| [1] |
DING Mingyue, YANG Yong, WU Baoshan, et al. Study on reduction and carburization behaviors of iron phases for iron-based Fischer-Tropsch synthesis catalyst[J]. Applied Energy, 2015, 160: 982-989.
|
| [2] |
朱加清, 程萌, 常海, 等. 还原工艺对费托合成铁基催化剂反应性能的影响[J]. 洁净煤技术, 2016, 22(5): 79-84.
|
|
ZHU Jiaqing, CHENG Meng, CHANG Hai, et al. Effect of reduction process on iron-based catalyst reaction performance for Fischer-Tropsch synthesis[J]. Clean Coal Technology, 2016, 22(5): 79-84.
|
| [3] |
YAO Yali, LIU Xinying, GORIMBO Joshua, et al. Fischer-Tropsch synthesis: A long term comparative study of the product selectivity and paraffin to olefin ratios over an iron-based catalyst activated by syngas or H2 [J]. Applied Catalysis A: General, 2020, 602: 117700.
|
| [4] |
RAMUTSINDELA Franscina K, OKOYE-CHINE Chike G, MBUYA Christel O L, et al. The effect of reducing gases on raw iron ore catalyst for Fischer-Tropsch synthesis[J]. Journal of the Taiwan Institute of Chemical Engineers, 2022, 131: 104163.
|
| [5] |
CHAI Jiachun, PESTMAN Robert, CHEN Wei, et al. The role of H2 in Fe carburization by CO in Fischer-Tropsch catalysts[J]. Journal of Catalysis, 2021, 400: 93-102.
|
| [6] |
LI Hu, LI Weizhen, ZHUANG Zhuang, et al. Effect of reaction temperature and H2/CO ratio on deactivation behavior of precipitated iron Fischer-Tropsch synthesis catalyst[J]. Catalysis Today, 2022, 405/406: 277-284.
|
| [7] |
ARSALANFAR Maryam. Influence of pretreatment conditions on the catalytic behavior and structure of Fe-Co-Mn/MgO FTS nanocatalyst: Modeling and optimization using RSM[J]. International Journal of Energy Research, 2022, 46(4): 5028-5049.
|
| [8] |
贺飞, 王涛, 张雪冰, 等. 熔铁催化剂H2-TPR还原动力学和反应模型研究[J]. 低碳化学与化工, 2023, 48(6): 17-23.
|
|
HE Fei, WANG Tao, ZHANG Xuebing, et al. Study on reduction kinetics of H2-TPR and reaction models of fused iron catalysts[J]. Low-Carbon Chemistry and Chemical Engineering, 2023, 48(6): 17-23.
|
| [9] |
DING Mingyue, YANG Yong, XU Jian, et al. Effect of reduction pressure on precipitated potassium promoted iron-manganese catalyst for Fischer-Tropsch synthesis[J]. Applied Catalysis A: General, 2008, 345(2): 176-184.
|
| [10] |
王洪学, 石玉林, 李导. 催化剂活化压力对费托合成反应影响的研究[J]. 炼油技术与工程, 2013, 43(2): 49-52.
|
|
WANG Hongxue, SHI Yulin, LI Dao. Study on impact of catalyst reduction pressure on Fischer-Tropsch (F-T) synthesis reaction[J]. Petroleum Refinery Engineering, 2013, 43(2): 49-52.
|
| [11] |
DING Mingyue, YANG Yong, WU Baoshan, et al. Effect of reducing agents on microstructure and catalytic performance of precipitated iron-manganese catalyst for Fischer-Tropsch synthesis[J]. Fuel Processing Technology, 2011, 92(12): 2353-2359.
|
| [12] |
王洪, 杨勇, 吴宝山, 等. 水分压对铁基费托合成催化剂还原动力学的影响[J]. 催化学报, 2010, 31(2): 205-212.
|
|
WANG Hong, YANG Yong, WU Baoshan, et al. Effect of H2O partial pressure on reduction kinetics of iron-based Fischer-Tropsch catalyst[J]. Chinese Journal of Catalysis, 2010, 31(2): 205-212.
|
| [13] |
LIU Xiaoling, MA Cailian, ZHAO Wentao, et al. Effects of promoters on carburized fused iron catalysts in Fischer-Tropsch synthesis[J]. Journal of Fuel Chemistry and Technology, 2021, 49(10): 1504-1512.
|
| [14] |
NIU Liwei, LIU Xingwu, LIU Xi, et al. In situ XRD study on promotional effect of potassium on carburization of spray-dried precipitated Fe2O3 catalysts[J]. ChemCatChem, 2017, 9(9): 1691-1700.
|
| [15] |
NIU Liwei, LIU Xingwu, WEN Xiaodong, et al. Effect of potassium promoter on phase transformation during H2 pretreatment of a Fe2O3 Fischer Tropsch synthesis catalyst precursor[J]. Catalysis Today, 2020, 343: 101-111.
|
| [16] |
张琪, 王涛, 张雪冰, 等. 还原条件对高温费托合成熔铁催化剂性能的影响[J]. 化工进展, 2022, 41(S1): 239-246.
|
|
ZHANG Qi, WANG Tao, ZHANG Xuebing, et al. Effects of reduction conditions on fused iron catalyst for high temperature Fischer-Tropsch synthesis[J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 239-246.
|
| [17] |
LI Peixia, QU Longmei, ZHANG Caihong, et al. Probing into the crystal plane effect on the reduction of α-Fe2O3 in CO by Operando Raman spectroscopy[J]. Journal of Fuel Chemistry and Technology, 2021, 49(10): 1558-1566.
|
| [18] |
李思琪, 魏旭松, 王洪, 等. Fe3O4晶体碳化过程中的晶面效应[J]. 燃料化学学报(中英文), 2023, 51(9): 1282-1290.
|
|
LI Siqi, WEI Xusong, WANG Hong, et al. The effect of crystal plane on Fe3O4 carbonization[J]. Journal of Fuel Chemistry and Technology, 2023, 51(9): 1282-1290.
|
| [19] |
SHIPILIN Mikhail, DEGERMAN David, Patrick LÖMKER, et al. In situ surface-sensitive investigation of multiple carbon phases on Fe(110) in the Fischer-Tropsch synthesis[J]. ACS Catalysis, 2022, 12(13): 7609-7621.
|
| [20] |
CHAI Jiachun, JIANG Jidong, GONG Yan, et al. Recent mechanistic understanding of Fischer-Tropsch synthesis on Fe-carbide[J]. Catalysts, 2023, 13(7): 1052.
|
| [21] |
CHANG Qiang, ZHANG Chenghua, LIU Chengwei, et al. Relationship between iron carbide phases (ε-Fe2C, Fe7C3, and χ-Fe5C2) and catalytic performances of Fe/SiO2 Fischer-Tropsch catalysts[J]. ACS Catalysis, 2018, 8(4): 3304-3316.
|
| [22] |
武鹏, 吕元, 郭中山, 等. 煤间接液化及产品加工成套技术开发研究进展[J]. 煤炭学报, 2020, 45(4): 1222-1243.
|
|
WU Peng, Yuan LYU, GUO Zhongshan, et al. R&D progress of indirect coal liquefaction and product processing integrated technology[J]. Journal of China Coal Society, 2020, 45(4): 1222-1243.
|
| [23] |
郭中山, 王峰, 杨占奇, 等. 400万t/a煤基费托合成装置运行和优化[J]. 煤炭学报, 2020, 45(4): 1259-1266.
|
|
GUO Zhongshan, WANG Feng, YANG Zhanqi, et al. Operation and optimization of 4Mt/a industrial plant of coal-based Fischer-Tropsch synthesis[J]. Journal of China Coal Society, 2020, 45(4): 1259-1266.
|
| [24] |
LI Weizhen, ZHANG Xuebing, WANG Tao, et al. The effect of chlorine modification of precipitated iron catalysts on their Fischer-Tropsch synthesis properties[J]. Catalysts, 2022, 12(8): 812.
|
| [25] |
LIN Quan, CHENG Meng, ZHANG Kui, et al. Development of an iron-based Fischer-Tropsch catalyst with high attrition resistance and stability for industrial application[J]. Catalysts, 2021, 11(8): 908.
|
| [26] |
HAO Qinglan, LIU Fuxia, WANG Hong, et al. Effect of reduction temperature on a spray-dried iron-based catalyst for slurry Fischer-Tropsch synthesis[J]. Journal of Molecular Catalysis A: Chemical, 2007, 261(1): 104-111.
|