHANG Wenbo, SU Wei, et al. Research of ultra-low emission technologies of the iron and steel industry in China[J]. Chinese Journal of Engineering, 2021, 43(1): 1-9. | |
4 | 闫晓淼, 李玉然, 朱廷钰, 等. 钢铁烧结烟气多污染物排放及协同控制概述[J]. 环境工程技术学报, 2015, 5(2): 85-90. |
YAN Xiaomiao, LI Yuran, ZHU Tingyu, et al. Review of emission and simultaneous control of multiple pollutants from iron-steel sintering flue gas[J]. Journal of Environmental Engineering Technology, 2015, 5(2): 85-90. | |
5 | 张洪亮, 施琦, 龙红明, 等. 烧结烟气中氮氧化物脱除工艺分析[J]. 钢铁, 2017, 52(5): 100-106. |
ZHANG Hongliang, SHI Qi, LONG Hongming, et al. Analysis of NO x removal process in sintering flue gas[J]. Iron & Steel, 2017, 52(5): 100-106. | |
6 | 苏玉栋, 李咸伟, 范晓慧. 烧结过程中NO x 减排技术研究进展[J]. 烧结球团, 2013, 38(6): 41-44, 54. |
SU Yudong, LI Xianwei, FAN Xiaohui. Research progress of NO x reduction technology in sintering process[J]. Sintering and Pelletizing, 2013, 38(6): 41-44, 54. | |
7 | LING Shaohua, JING Changyong, ZHANG Lijuan. Analysis denitration technology for iron-steel sintering flue gas[C]//Proceedings of the 2015 International Symposium on Material, Energy and Environment Engineering. November 28-29, 2015. Changsha, China. Paris, France: Atlantis Press, 2015. |
8 | 王淑勤, 刘丽凤, 程伟良. 低温SCR脱硝催化技术的应用进展[J]. 能源与环境, 2021(2): 65-69. |
WANG Shuqin, LIU Lifeng, CHENG Weiliang. Application progress of low-temperature SCR denitrification catalytic technology[J]. Energy and Environment, 2021(2): 65-69. | |
9 | 刘福东, 单文坡, 石晓燕, 等. 用于NH3选择性催化还原NO x 的钒基催化剂[J]. 化学进展, 2012, 24(4): 445-455. |
LIU Fudong, SHAN Wenpo, SHI Xiaoyan, et al. Vanadium-based catalysts for the selective catalytic reduction of NO x with NH3 [J]. Progress in Chemistry, 2012, 24(4): 445-455. | |
10 |
丁龙, 钱立新, 杨涛, 等. 烧结烟气中Zn对V2O5-WO3/TiO2催化剂脱除NO x 和二![]() |
DING Long, QIAN Lixin, YANG Tao, et al. Influence of Zn in the iron ore sintering flue gas on the removal of NO x and dioxins by V2O5-WO3/TiO2 catalyst[J]. Chinese Journal of Engineering, 2021, 43(8): 1125-1135. | |
11 | ZHANG Qijun, WU Yufeng, ZUO Tieyong. Titanium extraction from spent selective catalytic reduction catalysts in a NaOH molten-salt system: thermodynamic, experimental, and kinetic studies[J]. Metallurgical and Materials Transactions B, 2019, 50(1): 471-479. |
12 | 侯学军, 章小明, 程文博, 等. 废钒钛基SCR催化剂的处置方法研究进展[J]. 化工进展, 2021, 40(10): 5313-5324. |
HOU Xuejun, ZHANG Xiaoming, CHENG Wenbo, et al. Research on disposal methods of spent vanadium-titanium-based catalysts[J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5313-5324. | |
13 | CHOI In Hyeok, MOON Gyeonghye, LEE Jin Young, et al. Extraction of tungsten and vanadium from spent selective catalytic reduction catalyst for stationary application by pressure leaching process[J]. Journal of Cleaner Production, 2018, 197: 163-169. |
14 | MOON Gyeonghye, KIM Jin Hyeong, LEE Jin Young, et al. Leaching of spent selective catalytic reduction catalyst using alkaline melting for recovery of titanium, tungsten, and vanadium[J]. Hydrometallurgy, 2019, 189: 105132. |
15 | LI Qichao, LIU Zhenyu, LIU Qingya. Kinetics of vanadium leaching from a spent industrial V2O5/TiO2 catalyst by sulfuric acid[J]. Industrial & Engineering Chemistry Research, 2014, 53(8): 2956-2962. |
16 | ZHANG Qijun, WU Yufeng, LI Lili, et al. Sustainable approach for spent V2O5-WO3/TiO2 catalysts management: selective recovery of heavy metal vanadium and production of value-added WO3-TiO2 photocatalysts[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(9): 12502-12510. |
17 | TANG Xingfu, LI Yonggang, HUANG Xiumin, et al. MnO x -CeO2 mixed oxide catalysts for complete oxidation of formaldehyde: effect of preparation method and calcination temperature[J]. Applied Catalysis B: Environmental, 2006, 62(3/4): 265-273. |
18 | KLIMCZAK M, KERN P, HEINZELMANN T, et al. High-throughput study of the effects of inorganic additives and poisons on NH3-SCR catalysts—Part Ⅰ: V2O5-WO3/TiO2 catalysts[J]. Applied Catalysis B: Environmental, 2010, 95(1/2): 39-47. |
19 | 吴维昌. 标准电极电位数据手册[M]. 北京: 科学出版社, 1991. |
WU Weichang. Manual of standard electrode potentials data[M]. Beijing: Science Press, 1991. | |
20 | 梁英教. 无机物热力学数据手册[M]. 沈阳: 东北大学出版社, 1993. |
LIANG Yingjiao. Manual of inorganic thermodynamics data[M]. Shenyang: Northeast University Press, 1993. | |
21 | 叶大伦, 胡建华. 实用无机物热力学数据手册[M]. 2版. 北京: 冶金工业出版社, 2002. |
YE Dalun, HU Jianhua. Manual of practical inorganic thermodynamics data[M]. 2nd ed. Beijing: Metallurgical Industry Press, 2002. | |
22 | 李照刚, 陈为亮, 张建军, 等. 响应曲面法优化软锰矿还原浸出的工艺[J]. 化学工程, 2018, 46(2): 72-78. |
LI Zhaogang, CHEN Weiliang, ZHANG Jianjun, et al. Reductive leaching technology of pyrolusite optimized by response surface methodology[J]. Chemical Engineering (China), 2018, 46(2): 72-78. | |
23 | LI Qian, RAO Xuefei, XU Bin, et al. Extraction of manganese and zinc from their compound ore by reductive acid leaching[J]. Transactions of Nonferrous Metals Society of China, 2017, 27(5): 1172-1179. |
24 | 张兆雪. 稀土荧光粉废料碱熔—水浸—还原酸浸回收稀土工艺研究[D]. 赣州: 江西理工大学, 2016. |
ZHANG Zhaoxue. Process research on recovery of rare earth of waste rare earth fluorescent powders by alkali fusion-washing-reduction acid leaching[D]. Ganzhou: Jiangxi University of Science and Technology, 2016. | |
25 | LUO Jian, ZHANG Qiuhua, Javier GARCIA-MARTINEZ, et al. Adsorptive and acidic properties, reversible lattice oxygen evolution, and catalytic mechanism of cryptomelane-type manganese oxides as oxidation catalysts[J]. Journal of the American Chemical Society, 2008, 130(10): 3198-3207. |
26 | YE Bora, LEE Minwoo, JEONG Bora, et al. Partially reduced graphene oxide as a support of Mn-Ce/TiO2 catalyst for selective catalytic reduction of NO x with NH3 [J]. Catalysis Today, 2019, 328: 300-306. |
27 | LI Lulu, WU Yaohui, HOU Xueyan, et al. Investigation of two-phase intergrowth and coexistence in Mn-Ce-Ti-O catalysts for the selective catalytic reduction of NO with NH3: structure-activity relationship and reaction mechanism[J]. Industrial & Engineering Chemistry Research, 2019, 58(2): 849-862. |
[1] | 李梦圆, 郭凡, 李群生. 聚乙烯醇生产中回收工段第三、第四精馏塔的模拟与优化[J]. 化工进展, 2023, 42(S1): 113-123. |
[2] | 马伊, 曹世伟, 王家骏, 林立群, 邢延, 曹腾良, 卢峰, 赵振伦, 张志军. 低共熔溶剂回收废旧锂离子电池正极材料的研究进展[J]. 化工进展, 2023, 42(S1): 219-232. |
[3] | 高雨飞, 鲁金凤. 非均相催化臭氧氧化作用机理研究进展[J]. 化工进展, 2023, 42(S1): 430-438. |
[4] | 张杰, 王放放, 夏忠林, 赵光金, 马双忱. “双碳”目标下SF6排放现状、减排手段分析及未来展望[J]. 化工进展, 2023, 42(S1): 447-460. |
[5] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[6] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[7] | 王晋刚, 张剑波, 唐雪娇, 刘金鹏, 鞠美庭. 机动车尾气脱硝催化剂Cu-SSZ-13的改性研究进展[J]. 化工进展, 2023, 42(9): 4636-4648. |
[8] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[9] | 葛全倩, 徐迈, 梁铣, 王凤武. MOFs材料在光电催化领域应用的研究进展[J]. 化工进展, 2023, 42(9): 4692-4705. |
[10] | 钱思甜, 彭文俊, 张先明. PET熔融缩聚与溶液解聚形成环状低聚物的对比分析[J]. 化工进展, 2023, 42(9): 4808-4816. |
[11] | 朱传强, 茹晋波, 孙亭亭, 谢兴旺, 李长明, 高士秋. 固体高分子脱硝剂选择性非催化还原NO x 特性[J]. 化工进展, 2023, 42(9): 4939-4946. |
[12] | 张丽宏, 金要茹, 程芳琴. 煤气化渣资源化利用[J]. 化工进展, 2023, 42(8): 4447-4457. |
[13] | 王报英, 王皝莹, 闫军营, 汪耀明, 徐铜文. 聚合物包覆膜在金属分离回收中的研究进展[J]. 化工进展, 2023, 42(8): 3990-4004. |
[14] | 王耀刚, 韩子姗, 高嘉辰, 王新宇, 李思琪, 杨全红, 翁哲. 铜基催化剂电还原二氧化碳选择性的调控策略[J]. 化工进展, 2023, 42(8): 4043-4057. |
[15] | 刘毅, 房强, 钟达忠, 赵强, 李晋平. Ag/Cu耦合催化剂的Cu晶面调控用于电催化二氧化碳还原[J]. 化工进展, 2023, 42(8): 4136-4142. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 253
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 240
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |