化工进展 ›› 2022, Vol. 41 ›› Issue (8): 4303-4313.DOI: 10.16085/j.issn.1000-6613.2021-2005
詹洵(), 陈健, 杨兆哲, 吴国民(), 孔振武, 沈葵忠
收稿日期:
2021-09-23
修回日期:
2021-12-03
出版日期:
2022-08-25
发布日期:
2022-08-22
通讯作者:
吴国民
作者简介:
詹洵(1996—),男,硕士研究生,研究方向为生物基高性能树脂及助剂。E-mail:基金资助:
ZHAN Xun(), CHEN Jian, YANG Zhaozhe, WU Guomin(), KONG Zhenwu, SHEN Kuizhong
Received:
2021-09-23
Revised:
2021-12-03
Online:
2022-08-25
Published:
2022-08-22
Contact:
WU Guomin
摘要:
纳米纤维素表面富含活性羟基,具有高度的亲水性和吸水性,这在很大程度上成为影响纳米纤维素在工业上大规模应用的主要因素。对纳米纤维素表面的活性羟基进行化学修饰提高其疏水性,日益成为国内外学者研究的热点。本文在简要阐述超疏水材料基本特征和制备方法的基础上,对比了不同超疏水材料制备方法(模板法、喷涂法、沉积法、刻蚀法)的优劣,重点介绍了国内外学者利用纳米纤维素构建超疏水材料(气凝胶、纸张、涂层、薄膜等)在生物医学、造纸工业、油水分离、食品包装、储能材料等不同领域的研究进展,归纳并分析了目前纳米纤维素构建超疏水材料在改性方式和性能提升等方面仍存在的问题,同时指出了纳米纤维素构建超疏水材料未来将朝着过程无污染化、工艺简化、稳定性优化等方向发展。
中图分类号:
詹洵, 陈健, 杨兆哲, 吴国民, 孔振武, 沈葵忠. 纳米纤维素构建超疏水材料研究进展[J]. 化工进展, 2022, 41(8): 4303-4313.
ZHAN Xun, CHEN Jian, YANG Zhaozhe, WU Guomin, KONG Zhenwu, SHEN Kuizhong. Progress on superhydrophobic materials from nanocellulose[J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4303-4313.
方法 | 制备过程 | 优点 | 缺点 |
---|---|---|---|
模板法 | 在低表面能模板表面上复制粗糙的微结构 | 效率高、成本低、操作简单、适用范围广、可批量生产 | 稳定性差、表面耐久性差、局部疏水性差 |
喷涂法 | 在易腐蚀基体表面喷涂固体超疏水涂层 | 应用范围广、方便快捷、操作简单 | 界面不稳定、涂层表面不均匀、涂层强度和耐磨性差 |
电化学沉积法 | 外加电场,在电镀层中发生氧化还原反应并在电极上形成 | 工艺简单、效率高、成本低、批量生产、易于控制 | 污染环境、涂层强度和耐磨性差、材料易浪费 |
化学沉积法 | 涂层或薄膜是由基材和含有金属元素的溶液或气体之间的反应形成的 | 效率高、成本低、适用范围广 | 污染环境、难以量产,涂层强度和耐磨性差、抗腐蚀性差 |
激光刻蚀法 | 激光对材料表面烧蚀,改变表面粗糙结构 | 耐腐蚀、稳定性好、表面均匀、易于控制 | 成本高、加工时间长、难以广泛应用 |
化学刻蚀法 | 材料表面浸没于化学混合物或气体放电而产生的粗糙度 | 成本低、易于控制、耐腐蚀 | 应用范围窄、污染环境、强度差 |
表1 超疏水表面制备方法对比
方法 | 制备过程 | 优点 | 缺点 |
---|---|---|---|
模板法 | 在低表面能模板表面上复制粗糙的微结构 | 效率高、成本低、操作简单、适用范围广、可批量生产 | 稳定性差、表面耐久性差、局部疏水性差 |
喷涂法 | 在易腐蚀基体表面喷涂固体超疏水涂层 | 应用范围广、方便快捷、操作简单 | 界面不稳定、涂层表面不均匀、涂层强度和耐磨性差 |
电化学沉积法 | 外加电场,在电镀层中发生氧化还原反应并在电极上形成 | 工艺简单、效率高、成本低、批量生产、易于控制 | 污染环境、涂层强度和耐磨性差、材料易浪费 |
化学沉积法 | 涂层或薄膜是由基材和含有金属元素的溶液或气体之间的反应形成的 | 效率高、成本低、适用范围广 | 污染环境、难以量产,涂层强度和耐磨性差、抗腐蚀性差 |
激光刻蚀法 | 激光对材料表面烧蚀,改变表面粗糙结构 | 耐腐蚀、稳定性好、表面均匀、易于控制 | 成本高、加工时间长、难以广泛应用 |
化学刻蚀法 | 材料表面浸没于化学混合物或气体放电而产生的粗糙度 | 成本低、易于控制、耐腐蚀 | 应用范围窄、污染环境、强度差 |
1 | 郑龙珠, 苏晓竞, 李红强, 等. 功能性超疏水表面的构建及其应用进展[J]. 化工进展, 2021, 40(5): 2634-2645. |
ZHENG Longzhu, SU Xiaojing, LI Hongqiang, et al. Progress in construction and application of functional superhydrophobic surfaces[J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2634-2645. | |
2 | BARATI DARBAND G, ALIOFKHAZRAEI M, KHORSAND S, et al. Science and engineering of superhydrophobic surfaces: review of corrosion resistance, chemical and mechanical stability[J]. Arabian Journal of Chemistry, 2020, 13(1): 1763-1802. |
3 | DALAWAI S P, SAAD ALY M A, LATTHE S S, et al. Recent advances in durability of superhydrophobic self-cleaning technology: a critical review[J]. Progress in Organic Coatings, 2020, 138: 105381. |
4 | BARTHLOTT W, NEINHUIS C. Purity of the sacred Lotus, or escape from contamination in biological surfaces[J]. Planta, 1997, 202(1): 1-8. |
5 | NGUYEN S H T, WEBB H K, HASAN J, et al. Dual role of outer epicuticular lipids in determining the wettability of dragonfly wings[J]. Colloids and Surfaces B: Biointerfaces, 2013, 106: 126-134. |
6 | BHUSHAN B, HER E K. Fabrication of superhydrophobic surfaces with high and low adhesion inspired from rose petal[J]. Langmuir, 2010, 26(11): 8207-8217. |
7 | LIU K S, JIANG L. Bio-inspired design of multiscale structures for function integration[J]. Nano Today, 2011, 6(2): 155-175. |
8 | LI X M, REINHOUDT D, CREGO-CALAMA M. What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces[J]. Chemical Society Reviews, 2007, 36(8): 1350. |
9 | HU Z S, DENG Y L. Superhydrophobic surface fabricated from fatty acid-modified precipitated calcium carbonate[J]. Industrial & Engineering Chemistry Research, 2010, 49(12): 5625-5630. |
10 | VICTOR J J, FACCHINI D, ERB U. A low-cost method to produce superhydrophobic polymer surfaces[J]. Journal of Materials Science, 2012, 47(8): 3690-3697. |
11 | MAHADIK S A, MAHADIK D B, KAVALE M S, et al. Thermally stable and transparent superhydrophobic sol-gel coatings by spray method[J]. Journal of Sol-Gel Science and Technology, 2012, 63(3): 580-586. |
12 | YANG S, HRICKO P J, HUANG P H, et al. Superhydrophobic surface enhanced Raman scattering sensing using Janus particle arrays realized by site-specific electrochemical growth[J]. Journal of Materials Chemistry C, 2014, 2014(3): 542-547. |
13 | SONG X Y, ZHAI J, WANG Y L, et al. Fabrication of superhydrophobic surfaces by self-assembly and their water-adhesion properties[J]. The Journal of Physical Chemistry B, 2005, 109(9): 4048-4052. |
14 | LAI Y K, LIN C J, WANG H, et al. Superhydrophilic-superhydrophobic micropattern on TiO2 nanotube films by photocatalytic lithography[J]. Electrochemistry Communications, 2008, 10(3): 387-391. |
15 | QIAN B T, SHEN Z Q. Fabrication of superhydrophobic surfaces by dislocation-selective chemical etching on aluminum, copper, and zinc substrates[J]. Langmuir, 2005, 21(20): 9007-9009. |
16 | LI L X, LI B C, DONG J, et al. Roles of silanes and silicones in forming superhydrophobic and superoleophobic materials[J]. Journal of Materials Chemistry A, 2016, 4(36): 13677-13725. |
17 | ZHOU H, WANG H X, NIU H T, et al. Fluoroalkyl silane modified silicone rubber/nanoparticle composite: a super durable, robust superhydrophobic fabric coating[J]. Advanced Materials, 2012, 24(18): 2409-2412. |
18 | ZHANG X, GUO Y G, ZHANG Z J, et al. Self-cleaning superhydrophobic surface based on titanium dioxide nanowires combined with polydimethylsiloxane[J]. Applied Surface Science, 2013, 284: 319-323. |
19 | LI Y, LIU F, SUN J. A facile layer-by-layer deposition process for the fabrication of highly transparent superhydrophobic coatings[J]. Chemical Communications, 2009(19): 2730-2732. |
20 | LI M, ZHAI J, LIU H, et al. Electrochemical deposition of conductive superhydrophobic zinc oxide thin films[J]. The Journal of Physical Chemistry B, 2003, 107(37): 9954-9957. |
21 | BRAVO J, ZHAI L, WU Z Z, et al. Transparent superhydrophobic films based on silica nanoparticles[J]. Langmuir, 2007, 23(13): 7293-7298. |
22 | SI Y F, GUO Z G. Superhydrophobic nanocoatings: from materials to fabrications and to applications[J]. Nanoscale, 2015, 7(14): 5922-5946. |
23 | FACIO D S, MOSQUERA M J. Simple strategy for producing superhydrophobic nanocomposite coatings in situ on a building substrate[J]. ACS Applied Materials & Interfaces, 2013, 5(15): 7517-7526. |
24 | 张宇姣, 董力群, 张亚军, 等. 基于数值模拟的超疏水材料减阻性能研究[J]. 表面技术, 2016, 45(11): 173-179. |
ZHANG Yujiao, DONG Liqun, ZHANG Yajun, et al. Drag-reducing property of super-hydrophobic material based on numerical simulation[J]. Surface Technology, 2016, 45(11): 173-179. | |
25 | DONG H Y, CHENG M J, ZHANG Y J, et al. Extraordinary drag-reducing effect of a superhydrophobic coating on a macroscopic model ship at high speed[J]. Journal of Materials Chemistry A, 2013, 1(19): 5886. |
26 | XUE C H, FAN Q Q, GUO X J, et al. Fabrication of superhydrophobic cotton fabrics by grafting of POSS-based polymers on fibers[J]. Applied Surface Science, 2019, 465: 241-248. |
27 | LI M, LI Y, XUE F, et al. A robust and versatile superhydrophobic coating: wear-resistance study upon sandpaper abrasion[J]. Applied Surface Science, 2019, 480: 738-748. |
28 | 侯琳刚. 耐磨超疏水材料的制备及其耐久性能研究[D]. 西安: 西安科技大学, 2018. |
HOU Lingang. Fabrication of wear-resistant superhydrophobic material and investigation of durability[D]. Xi’an: Xi’an University of Science and Technology, 2018. | |
29 | TRACHE D, TARCHOUN A F, DERRADJI M, et al. Nanocellulose: from fundamentals to advanced applications[J]. Frontiers in Chemistry, 2020, 8: 392. |
30 | CHO E J, TRINH L T P, SONG Y, et al. Bioconversion of biomass waste into high value chemicals[J]. Bioresource Technology, 2020, 298: 122386. |
31 | DAI L, WANG Y, ZOU X J, et al. Ultrasensitive physical, bio, and chemical sensors derived from 1-, 2-, and 3-D nanocellulosic materials[J]. Small, 2020, 16(13): e1906567. |
32 | ZHAO L Y, DUAN G G, ZHANG G Y, et al. Electrospun functional materials toward food packaging applications: a review[J]. Nanomaterials, 2020, 10(1): 150. |
33 | DONG Y D, ZHANG H, ZHONG G J, et al. Cellulose/carbon composites and their applications in water treatment—A review[J]. Chemical Engineering Journal, 2021, 405: 126980. |
34 | SHARMA P R, SHARMA S K, LINDSTRÖM T, et al. Nanocellulose-enabled membranes for water purification: perspectives[J]. Advanced Sustainable Systems, 2020, 4(5): 1900114. |
35 | 林凤采, 卢麒麟, 卢贝丽, 等. 纳米纤维素及其聚合物纳米复合材料的研究进展[J]. 化工进展, 2018, 37(9): 3454-3470. |
LIN Fengcai, LU Qilin, LU Beili, et al. Research progress of nanocellulose and its polymer nanocomposites[J]. Chemical Industry and Engineering Progress, 2018, 37(9): 3454-3470. | |
36 | 段博, 涂虎, 张俐娜. 可持续高分子-纤维素新材料研究进展[J]. 高分子学报, 2020, 51(1): 66-86. |
DUAN Bo, TU Hu, ZHANG Lina. Material research progress of the sustainable polymer-cellulose[J]. Acta Polymerica Sinica, 2020, 51(1): 66-86. | |
37 | DESTEK M A, Renewable SINHA A., non-renewable energy consumption, growth economic, trade openness and ecological footprint : evidence from organisation for economic co-operation and development countries[J]. Journal of Cleaner Production, 2020, 242: 118537. |
38 | 付时雨. 纤维素的研究进展[J]. 中国造纸, 2019, 38(6): 54-64. |
FU Shiyu. Progress in cellulose research[J]. China Pulp & Paper, 2019, 38(6): 54-64. | |
39 | BIDGOLI H, MORTAZAVI Y, KHODADADI A A. A functionalized nano-structured cellulosic sorbent aerogel for oil spill cleanup: synthesis and characterization[J]. Journal of Hazardous Materials, 2019, 366: 229-239. |
40 | CHEN Z J, SHI H H, ZHENG L, et al. A new cancellous bone material of silk fibroin/cellulose dual network composite aerogel reinforced by nano-hydroxyapatite filler[J]. International Journal of Biological Macromolecules, 2021, 182: 286-297. |
41 | AKHLAMADI G, GOHARSHADI E K. Sustainable and superhydrophobic cellulose nanocrystal-based aerogel derived from waste tissue paper as a sorbent for efficient oil/water separation[J]. Process Safety and Environmental Protection, 2021, 154: 155-167. |
42 | PHANTHONG P, REUBROYCHAROEN P, KONGPARAKUL S, et al. Fabrication and evaluation of nanocellulose sponge for oil/water separation[J]. Carbohydrate Polymers, 2018, 190: 184-189. |
43 | GAO R N, XIAO S L, GAN W T, et al. Mussel adhesive-inspired design of superhydrophobic nanofibrillated cellulose aerogels for oil/water separation[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(7): 9047-9055. |
44 | SHANG Q Q, CHEN J Q, HU Y, et al. Facile fabrication of superhydrophobic cross-linked nanocellulose aerogels for oil–water separation[J]. Polymers, 2021, 13(4): 625. |
45 | LI Z D, ZHONG L, ZHANG T, et al. Sustainable, flexible, and superhydrophobic functionalized cellulose aerogel for selective and versatile oil/water separation[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(11): 9984-9994. |
46 | CHHAJED M, YADAV C, AGRAWAL A K, et al. Esterified superhydrophobic nanofibrillated cellulose based aerogel for oil spill treatment[J]. Carbohydrate Polymers, 2019, 226: 115286. |
47 | TAN H F, TAN W L, OOI B S, et al. Superhydrophobic PVDF/micro fibrillated cellulose membrane for membrane distillation crystallization of struvite[J]. Chemical Engineering Research and Design, 2021, 170: 54-68. |
48 | GEISSLER A, LOYAL F, BIESALSKI M, et al. Thermo-responsive superhydrophobic paper using nanostructured cellulose stearoyl ester[J]. Cellulose, 2014, 21(1): 357-366. |
49 | 陈启杰, 康美存, 郑学铭, 等. 纳米纤维素在纸基功能材料中的应用进展[J]. 林产化学与工业, 2018, 38(4): 1-8. |
CHEN Qijie, KANG Meicun, ZHENG Xueming, et al. Application progress of nano-cellulose in paper-based functional materials[J]. Chemistry and Industry of Forest Products, 2018, 38(4): 1-8. | |
50 | MUSIKAVANHU B, HU Z J, DZAPATA R L, et al. Facile method for the preparation of superhydrophobic cellulosic paper[J]. Applied Surface Science, 2019, 496: 143648. |
51 | PHANTHONG P, GUAN G Q, KARNJANAKOM S, et al. Amphiphobic nanocellulose-modified paper: fabrication and evaluation[J]. RSC Advances, 2016, 6(16): 13328-13334. |
52 | LIU W, SUN F F, JIANG L, et al. Surface structure patterning for fabricating non-fluorinated superhydrophobic cellulosic membranes[J]. ACS Applied Polymer Materials, 2019, 1(5): 1220-1229. |
53 | ZHANG S, LI W, WANG W, et al. Reactive superhydrophobic paper from one-step spray-coating of cellulose-based derivative[J]. Applied Surface Science, 2019, 497: 143816. |
54 | BAIDYA A, GANAYEE M A, JAKKA RAVINDRAN S, et al. Organic solvent-free fabrication of durable and multifunctional superhydrophobic paper from waterborne fluorinated cellulose nanofiber building blocks[J]. ACS Nano, 2017, 11(11): 11091-11099. |
55 | HOODA A, GOYAT M S, PANDEY J K, et al. A review on fundamentals, constraints and fabrication techniques of superhydrophobic coatings[J]. Progress in Organic Coatings, 2020, 142: 105557. |
56 | WANG S T, LIU K S, YAO X, et al. Bioinspired surfaces with superwettability: new insight on theory, design, and applications[J]. Chemical Reviews, 2015, 115(16): 8230-8293. |
57 | REN J P, TAO F R, LU X F, et al. Biomass-based superhydrophobic coating with tunable colors and excellent robustness[J]. Carbohydrate Polymers, 2021, 270: 118401. |
58 | ROY S, KIM H C, VAN HAI L, et al. Novel superhydrophobic cellulose coating and its multifunctional applications[C]//SPIE Smart Structures + Nondestructive Evaluation. Proc SPIE 10969, Nano-, Bio-, Info-Tech Sensors and 3D Systems Ⅲ, Denver, Colorado, USA. 2019, 10969: 88-91. |
59 | KE W T, CHIU H L, LIAO Y C. Multifunctionalized cellulose nanofiber for water-repellent and wash-sustainable coatings on fabrics[J]. Langmuir, 2020, 36(28): 8144-8151. |
60 | ZHU Z D, FU S Y, BASTA A H. A cellulose nanoarchitectonic: multifunctional and robust superhydrophobic coating toward rapid and intelligent water-removing purpose[J]. Carbohydrate Polymers, 2020, 243: 116444. |
61 | ZHAO G M, DING C X, PAN M Z, et al. Fabrication of NCC-SiO2 hybrid colloids and its application on waterborne poly(acrylic acid) coatings[J]. Progress in Organic Coatings, 2018, 122: 88-95. |
62 | 踪张扬, 陈启杰, 赵雅兰, 等. 纳米纤维素在功能材料中的应用研究进展[J]. 化工新型材料, 2021, 49(1): 18-22. |
ZONG Zhangyang, CHEN Qijie, ZHAO Yalan, et al. Research progress on application of nanocellulose in functional material[J]. New Chemical Materials, 2021, 49(1): 18-22. | |
63 | DANAFAR F. Recent development and challenges in synthesis of cellulosic nanostructures and their application in developing paper-based energy devices[J]. Cellulose Chemistry and Technology, 2020, 54(3/4): 327-346. |
64 | BU Y B, SHEN T Y, YANG W K, et al. Ultrasensitive strain sensor based on superhydrophobic microcracked conductive Ti3C2T x MXene/paper for human-motion monitoring and E-skin[J]. Science Bulletin, 2021, 66(18): 1849-1857. |
65 | 杨全岭, 杨俊伟, 石竹群, 等. 纳米纤维素基导电材料及其在电子器件领域的研究进展[J]. 林业工程学报, 2018, 3(3): 1-11. |
YANG Quanling, YANG Junwei, SHI Zhuqun, et al. Recent progress of nanocellulose-based electroconductive materials and their applications as electronic devices[J]. Journal of Forestry Engineering, 2018, 3(3): 1-11. | |
66 | TAO J S, FANG Z Q, ZHANG Q, et al. Super-clear nanopaper from agro-industrial waste for green electronics[J]. Advanced Electronic Materials, 2017, 3(5): 1600539. |
67 | GUO J Q, FANG W W, WELLE A, et al. Superhydrophobic and slippery lubricant-infused flexible transparent nanocellulose films by photoinduced thiol-ene functionalization[J]. ACS Applied Materials & Interfaces, 2016, 8(49): 34115-34122. |
68 | HU D C, MA W S, ZHANG Z L, et al. Dual bio-inspired design of highly thermally conductive and superhydrophobic nanocellulose composite films[J]. ACS Applied Materials & Interfaces, 2020, 12(9): 11115-11125. |
69 | ZHAO X, ZHAO C S, JIANG Y F, et al. Flexible cellulose nanofiber/Bi2Te3 composite film for wearable thermoelectric devices[J]. Journal of Power Sources, 2020, 479: 229044. |
70 | QIANG S Y, CAREY T, ARBAB A, et al. Wearable solid-state capacitors based on two-dimensional material all-textile heterostructures[J]. Nanoscale, 2019, 11(20): 9912-9919. |
[1] | 王鑫, 王兵兵, 杨威, 徐志明. 金属表面PDA/PTFE超疏水涂层抑垢与耐腐蚀性能[J]. 化工进展, 2023, 42(8): 4315-4321. |
[2] | 刘战剑, 付雨欣, 任丽娜, 张曦光, 袁中涛, 杨楠, 汪怀远. 超疏水涂层在防腐阻垢领域研究进展[J]. 化工进展, 2023, 42(6): 2999-3011. |
[3] | 王钰琢, 李刚. 硫、氮共掺杂三维石墨烯的全固态超级电容器[J]. 化工进展, 2023, 42(4): 1974-1982. |
[4] | 何阳, 李思盈, 李传强, 袁小亚, 郑旭煦. 热还原氧化石墨烯/环氧树脂复合涂层的防腐性能[J]. 化工进展, 2023, 42(4): 1983-1994. |
[5] | 宗悦, 张瑞君, 高珊珊, 田家宇. “特殊稳定型”压力驱动薄膜复合(TFC)脱盐膜的研究进展[J]. 化工进展, 2023, 42(4): 2058-2067. |
[6] | 顾海洋, 王冬, 宗永忠, 付少海. 制革污泥蛋白质基生物质棉织物阻燃涂层的制备与阻燃性能[J]. 化工进展, 2023, 42(2): 641-649. |
[7] | 胡锦健, 李龙, 董子靖. 碳纳米材料在PU纱线基柔性应变传感器中的应用[J]. 化工进展, 2023, 42(2): 872-883. |
[8] | 辛华, 彭琪, 李阳帆, 张岩, 陈悦, 李新琦. 含氟聚氨酯二甲基丙烯酸酯为芯材的微胶囊制备及自修复性能[J]. 化工进展, 2023, 42(10): 5406-5413. |
[9] | 刘洋, 赵恒, 李倩, 辛虎, 李杏涛. 全氟聚醚聚合物及其功能复合材料的研究进展[J]. 化工进展, 2023, 42(1): 321-335. |
[10] | 潘月磊, 程旭东, 闫明远, 何盼, 张和平. 二氧化硅气凝胶及其在保温隔热领域应用进展[J]. 化工进展, 2023, 42(1): 297-309. |
[11] | 白金刚, 苑正己, 刘雨, 张义师, 吕喜风. 癸酸-石蜡/石墨烯气凝胶定形相变材料的制备及热物性分析[J]. 化工进展, 2022, 41(8): 4441-4448. |
[12] | 邱艺娟, 林佳伟, 秦济锐, 吴嘉茵, 林凤采, 卢贝丽, 唐丽荣, 黄彪. 双重动态共价键交联纳米纤维素导电水凝胶及其柔性传感器[J]. 化工进展, 2022, 41(8): 4406-4416. |
[13] | 朱雪丹, 姚亚丽, 马利利, 王嘉鑫, 杨杰, 彭磊, 何金梅, 屈孟男. 聚氯乙烯基超疏水材料的制备及应用研究进展[J]. 化工进展, 2022, 41(7): 3676-3688. |
[14] | 何美莹, 岳学杰, 张涛, 邱凤仙. 红外辐射调控原理及其在热管理应用中的材料研究进展[J]. 化工进展, 2022, 41(7): 3719-3730. |
[15] | 李博申, 魏铭, 胡瑶瑶, 董月林, 董群锋, 杨立峰. 改性h-BN/聚氨酯丙烯酸酯涂料的制备与性能[J]. 化工进展, 2022, 41(6): 3194-3202. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |