化工进展 ›› 2022, Vol. 41 ›› Issue (5): 2713-2721.DOI: 10.16085/j.issn.1000-6613.2021-1238
收稿日期:
2021-06-11
修回日期:
2021-08-11
出版日期:
2022-05-05
发布日期:
2022-05-24
通讯作者:
李正
作者简介:
李正(1979—),男,博士,副教授,硕士生导师,研究方向为环境功能材料。E-mail:基金资助:
LI Zheng(), NIU Jingdong, HE Guangze, ZHANG Lanhe, ZHANG Haifeng
Received:
2021-06-11
Revised:
2021-08-11
Online:
2022-05-05
Published:
2022-05-24
Contact:
LI Zheng
摘要:
采用表面接枝技术制备了PVDF-PFTS/SiO2超疏水复合膜,通过扫描电子显微镜(SEM)和红外光谱(FTIR)分析了膜污染前后的表面结构和组成,考察了直接接触式膜蒸馏(DCMD)装置出水电导率和膜通量的变化,利用XDLVO理论分析了PVDF-PFTS/SiO2超疏水复合膜的抗混合污染性能和机理。结果表明:在1H, 1H, 2H, 2H-全氟辛基三氯硅烷(PFTS)和SiO2共同作用下,PVDF-PFTS/SiO2超疏水复合膜表面形成微纳米复合乳突结构,水接触角(WCA)由99°增至155°。与PVDF基膜相比,PVDF-PFTS/SiO2超疏水复合膜对混合污染物具有较好的抗污染性能;连续运行10h,膜通量和截留率分别保持在10.06kg/(m2·h)和99.80%。XDLVO理论分析表明,PVDF-PFTS/SiO2超疏水复合膜表面与污染物之间的作用力由引力转变为斥力是其抗混合污染性能增强的主要原因之一。
中图分类号:
李正, 牛静东, 何广泽, 张兰河, 张海丰. PVDF-PFTS/SiO2膜制备及抗混合污染性能[J]. 化工进展, 2022, 41(5): 2713-2721.
LI Zheng, NIU Jingdong, HE Guangze, ZHANG Lanhe, ZHANG Haifeng. Preparation of PVDF-PFTS/SiO2 membrane and its resistance mixed fouling performance[J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2713-2721.
样品 | 元素含量/% | ||||||
---|---|---|---|---|---|---|---|
C | N | F | O | Si | F/C | ||
PVDF基膜 | 53.81 | 1.60 | 42.20 | 2.39 | — | 0.78 | |
PVDF-PFTS/SiO2 | 32.99 | 1.46 | 38.77 | 17.76 | 9.02 | 1.18 |
表1 膜表面组成
样品 | 元素含量/% | ||||||
---|---|---|---|---|---|---|---|
C | N | F | O | Si | F/C | ||
PVDF基膜 | 53.81 | 1.60 | 42.20 | 2.39 | — | 0.78 | |
PVDF-PFTS/SiO2 | 32.99 | 1.46 | 38.77 | 17.76 | 9.02 | 1.18 |
样品 | 膜厚/μm | 最大孔径/nm | 平均孔径/nm | 水接触角/(°) | 进水压力/kPa |
---|---|---|---|---|---|
PVDF基膜 | 100±1 | 652 | 543 | 99±1 | 204 |
PVDF-PFTS/SiO2膜 | 101±1 | 664 | 561 | 153±2 | 235 |
表2 PVDF基膜和PVDF-PFTS/SiO2膜的基本参数
样品 | 膜厚/μm | 最大孔径/nm | 平均孔径/nm | 水接触角/(°) | 进水压力/kPa |
---|---|---|---|---|---|
PVDF基膜 | 100±1 | 652 | 543 | 99±1 | 204 |
PVDF-PFTS/SiO2膜 | 101±1 | 664 | 561 | 153±2 | 235 |
液体 | 总表面张力γ/mN·m-1 | 非极性表面张力γLW/mN·m-1 | 电子供体表面张力γ-/mN·m-1 | 电子受体表面张力γ+/mN·m-1 |
---|---|---|---|---|
水 | 72.80 | 21.80 | 25.50 | 25.50 |
二碘甲烷 | 50.80 | 50.80 | 0.00 | 0.00 |
乙二醇 | 48.00 | 29.00 | 47.00 | 1.90 |
表3 三种测试液体的表面张力参数
液体 | 总表面张力γ/mN·m-1 | 非极性表面张力γLW/mN·m-1 | 电子供体表面张力γ-/mN·m-1 | 电子受体表面张力γ+/mN·m-1 |
---|---|---|---|---|
水 | 72.80 | 21.80 | 25.50 | 25.50 |
二碘甲烷 | 50.80 | 50.80 | 0.00 | 0.00 |
乙二醇 | 48.00 | 29.00 | 47.00 | 1.90 |
样品 | 接触角/(°) | 非极性 表面张力γLW /mN·m-1 | 电子供体 表面张力γ-/mN·m-1 | 电子受体 表面张力γ+/mN·m-1 | 极性 表面张力γAB/mN·m-1 | 总表面张力γTOT/mN·m-1 | zeta电位 /mV | ||
---|---|---|---|---|---|---|---|---|---|
θw | θD | θE | |||||||
PVDF基膜 | 98 | 65 | 71 | 22.401 | 3 | 0.102 | 1.106 | 23.507 | -36.787 |
PVDF-PFTS/SiO2膜 | 152 | 140 | 136 | 7.058 | 6.646 | 0.003 | 0.282 | 7.340 | -40.130 |
BSA+CaCl2 | 25 | 44 | 30 | 37.540 | 63.282 | 0.017 | 2.074 | 39.614 | -11.581 |
表4 PVDF基膜、PVDF-PFTS/SiO2膜和污染物(BSA+Ca2+)的表面性质及zeta电位
样品 | 接触角/(°) | 非极性 表面张力γLW /mN·m-1 | 电子供体 表面张力γ-/mN·m-1 | 电子受体 表面张力γ+/mN·m-1 | 极性 表面张力γAB/mN·m-1 | 总表面张力γTOT/mN·m-1 | zeta电位 /mV | ||
---|---|---|---|---|---|---|---|---|---|
θw | θD | θE | |||||||
PVDF基膜 | 98 | 65 | 71 | 22.401 | 3 | 0.102 | 1.106 | 23.507 | -36.787 |
PVDF-PFTS/SiO2膜 | 152 | 140 | 136 | 7.058 | 6.646 | 0.003 | 0.282 | 7.340 | -40.130 |
BSA+CaCl2 | 25 | 44 | 30 | 37.540 | 63.282 | 0.017 | 2.074 | 39.614 | -11.581 |
膜材料 | 极性作用能ΔG | 范德华作用能ΔG | 静电作用能ΔG | 总作用能ΔG |
---|---|---|---|---|
PVDF基膜 | -5.156 | -0.186 | 2.59×10-6 | -5.342 |
PVDF-PFTS/SiO2膜 | 4.704 | 5.868 | 3.55×10-6 | 10.572 |
表5 污染物(BSA-CaCl2)与膜界面相互作用自由能
膜材料 | 极性作用能ΔG | 范德华作用能ΔG | 静电作用能ΔG | 总作用能ΔG |
---|---|---|---|---|
PVDF基膜 | -5.156 | -0.186 | 2.59×10-6 | -5.342 |
PVDF-PFTS/SiO2膜 | 4.704 | 5.868 | 3.55×10-6 | 10.572 |
1 | KHAYET M. Membranes and theoretical modeling of membrane distillation: a review[J]. Advances in Colloid and Interface Science, 2011, 164(1/2): 56-88. |
2 | TIJING L D, WOO Y C, CHOI J S, et al. Fouling and its control in membrane distillation: a review[J]. Journal of Membrane Science, 2015, 475: 215-244. |
3 | XU W T, ZHAO Z P, LIU M, et al. Morphological and hydrophobic modifications of PVDF flat membrane with silane coupling agent grafting via plasma flow for VMD of ethanol-water mixture[J]. Journal of Membrane Science, 2015, 491: 110-120. |
4 | 王凯, 王德武, 侯得印, 等. 自组装法制备PVDF-SiO2/PVSQ超疏水复合膜及膜蒸馏抗污染性能[J]. 化工学报, 2019, 70(1): 298-308. |
WANG K, WANG D W, HOU D Y, et al. Fabrication of PVDF-SiO2/PVSQ superhydrophobic compositemembrane via self-assembly with anti-fouling property for membrane distillation[J]. CIESC Journal, 2019, 70(1): 298-308. | |
5 | REZAEI S, MANOUCHERI I, MORADIAN R, et al. One-step chemical vapor deposition and modification of silica nanoparticles at the lowest possible temperature and superhydrophobic surface fabrication[J]. Chemical Engineering Journal, 2014, 252: 11-16. |
6 | SONG X Y, ZHAI J, WANG Y L, et al. Self-assembly of amino-functionalized monolayers on silicon surfaces and preparation of superhydrophobic surfaces based on alkanoic acid dual layers and surface roughening[J]. Journal of Colloid and Interface Science, 2006, 298(1): 267-273. |
7 | KOH E, LEE Y T. Preparation of an omniphobic nanofiber membrane by the self-assembly of hydrophobic nanoparticles for membrane distillation[J]. Separation and Purification Technology, 2021, 259: 118134. |
8 | NGHIEM L D, CATH T. A scaling mitigation approach during direct contact membrane distillation[J]. Separation and Purification Technology, 2011, 80(2): 315-322. |
9 | WARSINGER D M, SWAMINATHAN J, GUILLEN-BURRIEZA E, et al. Scaling and fouling in membrane distillation for desalination applications: a review[J]. Desalination, 2015, 356: 294-313. |
10 | SHIRAZI S, LIN C J, CHEN D. Inorganic fouling of pressure-driven membrane processes: a critical review[J]. Desalination, 2010, 250(1): 236-248. |
11 | HOU D Y, ZHANG L J, ZHAO C W, et al. Ultrasonic irradiation control of silica fouling during membrane distillation process[J]. Desalination, 2016, 386: 48-57. |
12 | GRYTA M. Long-term performance of membrane distillation process[J]. Journal of Membrane Science, 2005, 265(1/2): 153-159. |
13 | HE F, SIRKAR K K, GILRON J. Studies on scaling of membranes in desalination by direct contact membrane distillation: CaCO3 and mixed CaCO3/CaSO4 systems[J]. Chemical Engineering Science, 2009, 64(8): 1844-1859. |
14 | GRYTA M, TOMASZEWSKA M, GRZECHULSKA J, et al. Membrane distillation of NaCl solution containing natural organic matter[J]. Journal of Membrane Science, 2001, 181(2): 279-287. |
15 | 谢松辰, 文剑平, 庞志广, 等. 膜蒸馏脱盐中膜污染与膜润湿的研究进展[J]. 化工进展, 2021, 40(7): 3942-3956. |
XIE S C, WEN J P, PANG Z G, et al. Research progress of membrane fouling and wetting in membrane distillation process for desalination[J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3942-3956. | |
16 | ZHANG J, SONG Z Y, LI B A, et al. Fabrication and characterization of superhydrophobic poly(vinylidene fluoride) membrane for direct contact membrane distillation[J]. Desalination, 2013, 324: 1-9. |
17 | HOU D Y, CHRISTIE K S S, WANG K, et al. Biomimetic superhydrophobic membrane for membrane distillation with robust wetting and fouling resistance[J]. Journal of Membrane Science, 2020, 599: 117708. |
18 | KHAN A A, KHAN I A, SIYAL M I, et al. Optimization of membrane modification using SiO2 for robust anti-fouling performance with calcium-humic acid feed in membrane distillation[J]. Environmental Research, 2019, 170: 374-382. |
19 | SONG H, SHI Y F, FU C. Oil adsorption measurements during membrane filtration[J]. Journal of Membrane Science, 2003, 214(1): 93-99. |
20 | SUN X H, KANANI D M, GHOSH R. Characterization and theoretical analysis of protein fouling of cellulose acetate membrane during constant flux dead-end microfiltration[J]. Journal of Membrane Science, 2008, 320(1/2): 372-380. |
21 | DENG B, YU M, YANG X X, et al. Antifouling microfiltration membranes prepared from acrylic acid or methacrylic acid grafted poly(vinylidene fluoride) powder synthesized via pre-irradiation induced graft polymerization[J]. Journal of Membrane Science, 2010, 350(1/2): 252-258. |
22 | FRANKEN A C M, NOLTEN J A M, MULDER M H V, et al. Wetting criteria for the applicability of membrane distillation[J]. Journal of Membrane Science, 1987, 33(3): 315-328. |
23 | MO H J, TAY K G, NG H Y. Fouling of reverse osmosis membrane by protein (BSA): effects of pH, calcium, magnesium, ionic strength and temperature[J]. Journal of Membrane Science, 2008, 315(1/2): 28-35. |
24 | HAMZAH N, LEO C P. Fouling prevention in the membrane distillation of phenolic-rich solution using superhydrophobic PVDF membrane incorporated with TiO2 nanoparticles[J]. Separation and Purification Technology, 2016, 167: 79-87. |
25 | NAMVAR-MAHBOUB M, PAKIZEH M. Development of a novel thin film composite membrane by interfacial polymerization on polyetherimide/modified SiO2 support for organic solvent nanofiltration[J]. Separation and Purification Technology, 2013, 119: 35-45. |
26 | ZHAO Y Y, LI F Y, CARVAJAL M T, et al. Interactions between bovine serum albumin and alginate: an evaluation of alginate as protein carrier[J]. Journal of Colloid and Interface Science, 2009, 332(2): 345-353. |
27 | LIU C, CHEN L, ZHU L. Fouling mechanism of hydrophobic polytetrafluoroethylene (PTFE) membrane by differently charged organics during direct contact membrane distillation (DCMD) process: an especial interest in the feed properties[J]. Journal of Membrane Science, 2018, 548: 125-135. |
28 | WANG Q Y, GUO Y F, WANG Z W, et al. Effects of graphene derivatives on polyvinylidene fluoride membrane modification evaluated with XDLVO theory and quartz crystal microbalance with dissipation[J]. Water Environment Research, 2021, 93(3): 360-369. |
29 | BRANT J A, CHILDRESS A E. Assessing short-range membrane-colloid interactions using surface energetics[J]. Journal of Membrane Science, 2002, 203(1/2): 257-273. |
30 | 寇朝卫, 张干伟, 沈舒苏, 等. 基于XDLVO理论分析物理化学相互作用对纳滤膜有机污染影响[J]. 水处理技术, 2017, 43(8): 32-39. |
KOU C W, ZHANG G W, SHEN S S, et al. Effect of physical and chemical interaction on organic fouling of nanofiltration membrane based on XDLVO theory analysis[J]. Technology of Water Treatment, 2017, 43(8): 32-39. | |
31 | 刘永明, 施建宇, 鹿芹芹, 等. 基于杨氏方程的固体表面能计算研究进展[J]. 材料导报, 2013, 27(11): 123-129. |
LIU Y M, SHI J Y, LU Q Q, et al. Research progress on calculation of solid surface tension based on Young’s equation[J]. Materials Review, 2013, 27(11): 123-129. | |
32 | MENG X R, TANG W T, WANG L, et al. Mechanism analysis of membrane fouling behavior by humic acid using atomic force microscopy: effect of solution pH and hydrophilicity of PVDF ultrafiltration membrane interface[J]. Journal of Membrane Science, 2015, 487: 180-188. |
33 | SUBRAMANI A, HOEK E M V. Direct observation of initial microbial deposition onto reverse osmosis and nanofiltration membranes[J]. Journal of Membrane Science, 2008, 319(1/2): 111-125. |
34 | BOUCHARD C R, JOLICOEUR J, KOUADIO P, et al. Study of humic acid adsorption on nanofiltration membranes by contact angle measurements[J]. The Canadian Journal of Chemical Engineering, 1997, 75(2): 339-345. |
35 | WANG X D, ZHOU M, MENG X R, et al. Effect of protein on PVDF ultrafiltration membrane fouling behavior under different pH conditions: interface adhesion force and XDLVO theory analysis[J]. Frontiers of Environmental Science and Engineering, 2016, 10(4): 1-11. |
36 | WANG H, NEWBY B M Z. Applicability of the extended Derjaguin–Landau–Verwey–Overbeek theory on the adsorption of bovine serum albumin on solid surfaces[J]. Biointerphases, 2014, 9(4): 041006. |
37 | ZUO G Z, WANG R. Novel membrane surface modification to enhance anti-oil fouling property for membrane distillation application[J]. Journal of Membrane Science, 2013, 447: 26-35. |
38 | ZHAO Y Q, YU W M, LI R J, et al. Electric field endowing the conductive polyvinylidene fluoride (PVDF)-graphene oxide (GO)-nickel (Ni) membrane with high-efficient performance for dye wastewater treatment[J]. Applied Surface Science, 2019, 483: 1006-1016. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 胡喜, 王明珊, 李恩智, 黄思鸣, 陈俊臣, 郭秉淑, 于博, 马志远, 李星. 二硫化钨复合材料制备与储钠性能研究进展[J]. 化工进展, 2023, 42(S1): 344-355. |
[3] | 林晓鹏, 肖友华, 管奕琛, 鲁晓东, 宗文杰, 傅深渊. 离子聚合物-金属复合材料(IPMC)柔性电极的研究进展[J]. 化工进展, 2023, 42(9): 4770-4782. |
[4] | 单雪影, 张濛, 张家傅, 李玲玉, 宋艳, 李锦春. 阻燃型环氧树脂的燃烧数值模拟[J]. 化工进展, 2023, 42(7): 3413-3419. |
[5] | 于志庆, 黄文斌, 王晓晗, 邓开鑫, 魏强, 周亚松, 姜鹏. B掺杂Al2O3@C负载CoMo型加氢脱硫催化剂性能[J]. 化工进展, 2023, 42(7): 3550-3560. |
[6] | 杨竞莹, 施万胜, 黄振兴, 谢利娟, 赵明星, 阮文权. 改性纳米零价铁材料制备的研究进展[J]. 化工进展, 2023, 42(6): 2975-2986. |
[7] | 许春树, 姚庆达, 梁永贤, 周华龙. 氧化石墨烯/碳纳米管对几种典型高分子材料的性能影响[J]. 化工进展, 2023, 42(6): 3012-3028. |
[8] | 朱雅静, 徐岩, 简美鹏, 李海燕, 王崇臣. 金属有机框架材料用于海水提铀的研究进展[J]. 化工进展, 2023, 42(6): 3029-3048. |
[9] | 张宁, 吴海滨, 李钰, 李剑锋, 程芳琴. 漂浮型光催化材料的制备及其在水处理领域的应用研究进展[J]. 化工进展, 2023, 42(5): 2475-2485. |
[10] | 陈飞, 刘成宝, 陈丰, 钱君超, 邱永斌, 孟宪荣, 陈志刚. g-C3N4基超级电容器用电极材料的研究进展[J]. 化工进展, 2023, 42(5): 2566-2576. |
[11] | 刘念, 陈葵, 武斌, 纪利俊, 吴艳阳, 韩金玲. 蛋黄-壳介孔磁性炭微球的制备及其对红霉素的高效吸附[J]. 化工进展, 2023, 42(5): 2724-2732. |
[12] | 陈仪, 郭耀励, 叶海星, 李宇璇, 牛青山. 二维纳米材料在渗透汽化脱盐膜中的应用[J]. 化工进展, 2023, 42(3): 1437-1447. |
[13] | 薛博, 杨婷婷, 王雪峰. 聚苯胺/碳纳米管气敏材料的研究进展[J]. 化工进展, 2023, 42(3): 1448-1456. |
[14] | 章建忠, 许升, 樊家澍, 费振宇, 王堃, 黄建, 崔峰波, 冉文华. 玻璃纤维浸润剂的分析与表征技术进展[J]. 化工进展, 2023, 42(2): 821-838. |
[15] | 张英杰, 陆加越, 王方刚. 新型磁性树脂的合成及其在水中去除Cu(Ⅱ)的性能[J]. 化工进展, 2023, 42(10): 5558-5566. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |