1 |
2019—2020中国膜产业发展报告[R]. 北京: 中国膜工业协会, 2020.
|
|
Development report of China’s membrane industry[R]. Beijing: Membrane Industry Association of China, 2020.
|
2 |
中国氢能源及燃料电池产业白皮书[R]. 北京: 中国氢能联盟, 2019.
|
|
White paper on China’s hydrogen energy and fuel cell industry[R]. Beijing: China Hydrogen Alliance, 2019.
|
3 |
HAUCH A, KUNGAS R, BLENNOW P, et al. Recent advances in solid oxide cell technology for electrolysis[J]. Science, 2020, 370(6513): eaba6118.
|
4 |
ZHANG Y, CHEN B, GUAN D Q, et al. Thermal-expansion offset for high-performance fuel cell cathodes[J]. Nature, 2021, 591(7849): 246-251.
|
5 |
JIANG H, LIU Y F, XING W H, et al. Porous membrane reactors for liquid-phase heterogeneous catalysis[J]. Industrial & Engineering Chemistry Research, 2021, 60(25): 8969-8990.
|
6 |
SHOLL D S, LIVELY R P. Seven chemical separations to change the world[J]. Nature, 2016, 532: 435-437.
|
7 |
ZHENG Y H, HU N, WANG H M, et al. Preparation of steam-stable high-silica CHA (SSZ-13) membranes for CO2/CH4 and C2H4/C2H6 separation[J]. Journal of Membrane Science, 2015, 475: 303-310.
|
8 |
WANG Q, WU A M, ZHONG S L, et al. Highly (h0h)-oriented silicalite-1 membranes for butane isomer separation[J]. Journal of Membrane Science, 2017, 540: 50-59.
|
9 |
LIU G P, WEI W, WU H, et al. Pervaporation performance of PDMS/ceramic composite membrane in acetone butanol ethanol (ABE) fermentation-PV coupled process[J]. Journal of Membrane Science, 2011, 373: 121-129.
|
10 |
JIANG J, WANG L, PENG L, et al. Preparation and characterization of high performance CHA zeolite membranes from clear solution[J]. Journal of Membrane Science, 2017, 527: 51-59.
|
11 |
DAI Y, LI Q, RUAN X H, et al. Fabrication of defect-free Matrimid® asymmetric membranes and the elevated temperature application for N2/SF6 separation[J]. Journal of Membrane Science, 2019, 577: 258-265.
|
12 |
ANGGARINI U, YU L, NAGASAWA H, et al. Metal-induced microporous aminosilica creates a highly permeable gas-separation membrane[J]. Materials Chemistry Frontiers, 2021, 5(7): 3029-3042.
|
13 |
ZHANG C, KOROS W J. Ultraselective carbon molecular sieve membranes with tailored synergistic sorption selective properties[J]. Advanced Materials, 2017, 29: 1701631.
|
14 |
蔡博峰, 李琦, 张贤, 等. 中国二氧化碳捕集利用与封存(CCUS)年度报告(2021)——中国CCUS路径研究[R]. 生态环境部环境规划院, 中国科学院武汉岩土力学研究所, 中国21世纪议程管理中心, 2021.
|
|
CAI Bofeng, LI Qi, ZHANG Xian, et al. Annual report on carbon dioxide capture, utilization and storage (CCUS) in China (2021)—— Study on CCUS path in China[R]. Chinese Academy of Environmental Planning, Institute of Rock and Soil Mechanics of Chinese Academy of Sciences, Management Centre of Agendum in the 21st Century, 2021.
|
15 |
BELAISSAOUI B, LE MOULLEC Y, HAGI H, et al. Energy efficiency of oxygen enriched air production technologies: cryogeny vs membranes[J]. Separation and Purification Technology, 2014, 125: 142-150.
|
16 |
ZHU J, ZHANG G, LIU G, et al. Perovskite hollow fibers with precisely controlled cation stoichiometry via one-step thermal processing[J]. Advanced Materials, 2017, 29: 1606377.
|
17 |
ZHU J W, WANG T L, SONG Z, et al. Enhancing oxygen permeation via multiple types of oxygen transport paths in hepta-bore perovskite hollow fibers[J]. AIChE Journal, 2017, 63(10): 4273-4277.
|
18 |
MERKEL T C, LIN H Q, WEI X T, et al. Power plant post-combustion carbon dioxide capture: an opportunity for membranes[J]. Journal of Membrane Science, 2010, 359: 126-139.
|
19 |
WANG B, WU T Y, YU M, et al. Highly ordered nanochannels in a nanosheet-directed thin zeolite nanofilm for precise and fast CO2 separation[J]. Small, 2020, 16(41): 2002836.
|
20 |
WU H Y, LI Q H, SHENG M L, et al. Membrane technology for CO2 capture: from pilot-scale investigation of two-stage plant to actual system design[J]. Journal of Membrane Science, 2021, 624: 119137.
|
21 |
JIN W Q, ZHANG C, CHANG X F, et al. Efficient catalytic decomposition of CO2 to CO and O2 over Pd/mixed-conducting oxide catalyst in an oxygen-permeable membrane reactor[J]. Environmental Science & Technology, 2008, 42: 3064-3068.
|
22 |
ZHANG K, ZHANG G R, LIU Z K, et al. Enhanced stability of membrane reactor for thermal decomposition of CO2 via porous-dense-porous triple-layer composite membrane[J]. Journal of Membrane Science, 2014, 471: 9-15.
|
23 |
LI H Z, QIU C L, REN S Y, et al. Na+-gated water-conducting nanochannels for boosting CO2 conversion to liquid fuels[J]. Science, 2020, 367: 667-671.
|