化工进展 ›› 2022, Vol. 41 ›› Issue (4): 1873-1885.DOI: 10.16085/j.issn.1000-6613.2021-0732
李庆慧1,2(), 宋焕玲1, 赵华华1(), 杨建1, 赵军1, 闫亮1, 丑凌军1,3()
收稿日期:
2021-04-08
修回日期:
2021-07-21
出版日期:
2022-04-23
发布日期:
2022-04-25
通讯作者:
赵华华,丑凌军
作者简介:
李庆慧(1997—),女,硕士研究生,研究方向为多相催化。E-mail:基金资助:
LI Qinghui1,2(), SONG Huanling1, ZHAO Huahua1(), YANG Jian1, ZHAO Jun1, YAN Liang1, CHOU Lingjun1,3()
Received:
2021-04-08
Revised:
2021-07-21
Online:
2022-04-23
Published:
2022-04-25
Contact:
ZHAO Huahua,CHOU Lingjun
摘要:
低碳烯烃选择氧化制备醛类等含氧化合物是生产有机化工中间体及产品的关键步骤,钼铋复合金属氧化物因其优异的催化性能在相关工业界和学术界受到广泛关注,然而目前关于该催化剂上选择氧化反应机制和催化反应本质等科学问题的认识尚未形成统一理论。本文系统综述了钼铋复合金属氧化物在催化低碳烯烃选择氧化制备醛类反应中的研究进展,包括催化剂微观结构的三种调控手段,即主组分钼酸铋物相结构、助剂及载体等对反应性能的影响,并对反应机理进行了深入讨论与总结。最后展望了钼铋复合金属氧化物在该选择氧化反应中的发展前景,为钼铋复合金属氧化物修饰改性及开发高效低碳烯烃选择氧化制含氧化合物催化剂提供思路。
中图分类号:
李庆慧, 宋焕玲, 赵华华, 杨建, 赵军, 闫亮, 丑凌军. 钼铋复合金属氧化物催化低碳烯烃选择氧化制备醛类研究进展[J]. 化工进展, 2022, 41(4): 1873-1885.
LI Qinghui, SONG Huanling, ZHAO Huahua, YANG Jian, ZHAO Jun, YAN Liang, CHOU Lingjun. Selective oxidation of light olefins to aldehydes catalyzed by molybdenum-bismuth composite metal oxides[J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1873-1885.
催化剂 | 反应温度/℃ | 反应空速/h-1 | 丙烯转化率% | 丙烯醛选择性% | 参考专利 |
---|---|---|---|---|---|
MoWBiFeCoNiKSi | 310 | 1400 | 97.5 | 85.2 | CN101402044A |
MoBiFeCoK | 320 | 5000 | 97.18 | 81.7 | CN1564709A |
MoWBiFeCoNiBKSi | 310 | 1565 | 98.2 | 81.6 | CN1093021A |
MoWBiFeCoKSi | 320 | 1800 | 97.6 | 90.2 | US3825600 |
MoBiFeCKSi | 320 | — | 99.1 | 88.8 | JP5293389 |
MoWBiFeCoNiK | 315 | 1200 | 98.5 | 82.5 | CN93103817 |
MoBiCoFeNiW | 305 | 850 | 98.1 | 85.6 | CN102992979A |
MoBiCoFeNiWCs | 320 | 1500 | 98.3 | 87.4 | CN102992979A |
MoBiCoFeNiKLa | 325 | 1200 | 98.3 | 87.7 | CN102992979A |
MoBiCoFeNiMgK | 310 | 1100 | 98.2 | 85.6 | CN102992979A |
MoBiCoFeNiKS | 367 | 1000 | 98.0 | 86.5 | CN102992979A |
表1 不同组成的Mo-Bi系催化剂选择氧化丙烯的催化性能[56]
催化剂 | 反应温度/℃ | 反应空速/h-1 | 丙烯转化率% | 丙烯醛选择性% | 参考专利 |
---|---|---|---|---|---|
MoWBiFeCoNiKSi | 310 | 1400 | 97.5 | 85.2 | CN101402044A |
MoBiFeCoK | 320 | 5000 | 97.18 | 81.7 | CN1564709A |
MoWBiFeCoNiBKSi | 310 | 1565 | 98.2 | 81.6 | CN1093021A |
MoWBiFeCoKSi | 320 | 1800 | 97.6 | 90.2 | US3825600 |
MoBiFeCKSi | 320 | — | 99.1 | 88.8 | JP5293389 |
MoWBiFeCoNiK | 315 | 1200 | 98.5 | 82.5 | CN93103817 |
MoBiCoFeNiW | 305 | 850 | 98.1 | 85.6 | CN102992979A |
MoBiCoFeNiWCs | 320 | 1500 | 98.3 | 87.4 | CN102992979A |
MoBiCoFeNiKLa | 325 | 1200 | 98.3 | 87.7 | CN102992979A |
MoBiCoFeNiMgK | 310 | 1100 | 98.2 | 85.6 | CN102992979A |
MoBiCoFeNiKS | 367 | 1000 | 98.0 | 86.5 | CN102992979A |
催化剂 | 反应温度/℃ | 反应空速/h-1 | 异丁烯转化率/% | 甲基丙烯醛选择性/% | 参考专利 |
---|---|---|---|---|---|
MoBiFeCoCe | 300 | 3600 | 98.7 | 97.1 | US5138100 |
MoBiFeCoPr | 340 | 3600 | 99.0 | 94.0 | US5138100 |
MoBiFeCoEu | 360 | 3600 | 99.1 | 93.0 | US5138100 |
MoBiFeZnCsSb | 330 | 800 | 95.4 | 87.7 | WO9926912 |
MoBiFeWCoCsSiZr | 330 | 1600 | 98.5 | 88.2 | EP685260 |
MoBiFeNiWCoMgZnBSbCsSi | 365 | — | 97.1 | 88.2 | JP11179206 |
MoBiFeCoCs | — | 750 | 99.5 | 83.3 | JP2000288396 |
MoBiFeNiCoZnGeTeCs | 340 | 800 | 97.6 | 88.2 | JP2000237592 |
MoWBiFeCoNiKSi | 310 | 1800 | 98.5 | 95.1 | JP2000325795 |
MoBiFeNiWCoMgZnBSbCs | 365 | 1000 | 95.5 | 88.8 | US5532199 |
MoBiFeCoMnPbPZrCsNa | 350 | 800 | 98.7 | 86.0 | US5856259 |
表2 不同组成的Mo-Bi系催化剂选择氧化异丁烯的催化性能[57]
催化剂 | 反应温度/℃ | 反应空速/h-1 | 异丁烯转化率/% | 甲基丙烯醛选择性/% | 参考专利 |
---|---|---|---|---|---|
MoBiFeCoCe | 300 | 3600 | 98.7 | 97.1 | US5138100 |
MoBiFeCoPr | 340 | 3600 | 99.0 | 94.0 | US5138100 |
MoBiFeCoEu | 360 | 3600 | 99.1 | 93.0 | US5138100 |
MoBiFeZnCsSb | 330 | 800 | 95.4 | 87.7 | WO9926912 |
MoBiFeWCoCsSiZr | 330 | 1600 | 98.5 | 88.2 | EP685260 |
MoBiFeNiWCoMgZnBSbCsSi | 365 | — | 97.1 | 88.2 | JP11179206 |
MoBiFeCoCs | — | 750 | 99.5 | 83.3 | JP2000288396 |
MoBiFeNiCoZnGeTeCs | 340 | 800 | 97.6 | 88.2 | JP2000237592 |
MoWBiFeCoNiKSi | 310 | 1800 | 98.5 | 95.1 | JP2000325795 |
MoBiFeNiWCoMgZnBSbCs | 365 | 1000 | 95.5 | 88.8 | US5532199 |
MoBiFeCoMnPbPZrCsNa | 350 | 800 | 98.7 | 86.0 | US5856259 |
催化剂 | 比表面积/m2·g-1 |
---|---|
纯α-Bi2Mo3O12 | 2 |
共沉淀法BiMoO+TiO2 | 40 |
浸渍法BiMoO+TiO2 | 39 |
溶胶-凝胶法BiMoO+TiO2 | 108 |
表3 负载型催化剂比表面积[91]
催化剂 | 比表面积/m2·g-1 |
---|---|
纯α-Bi2Mo3O12 | 2 |
共沉淀法BiMoO+TiO2 | 40 |
浸渍法BiMoO+TiO2 | 39 |
溶胶-凝胶法BiMoO+TiO2 | 108 |
1 | 李明林, 刘淑鹤, 王振宇. 低碳烷烃催化脱氢催化剂的专利概况及Pt系催化剂发展路线[J]. 当代石油石化, 2016, 24(9):13-19. |
LI Minglin, LIU Shuhe, WANG Zhenyu. The general situation of patent of catalytic dehydrogenation catalysts for light alkanes and the development route of Pt-based catalyst[J]. Petroleum & Petrochemical Today, 2016, 24(9): 13-19. | |
2 | 刘义涛, 朱明辉, 杨子旭, 等. 煤制化学品: 合成气直接制低碳烯烃催化剂研究进展[J]. 化工进展, 2021, 40(2): 594-604. |
LIU Yitao, ZHU Minghui, YANG Zixu, et al. Advances of catalysts for direct synthesis of lower olefins from syngas[J]. Chemical Industry and Engineering Progress, 2021, 40(2): 594-604. | |
3 | 盛健, 陆文多, 闫冰, 等. 硼基材料催化低碳烷烃氧化脱氢制烯烃研究进展[J]. 化工进展, 2021, 40(4): 1883-1892. |
SHENG Jian, LU Wenduo, YAN Bing, et al. Progress in oxidative dehydrogenation of light alkanes to olefins over boron-based materials[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 1883-1892. | |
4 | 王志喜, 王亚东, 张睿, 等. 催化裂解制低碳烯烃技术研究进展[J]. 化工进展, 2013, 32(8): 1818-1824. |
WANG Zhixi, WANG Yadong, ZHANG Rui, et al. Advances of catalytic pyrolysis for producing light olefins[J]. Chemical Industry and Engineering Progress, 2013, 32(8): 1818-1824. | |
5 | 刘剑, 孙淑坤, 张永军, 等. 石脑油催化裂解制低碳烯烃技术进展及其技术经济分析[J]. 化学工业, 2011, 29(11): 33-36. |
LIU Jian, SUN Shukun, ZHANG Yongjun, et al. Advance in catalytic cracking of naphtha to light olefins and techno-economic analysis[J]. Chemical Industry, 2011, 29(11): 33-36. | |
6 | 周治. 石脑油制低碳烯烃的影响因素研究[J]. 石油化工, 2018, 47(4): 338-343. |
ZHOU Zhi. Factors of catalytic cracking of naphtha to light olefins[J]. Petrochemical Technology, 2018, 47(4): 338-343. | |
7 | 黄格省, 胡杰, 李锦山, 等. 我国煤制烯烃技术发展现状与趋势分析[J]. 化工进展, 2020, 39(10): 3966-3974. |
HUANG Gesheng, HU Jie, LI Jinshan, et al. Development status and trend of coal-to-olefins technology[J]. Chemical Industry and Engineering Progress, 2020, 39(10): 3966-3974. | |
8 | 吴宇凡, 王丽霞, 田辉平, 等. 新型分子筛上石脑油催化裂解多产低碳烯烃研究[J]. 石油炼制与化工, 2019, 50(10): 31-37. |
WU Yufan, WANG Lixia, TIAN Huiping, et al. Catalytic cracking of naphtha novel zeolites for maximizing light olefins yield[J]. Petroleum Processing and Petrochemicals, 2019, 50(10): 31-37. | |
9 | 蔡建崇, 万涛. 增强型催化裂解技术(DCC-PLUS)的工业应用[J]. 石油炼制与化工, 2019, 50(11): 16-20. |
CAI Jianchong, WAN Tao. Industrial application of DCC-PLUS technology[J]. Petroleum Processing and Petrochemicals, 2019, 50(11): 16-20. | |
10 | BRAZDIL J F. The Legacy and promise of heterogeneous selective oxidation and ammoxidation catalysis[J]. Catalysis Today, 2019, 363: 55-59. |
11 | WEBER D, WEIDLER P, CZARNETZKI K B. Partial oxidation of isobutane and isobutene to methacrolein over a novel Mo-V-Nb(-Te) mixed oxide catalyst[J]. Top Catalysis, 2017, 60: 1401-1407. |
12 | PINAEVA L G, NOSKOV A S. Prospects for the development of ethylene oxide production catalysts and processes (review)[J]. Petroleum Chemistry, 2020, 60(11): 1191-1206. |
13 | 丁国荣, 杨献忠, 陈金, 等. 国内外乙醛生产与消费分析[J]. 化学工业, 2017, 35(6): 47-52. |
DING Guorong, YANG Xianzhong, CHEN Jin, et al. Analysis of the production and consumption of acetaldehyde[J]. Chemical Industry, 2017, 35(6): 47-52. | |
14 | POTEKHIN V V, MATSURA V A. Formation of palladium nanoparticles in olefin oxidation with iron( Ⅲ ) aqua ions in the presence of the Pd/ZrO2/SO4 metallic catalyst[J]. Russian Chemical Bulletin, 2006, 55(4): 650-655. |
15 | EFREMOV G E, BOVYRINA E A, KATSMAN E A, et al. Kinetic model of ethylene oxidation by p-benzoquinone in solutions of cationic palladium( Ⅱ ) complexes in a binary acetonitrile-water solvent[J]. Russian Chemical Bulletin, 2019, 68(7): 1366-1375. |
16 | MARTYNOV I V, EFREMOV G E, BOVYRINA E A, et al. The mechanism and kinetic models of the catalytic oxidation of ethylene by p-benzoquinone in aqueous-acetonitrile solutions of Pd( Ⅱ ) cationic complexes[J]. Kinetics and Catalysis, 2018, 59(4): 436-443. |
17 | FORNI L, GILARDI G. MoO3 and GeO2 doping effect on Pd-V2O5 vapor-phase ethylene to acetaldehyde oxidation catalyst[J]. Journal of Catalysis, 1976, 41: 338-341. |
18 | FRUSTERI F, PARMALIANA A, OSTROVSKII N M, et al. Selective oxidation of ethylene over carbon-supported Pd and Pt catalytic membranes[J]. Catalysis Letters, 1997, 46: 57-62. |
19 | BARTHOS R, HEGYESSY A, NOVODARSZKI G, et al. Structure and activity of Pd/V2O5/TiO2 catalysts in Wacker oxidation of ethylene[J]. Applied Catalysis A: General, 2017, 531: 96-105. |
20 | BARTHOS R, DROTÁR E, SZEGEDI Á, et al. Wacker oxidation of ethylene over vanadia nanotube supported Pd catalysts[J]. Materials Research Bulletin, 2012, 47(12): 4452-4456. |
21 | ZHIZNEVSKII V M, GUMENETSKII V V, BAZHAN L V. Kinetics of isobutylene oxidation on a Mo-Sb-Te-O (1∶0.6∶0.06) catalyst[J]. Kinetics and Catalysis, 2000, 41(4): 517-520. |
22 | GAIGNEAUX E M, LIU Haichao, IMOTO H, et al. Catalytic behavior of a novel SbRe2O6 compound in the selective oxidation of isobutylene: the key role of the cooperation between Sb4Re2O13 and Re2O7 [J]. Topics in Catalysis, 2000, 11/12(1/2/3/4): 185-193. |
23 | LIU Haichao, GAIGNEAUX E G, IMOTO H, et al. Novel Re-Sb-O catalysts for the selective oxidation of isobutane and isobutylene[J]. Applied Catalysis A, 2000, 202: 251-264. |
24 | GUAN Jingqi, WU Shujie, Wang Hongsu, et al. Synthesis and characterization of MoVTeCeO catalysts and their catalytic performance for selective oxidation of isobutane and isobutylene[J]. Journal of Catalysis, 2007, 251: 354-362. |
25 | GUAN Jingqi, XU Chen, WANG Zhuqian, et al. Selective oxidation of isobutane and isobutene to methacrolein over Te-Mo mixed oxide catalysts[J]. Catalysis Letters, 2008, 124(3/4): 428-433. |
26 | XU Da, LIU Shiyan, LIU Yunling, et al. Effect of pH value on the properties of molybdenum-based multiphasic oxide catalysts in selective oxidation of isobutene to methacrolein[J]. Acta Physico-Chimica Sinica, 2012, 28(11): 2690-2696. |
27 | WANG Fang, WANG Guangjian, NIU Xinshan. Study on the effect of nickel doping on Mo-Bi based catalyst for selective oxidation of isobutene to methacrolein[J]. International Journal of Chemical Reactor Engineering, 2016, 14(1): 105-112. |
28 | SCHINDLER G P, UI T, NAGAI K. Kinetics of isobutane selective oxidation over MoVPAsCsCuO heteropoly acid catalyst[J]. Applied Catalysis A, 2001, 206: 183-195. |
29 | KNAPP C, UI T, NAGAI K, et al. Stability of iron in the Keggin anion of heteropoly acid catalysts for selective oxidation of isobutane[J]. Catalysis Today, 2001, 71: 111-119. |
30 | BALLARINI N, CANDIRACCI F, CAVANI F, et al. The dispersion of Keggin-type P/Mo polyoxometalates inside silica gel, and the preparation of catalysts for the oxidation of isobutane to methacrolein and methacrylic acid[J]. Applied Catalysis A: General, 2007, 325: 263-269. |
31 | REITZ J B, SOLOMON E I. Propylene oxidation on copper oxide surfaces: electronic and geometric contributions to reactivity and selectivity[J]. Journal of the American Chemical Society, 1998, 120(44): 11467-11478. |
32 | 蒋小平, 蒋海明, 袁先友, 等. 杂多酸的催化氧化作用及其应用研究新进展[J]. 零陵学院学报, 2004, 25(6): 21-23. |
JIANG Xiaoping, JIANG Haiming, YUAN Xianyou, et al. The oxidation catalysis of heteropoly compounds and their development on the application[J]. Journal of Lingling University, 2004, 25(6): 21-23. | |
33 | SCHINDLER G P, KNAPP C, UI T, et al. Enhancing the productivity of isobutane selective oxidation over a Mo-V-P-as-Cs-Cu-O heteropoly acid catalyst[J]. Topics in Catalysis, 2003, 22(1/2): 117-121. |
34 | 蔡铁军, 余长林, 邓谦, 等. CsCuHPVAsMoO杂多化合物对异丁烯选择性氧化反应的催化性能[J]. 催化学报, 2003, 24(12): 951-956. |
CAI Tiejun, YU Changlin, DENG Qian, et al. Catalytic performance of CsCuHPVAsMoO heteropoly compounds for selective oxidation of isobutene[J]. Chinese Journal of Catalysis, 2003, 24(12): 951-956. | |
35 | 王蕾, 张锁江, 李增喜, 等. 异丁烯为原料制备甲基丙烯酸甲酯的催化剂[J]. 化工学报, 2004, 55(12): 2082-2085. |
WANG Lei, ZHANG Suojiang, LI Zengxi, et al. Catalysts for manufacturing methyl methacrylate from isobutylene[J]. Journal of Chemical Industry and Engineering (China), 2004, 55(12): 2082-2085. | |
36 | 王蕾, 张锁江, 李增喜, 等. 制备条件对异丁烯选择性氧化催化剂性能的影响[J]. 燃料化学学报, 2004, 32(4): 481-485. |
WANG Lei, ZHANG Suojiang, LI Zengxi, et al. Influence of preparation conditions on the properties of catalysts in the selective oxidation of isobutylene[J]. Journal of Fuel Chemistry and Technology, 2004, 32(4): 481-485. | |
37 | 李强, 王蕾, 闫瑞一, 等. 异丁烯制备甲基丙烯醛催化剂的研究进展[J]. 化学工业与工程, 2007, 24(5): 433-438. |
LI Qiang, WANG Lei, YAN Ruiyi, et al. Progress of catalysts for isobutylene to methacrolein[J]. Chemical Industry and Engineering, 2007, 24(5): 433-438. | |
38 | 王蕾, 李增喜, 张锁江, 等. 复合氧化物催化剂上异丁烯选择氧化的研究进展[J]. 过程工程学报, 2007, 7(1): 202-208. |
WANG Lei, LI Zengxi, ZHANG Suojiang, et al. Research progress in selective oxidation of isobutylene to methacrolein on complex oxide catalysts[J]. The Chinese Journal of Process Engineering, 2007, 7(1): 202-208. | |
39 | 李强, 王蕾, 李增喜, 等. 异丁烯选择氧化制备甲基丙烯醛催化反应的研究[J]. 中国科学院研究生院学报, 2008, 25(1): 28-34. |
LI Qiang, WANG Lei, LI Zengxi, et al. Studies on catalytic reaction of selective oxidation of isobutylene to methacrolein[J]. Journal of the Graduate School of the Chinese Academy of Sciences, 2008, 25(1): 28-34. | |
40 | 王国甲, 吴通好, 松玉书, 等. 异丁烯在Mo-Te氧化物催化剂上的脉冲反应研究[J]. 高等学校化学学报, 1993, 14(11): 244-247. |
WANG Guojia, WU Tonghao, SONG Yushu, et al. Studies on pulse reaction of isobutene on Mo-Te oxide catalyst[J]. Chemical Journal of Chinese Universities, 1993, 14(11): 244-247. | |
41 | 刘士艳. 复合金属氧化物上异丁烯选择氧化制备甲基丙烯醛反应的研究[D]. 长春: 吉林大学, 2009. |
LIU Shiyan. Performance of mixed metal oxide catalyst in selective oxidation of isobutene to methacrolein[D]. Changchun: Jilin University, 2009. | |
42 | SPRENGER P, KLEIST W, GRUNWALDT J D. Recent advances in selective propylene oxidation over bismuth molybdate based catalysts: synthetic, spectroscopic, and theoretical approaches[J]. ACS Catalysis, 2017, 7(9): 5628-5642. |
43 | SPRENGER P, SHEPPARD T, SUURONEN J P, et al. Structural evolution of highly active multicomponent catalysts for selective propylene oxidation[J]. Catalysts, 2018, 8(9): 356-377. |
44 | SPRENGER P, STEHLE M, GAUR A, et al. Reactivity of bismuth molybdates for selective oxidation of propylene probed by correlative operando spectroscopies[J]. ACS Catalysis, 2018, 8(7): 6462-6475. |
45 | SPRENGER P, STEHLE M, GAUR A, et al. Chemical imaging of mixed metal oxide catalysts for propylene oxidation: from model binary systems to complex multicomponent systems[J]. ChemCatChem, 2021, 13(10): 2483-2493. |
46 | TONELLI M, MASSIN L, CARDENAS L, et al. Cooperation between redox couples at the surface of molybdates based catalysts used for the selective oxidation of propene[J]. Journal of Catalysis, 2019, 370: 412-423. |
47 | TONELLI M, AOUINE M, MASSIN L, et al. Selective oxidation of propene to acrolein on FeMoTeO catalysts: determination of active phase and enhancement of catalytic activity and stability[J]. Catalysis Science & Technology, 2017, 7(20): 4629-4639. |
48 | SHISHIDO T, INOUE A, KONISHI T, et al. Oxidation of isobutane over Mo-V-Sb mixed oxide catalyst[J]. Catalysis Letters, 2000, 68(3/4): 215-221. |
49 | ZHANG Qijian, HE Dehua, HAN Zhansheng, et al. Controlled partial oxidation of methane to methanol/formaldehyde over Mo-V-Cr-Bi-Si oxide catalysts[J]. Fuel, 2002, 81:1599-1603. |
50 | HAN Zhansheng, PAN Wei, PAN Weixiong, et al. Preparation and effect of Mo-V-Cr-Bi-Si oxide catalysts on controlled oxidation of methane to methanol and formaldehyde[J]. Korean Journal of Chemical Engineering, 1998, 15(5): 496-499. |
51 | ONO T, UTSUMI K, TSUKAMOTO S, et al. Roles of bulk γ-Bi2MoO6 and surface β-Bi2Mo2O9 in the selective catalytic oxidation of C3H6 [J]. Journal of Molecular Catalysis A: Chemical, 2010, 318(1/2): 94-100. |
52 | ONO T, UTSUMI K, KATAOKA M, et al. A study of active sites for partial oxidation on α-Bi2Mo3O12 and β-Bi2Mo2O9 catalysts using crystal structure visualization[J]. Catalysis Today, 2004: 181-184. |
53 | ONO T, OGATA N, KUCZKOWSKI R L. Tracer studies of olefin oxidation over an α-Bi2Mo3O12 catalyst using laser Raman and microwave spectroscopy[J]. Journal of Catalysis, 1998, 175: 185-193. |
54 | ZHAO Shuai, DAI Zan, GUO Wenjin, et al. Highly selective oxidation of glycerol over Bi/Bi3.64Mo0.36O6.55 heterostructure: dual reaction pathways induced by photogenerated 1O2 and holes[J]. Applied Catalysis B: Environmental, 2019, 244: 206-214. |
55 | YU Hanbo, JIANG Longbo, WANG Hou, et al. Modulation of Bi2MoO6-based materials for photocatalytic water splitting and environmental application: a critical review[J]. Small, 2019, 15(23): e1901008. |
56 | 田伟. 异丁烯选择氧化制备甲基丙烯醛催化剂的研究[D]. 无锡: 江南大学, 2008. |
TIAN Wei. Study for the catalyst of the isobutene selection oxidation for methacrolein[D]. Wuxi: Jiangnan University, 2008. | |
57 | 甘玉花. 丙烯选择氧化制丙烯醛催化剂的研究[D]. 厦门:厦门大学, 2014. |
GAN Yuhua. Study on the catalyst for selective oxidation of propylene to acrolein[D]. Xiamen: Xiamen University, 2014. | |
58 | LONG Jinlin, WANG Shuchao, CHANG Hongjin, et al. Bi2MoO6 nanobelts for crystal facet-enhanced photocatalysis[J]. Small, 2014, 10(14): 2791-2795. |
59 | ZHANG Fangdou, DONG Xin, CHENG Xiaoli, et al. Enhanced gas-sensing properties for trimethylamine at low temperature based on MoO3/Bi2Mo3O12 hollow microspheres[J]. ACS Applied Materials & Interfaces, 2019, 11(12): 11755-11762. |
60 | WANG Xiong, GU Fei, LI Li, et al. A facile mixed-solvothermal route to γ-Bi2MoO6 nanoflakes and their visible-light-responsive photocatalytic activity[J]. Materials Research Bulletin, 2013, 48(10): 3761-3765. |
61 | TIAN Guohui, CHEN Yajie, ZHOU Wei, et al. Facile solvothermal synthesis of hierarchical flower-like Bi2MoO6 hollow spheres as high performance visible-light driven photocatalysts[J]. Journal of Materials Chemistry, 2011, 21(3): 887-892. |
62 | ZHAI Zheng, WANG Xuan, LICHT R, et al. Selective oxidation and oxidative dehydrogenation of hydrocarbons on bismuth vanadium molybdenum oxide[J]. Journal of Catalysis, 2015, 325: 87-100. |
63 | SONG Nianxue, RHODES C, BARTLEY J, et al. Oxidation of isobutene to methacrolein using bismuth molybdate catalysts: comparison of operation in periodic and continuous feed mode[J]. Journal of Catalysis, 2005, 236: 282-291. |
64 | MORO-OKA Y, UEDA W. Multicomponent bismuth molybdate catalyst: a highly functionalized catalyst system for the selective oxidation of olefin[J]. Advances in Catalysis, 1994, 40: 233-273. |
65 | LE M T, WELL W J M VAN, ISABEL V D, et al. Spray drying, a versatile synthetic method to control purity in single phases and mixed phases of bismuth molybdates[J]. The Canadian Journal of Chemical Engineering, 2005, 83: 336-343. |
66 | LE M T, WELL W J M VAN, STOLTZE P, et al. Synergy effects between bismuth molybdate catalyst phases (Bi/Mo from 0.57 to 2) for the selective oxidation of propylene to acrolein[J]. Applied Catalysis A: General, 2005, 282: 189-194. |
67 | WELL W J M VAN, LE M T, SCHIØDT N C. The influence of the calcination conditions on the catalytic activity of Bi2MoO6 in the selective oxidation of propylene to acrolein[J]. Journal of Molecular Catalysis A: Chemical, 2006, 256: 1-8. |
68 | SCHUH K, KLEIST W, HØJ M, et al. Selective oxidation of propylene to acrolein by hydrothermally synthesized bismuth molybdates[J]. Applied Catalysis A: General, 2014, 482: 145-156. |
69 | AYAME A, UCHIDA K, MASAZUMI I. X-ray photoelectron spectroscopic study on α- and γ-bismuth molybdate surfaces exposed to hydrogen, propene and oxygen[J]. Applied Catalysis A: General, 2002, 227: 7-17. |
70 | GRASSELLI R K. Genesis of site isolation and phase cooperation in selective oxidation catalysis[J]. Topics in Catalysis, 2001, 15(2/3/4): 93-101. |
71 | GOLUNSKI S, WALKER A. Lowering the operating temperature of selective oxidation catalysts[J]. Chemical Communications, 2000: 1593-4. |
72 | ZHAI Zheng, WÜTSCHERT M, LICHT R B, et al. Effects of catalyst crystal structure on the oxidation of propene to acrolein[J]. Catalysis Today, 2016, 261: 146-153. |
73 | GETSOIAN A B, ZHAI Zheng, BELL A T. Band-gap energy as a descriptor of catalytic activity for propene oxidation over mixed metal oxide catalysts[J]. Journal of the American Chemical Society, 2014, 136(39): 13684-13697. |
74 | WOLFS M W J, BATIST P. The selective oxidation of 1-butene over a multicomponent molybdate catalyst. Influences of various elements on structure and activity[J]. Journal of Catalysis, 1974, 32: 25-36. |
75 | FORZATTI P, VILLA P L, FERLAZZO N, et al. Multicomponent catalysts for the oxidation of propylene to acrolein: Fe2(MoO4)3 doped with Bi or Te[J]. Journal of Catalysis, 1982, 76: 188-207. |
76 | MILLET J, PONCEBLANC H, COUDURIER G, et al. Study of multiphasic molybdate-based catalysts ( Ⅱ ): Synergy effect between bismuth molybdates and mixed iron and cobalt molybdates in mild oxidation of propene[J]. Journal of Catalysis, 1993, 142: 381-391. |
77 | BRAZDIL J F. Scheelite: a versatile structural template for selective alkene oxidation catalysts[J]. Catalysis Science & Technology, 2015, 5(7): 3452-3458. |
78 | 王蕾, 李增喜, 张锁江, 等. Mo-Bi-Fe-O复合氧化物的晶相与催化性能研究[C]//第十三届全国催化学术会议. 兰州, 2006: 805. |
WANG Lei, LI Zengxi, ZHANG Suojiang, et al. Studies on crystal phase and catalytic properties of Mo-Bi-Fe-O[C]// The 13th National Congress on Catalysis of China, Lanzhou, 2006: 805. | |
79 | SUGIYAMA S, NAGAI K, NAKAO Y, et al. Catalyst deactivation of a silica-supported bismuth-molybdenum complex oxide and the related complex oxides for the oxidative dehydrogenation of 1-butene to 1,3-butadiene[J]. Journal of Chemical Engineering of Japan, 2017, 50(8): 641-647. |
80 | BÉGUÉ P, ROJO J M, IGLESIAS J E, et al. Different [Bi12O14] n columnar structural types in the Bi-Mo-Cr-O system: synthesis, structure, and electrical properties of the solid solution Bi26Mo10- x Cr x O69 [J]. Journal of Solid State Chemistry, 2002, 166(1): 7-14. |
81 | CARRAZFIN S, MARTIN C, RIVES V, et al. Selective oxidation of isobutene to methacrolein on multiphasic molybdate-based catalysts[J]. Applied Catalysis A: General, 1996, 135: 95-123. |
82 | UDALOVA O V, SHASHKIN D P, SHIBANOVA M D, et al. Action of Co-Mo-Bi-Fe-Sb-K catalysts in the partial oxidation of propylene to acrolein ( Ⅰ ): The composition dependence of activity and selectivity[J]. Kinetics and Catalysis, 2005, 46(4): 535-544. |
83 | MIKHAILENKO E L, TARASOVA D V, NIKORO T A. Influence of sodium on the catalytic properties of bismuth-molybdenum oxide catalysts[J]. Reaction Kinetics and Catalysis Letters, 1979, 12(3): 327-331. |
84 | ZHAI Zheng, GETSOIAN A, BELL A T. The kinetics of selective oxidation of propene on bismuth vanadium molybdenum oxide catalysts[J]. Journal of Catalysis, 2013, 308: 25-36. |
85 | MOENS L R, RUIZ P, DELMON B, et al. Evaluation of the role played by bismuth molybdates in Bi2Sn2O7-MoO3 catalysts used for partial oxidation of isobutene to methacrolein[J]. Applied Catalysis A, 1999, 180: 299-315. |
86 | 陈铜,远松月,刘桂珍 等. Bi-MO-Nb 复合氧化物的结构与对丙烯氧化的催化活性[J]. 化学学报, 1994, 52: 521-528. |
CHEN Tong, YUAN Songyue, LIU Guizhen, et al. Structure and catalytic activity for propylene oxidation of Bi-Mo-Nb complex oxide catalysts[J]. Acta Chimica Sinica, 1994, 52: 521-528. | |
87 | THANG L M, DRIESSCHE I V. Catalytic activities of α, β, γ-bismuth molybdates for selective oxidation of propylene to acrolein[J]. Materials Science Forum, 2014, 804: 225-228. |
88 | ZHOU Bing, SUN Pei, SHENG Shishan, et al. Cooperation between the α and γ phases of bismuth molybdate in the selective oxidation of propene[J]. Journal of the Chemical Society, Faraday Transactions, 1990, 86(18): 3145-3150. |
89 | LIMBERG C, HUNGER M, HABICHT W, et al. Synthesis of heterometallic bismuth/molydenum alkoxides and their behavior on silica surfaces[J]. Inorganic Chemistry, 2002, 41(13): 3359-3365. |
90 | BATIST P A, BOUWENS J F H, MATSUURA I. Stability aspects and olefine adsorption properties of Bi2Mo2O9 and of the silica-supported Bi9PMo12O52 catalyst[J]. Journal of Catalysis, 1974, 32: 362-368. |
91 | CARRAZÁN R G S, MARTIN C, MATEOS R, et al. Influence of the active phase structure Bi-Mo-Ti-O in the selective oxidation of propene[J]. Catalysis Today, 2006, 112: 121-125. |
92 | RHYS-JONE T N, GRABKE H J, KUDIELKA H. The effects of various amounts of alloyed cerium and cerium oxide on the high temperature oxidation of Fe-10Cr and Fe-20Cr alloys[J]. Corrosion Science, 1987, 27(1): 49-73. |
93 | WRAGG D R, ASHMORE P G, HOCKEY J A. Selective oxidation of propene over bismuth molybdate catalysts: the oxidation of propene using 18O and catalyst labeled oxygen and catalyst[J]. Journal of Catalysis, 1971, 22: 49-53. |
94 | ADAMS C. Mechanism studies of the catalytic from the shell development oxidation[J]. Journal of Catalysis, 1964, 3: 549-558. |
95 | PANOV G I, STAROKON E V, PARFENOV M V, et al. Quasi-catalytic identification of intermediates in the oxidation of propene to acrolein over a multicomponent Bi-Mo catalyst[J]. ACS Catalysis, 2018, 8: 1173-1177. |
96 | GETSOIAN A B, SHAPOVALOV V, BELL A T. DFT+U investigation of propene oxidation over bismuth molybdate: active sites, reaction intermediates, and the role of bismuth[J]. The Journal of Physical Chemistry C, 2013, 117: 7123-7137. |
97 | GANZER G, FREUND H. Kinetic modeling of the partial oxidation of propylene to acrolein: a systematic procedure for parameter estimation based on non-isothermal data[J]. Industrial & Engineering Chemistry Research, 2019, 58(5): 1857-1874. |
98 | 高元哲. 异丁烯两段法制甲基丙烯酸甲酯新型催化剂的制备与性能研究[D]. 石家庄: 河北师范大学, 2003. |
GAO Yuanzhe. Study on preparation and catalytic properties of the new catalyst for isobutene conversion to methyl methacrylate by two-stage[D]. Shijiazhuang: Hebei Normal University, 2003. | |
99 | MANN R S, KO D W. Kinetics of oxidation of 2-methylpropene over bismuth-molybdate catalyst[J]. Journal of Catalysis, 1973, 30: 276-282. |
100 | LIU Jianwei, WANG Guowei, ZHU Xiaolin, et al. Temperature-programmed studies of isobutene oxidation over α-Bi2Mo3O12: active oxygen species and reaction mechanism[J]. Applied Surface Science, 2019, 470: 846-853. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[6] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[7] | 孙玉玉, 蔡鑫磊, 汤吉海, 黄晶晶, 黄益平, 刘杰. 反应精馏合成甲基丙烯酸甲酯工艺优化及节能[J]. 化工进展, 2023, 42(S1): 56-63. |
[8] | 杨建平. 降低HPPO装置反应系统原料消耗的PSE[J]. 化工进展, 2023, 42(S1): 21-32. |
[9] | 王福安. 300kt/a环氧丙烷工艺反应器降耗减排分析[J]. 化工进展, 2023, 42(S1): 213-218. |
[10] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[11] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[12] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[13] | 王伟涛, 鲍婷玉, 姜旭禄, 何珍红, 王宽, 杨阳, 刘昭铁. 醛酮树脂基非金属催化剂催化氧气氧化苯制备苯酚[J]. 化工进展, 2023, 42(9): 4706-4715. |
[14] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[15] | 吴海波, 王希仑, 方岩雄, 纪红兵. 3D打印催化材料开发与应用进展[J]. 化工进展, 2023, 42(8): 3956-3964. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |