1 |
WANG Zhi, DONG Songlin, LI Nan, et al Chapter 3―CO2-selective membranes: How easy is their moving from laboratory to industrial scale?[M]//BASILE A, FAVVAS E P. Current Trends and Future Developments on (Bio-) Membranes, Elsevier, 2018: 75-102.
|
2 |
ZHU L, MIMNAUGH B R, GE Q, et al. Hard and soft confinement effects on polymer crystallization in microphase separated cylinder-forming PEO-b-PS/PS blends[J]. Polymer, 2001, 42(21): 9121-9131.
|
3 |
BONDAR V I, FREEMAN B D, PINNAU I. Gas transport properties of poly(ether-b-amide) segmented block copolymers[J]. Journal of Polymer Science B: Polymer Physics, 2000, 38(15): 2051-2062.
|
4 |
YAVE W, CAR A, FUNARI S S, et al. CO2-philic polymer membrane with extremely high separation performance[J]. Macromolecules, 2010, 43(1): 326-333.
|
5 |
DENG L Y, KIM T J, HÄGG M B. Facilitated transport of CO2 in novel PVAm/PVA blend membrane[J]. Journal of Membrane Science, 2009, 340(1/2): 154-163.
|
6 |
WU D Z, SUN C H, DUTTA P K, et al. SO2 interference on separation performance of amine-containing facilitated transport membranes for CO2 capture from flue gas[J]. Journal of Membrane Science, 2017, 534: 33-45.
|
7 |
CHEN K K, HAN Y, ZHANG Z E, et al. Enhancing membrane performance for CO2 capture from flue gas with ultrahigh MW polyvinylamine[J]. Journal of Membrane Science, 2021, 628: 119215.
|
8 |
QIAO Zhihua, WANG Zhi, ZHANG Chenxin, et al. PVAm-PIP/PS composite membrane with high performance for CO2/N2 Separation[J]. AIChE Journal, 2013, 59(1): 215-228.
|
9 |
LI Panyuan, WANG Zhi, LI Wen, et al. High-performance multilayer composite membranes with mussel-inspired polydopamine as a versatile molecular bridge for CO2 separation[J]. ACS Applied Materials & Interfaces, 2015, 7(28): 15481-15493.
|
10 |
LIAO Jiayou, WANG Zhi, WANG Ming, et al. Adjusting carrier microenvironment in CO2 separation fixed carrier membrane[J]. Journal of Membrane Science, 2016, 511: 9-19.
|
11 |
LI Panyuan, WANG Zhi, LIU Yanni, et al. A synergistic strategy via the combination of multiple functional groups into membranes towards superior CO2 separation performances[J]. Journal of Membrane Science, 2015, 476: 243-255.
|
12 |
WANG Ming, WANG Zhi, ZHAO Song, et al. Recent advances on mixed matrix membranes for CO2 separation[J]. Chinese Journal of Chemical Engineering, 2017, 25(11): 1581-1597.
|
13 |
WANG Bo, SHENG Menglong, XU Jiayou, et al. Recent advances of gas transport channels constructed with different dimensional nanomaterials in mixed-matrix membranes for CO2 separation[J]. Small Methods, 2020, 4(3): 1900749.
|
14 |
WHITE L S, AMO K D, WU T, et al. Extended field trials of Polaris sweep modules for carbon capture[J]. Journal of Membrane Science, 2017, 542: 217-225.
|
15 |
YAVE W, CAR A, WIND J, et al. Nanometric thin film membranes manufactured on square meter scale: ultra-thin films for CO2 capture[J]. Nanotechnology, 2010, 21(39): 395301.
|
16 |
DONG Songlin, WANG Zhi, SHENG Menglong, et al. High-performance multi-layer composite membrane with enhanced interlayer compatibility and surface crosslinking for CO2 separation[J]. Journal of Membrane Science, 2020, 610: 118221.
|
17 |
SHENG Menglong, DONG Songlin, QIAO Zhihua, et al. Large-scale preparation of multilayer composite membranes for post-combustion CO2 capture[J]. Journal of Membrane Science, 2021, 636: 119595.
|
18 |
BLACK J. Cost and performance comparison baseline for fossil energy plants[R/OL]. U.S. Department of Energy, 2010, DOE/NETL- 2010/1397. .
|
19 |
张晨昕. 分离CO2膜传质机理及其过程模拟研究[D]. 天津: 天津大学, 2014.
|
|
ZHANG Chenxin. Mass transport mechanism investigation and process simulation for CO2 separation membrane[D]. Tianjin: Tianjin University, 2014.
|
20 |
MERKEL T C, LIN H Q, WEI X T, et al. Power plant post-combustion carbon dioxide capture: an opportunity for membranes[J]. Journal of Membrane Science, 2010, 359(1/2): 126-139.
|
21 |
XU Jiayou, WANG Zhi, QIAO Zhihua, et al. Post-combustion CO2 capture with membrane process: practical membrane performance and appropriate pressure[J]. Journal of Membrane Science, 2019, 581: 195-213.
|
22 |
RAMASUBRAMANIAN K, VERWEIJ H, WINSTON HO W S. Membrane processes for carbon capture from coal-fired power plant flue gas: a modeling and cost study[J]. Journal of Membrane Science, 2012, 421/422: 299-310.
|
23 |
SHAO P H, DAL-CIN M M, GUIVER M D, et al. Simulation of membrane-based CO2 capture in a coal-fired power plant[J]. Journal of Membrane Science, 2013, 427: 451-459.
|
24 |
YANG Hongjun, FAN Shuanshi, LANG Xuemei, et al. Economic comparison of three gas separation technologies for CO2 capture from power plant flue gas[J]. Chinese Journal of Chemical Engineering, 2011, 19(4): 615-620.
|
25 |
WHITE L S, WEI X T, PANDE S, et al. Extended flue gas trials with a membrane-based pilot plant at a one-ton-per-day carbon capture rate[J]. Journal of Membrane Science, 2015, 496: 48-57.
|
26 |
WU Hongyu, LI Qinghua, SHENG Menglong, et al. Membrane technology for CO2 capture: from pilot-scale investigation of two-stage plant to actual system design[J]. Journal of Membrane Science, 2021, 624: 119137.
|