化工进展 ›› 2025, Vol. 44 ›› Issue (9): 5150-5160.DOI: 10.16085/j.issn.1000-6613.2024-1158
• 材料科学与技术 • 上一篇
郝亚玲1(
), 李春丽1,2(
), 周楠1, 程佳豪1, 王佳瑞1, 霍蓉1, 王德龙1, 杨鹏1
收稿日期:2024-07-18
修回日期:2024-09-11
出版日期:2025-09-25
发布日期:2025-09-30
通讯作者:
李春丽
作者简介:郝亚玲(2000—),女,硕士研究生,研究方向为氧化石墨烯制备及改性。E-mail:2594463569@qq.com。
基金资助:
HAO Yaling1(
), LI Chunli1,2(
), ZHOU Nan1, CHENG Jiahao1, WANG Jiarui1, HUO Rong1, WANG Delong1, YANG Peng1
Received:2024-07-18
Revised:2024-09-11
Online:2025-09-25
Published:2025-09-30
Contact:
LI Chunli
摘要:
全钒液流电池(VRFB)作为一种电化学储能技术,因其资源自主可控、无交叉污染和不易受环境干扰等优点备受关注。优化VRFB的电极材料可以显著提高其能量效率和稳定性。本文以天冬氨酸、多巴胺、2-氨基吡啶和2-甲基咪唑(2-MI)作为不同结构掺氮剂与石墨烯的衍生物氧化石墨烯(GO)表面的含氧官能团进行键合,采用水热法和冷冻干燥技术制备氮掺杂石墨烯气凝胶(NGA)。通过分析对比不同NGA的微观形貌、缺陷程度、物相组成及电化学性能,探究不同掺氮剂对NGA的氮含量、层间距、缺陷程度及电化学性能的影响。研究结果表明,掺氮剂选用五元杂环结构的2-MI制备NGA具有较高的氮含量(5.16%)、层间距(0.367nm)及ID/IG值(1.12),其不仅为V2+/V3+提供了储存场所,并且为V2+/V3+电对提供了更多的活性位点促进了电荷转移和离子传递。将2-MI-NGA涂覆在碳毡(CF)上作为VRFB的负极材料进行单电池充放电测试,在80mA/cm2电流密度下,其过电位仅为CF的10%,有效降低了电池极化,同时2-MI-NGA@CF的放电容量相较CF电池增加了241mA·h。在200mA/cm2电流密度下,2-MI-NGA@CF的能量效率相较于CF提高了16.8%,并且始终保持在63.5%左右稳定运行。该研究为高性能全钒液流电池电极材料的改性提供了新思路。
中图分类号:
郝亚玲, 李春丽, 周楠, 程佳豪, 王佳瑞, 霍蓉, 王德龙, 杨鹏. 不同氮源掺杂石墨烯电极材料的制备及电化学性能[J]. 化工进展, 2025, 44(9): 5150-5160.
HAO Yaling, LI Chunli, ZHOU Nan, CHENG Jiahao, WANG Jiarui, HUO Rong, WANG Delong, YANG Peng. Preparation and electrochemical performance of graphene electrode materials doped with different nitrogen sources[J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5150-5160.
| 样品 | C质量分数/% | O质量分数/% | N质量分数/% | C/O |
|---|---|---|---|---|
| GO | 67.13 | 32.87 | — | 2.04 |
| GA | 84.29 | 14.21 | — | 5.93 |
| Asp-NGA | 85.65 | 11.47 | 2.89 | 7.47 |
| DA-NGA | 82.11 | 13.33 | 4.56 | 6.16 |
| 2-APy-NGA | 82.43 | 12.43 | 5.14 | 6.63 |
| 2-MI-NGA | 81.75 | 12.74 | 5.51 | 6.42 |
表1 XPS拟合得到的GO、GA及 NGA的C、O、N的原子质量分数及原子比
| 样品 | C质量分数/% | O质量分数/% | N质量分数/% | C/O |
|---|---|---|---|---|
| GO | 67.13 | 32.87 | — | 2.04 |
| GA | 84.29 | 14.21 | — | 5.93 |
| Asp-NGA | 85.65 | 11.47 | 2.89 | 7.47 |
| DA-NGA | 82.11 | 13.33 | 4.56 | 6.16 |
| 2-APy-NGA | 82.43 | 12.43 | 5.14 | 6.63 |
| 2-MI-NGA | 81.75 | 12.74 | 5.51 | 6.42 |
| 样品 | 总氮原子分数/% | 不同氮构型原子分数/% | 不同氮构型占比/% | ||||
|---|---|---|---|---|---|---|---|
| 吡啶氮 | 吡咯氮 | 石墨氮 | 吡啶氮 | 吡咯氮 | 石墨氮 | ||
| Asp-NGA | 2.89 | 0.81 | 1.78 | 0.30 | 28.03 | 61.60 | 10.37 |
| DA-NGA | 4.56 | 1.41 | 2.35 | 0.8 | 30.92 | 51.54 | 17.54 |
| 2-APy-NGA | 5.14 | 3.57 | 0.9 | 0.67 | 69.46 | 17.51 | 13.03 |
| 2-MI-NGA | 5.51 | 1.83 | 3.35 | 0.33 | 33.21 | 60.80 | 5.99 |
表2 基于XPS分峰拟合的四种NGA中总氮、不同氮构型的原子分数及占比
| 样品 | 总氮原子分数/% | 不同氮构型原子分数/% | 不同氮构型占比/% | ||||
|---|---|---|---|---|---|---|---|
| 吡啶氮 | 吡咯氮 | 石墨氮 | 吡啶氮 | 吡咯氮 | 石墨氮 | ||
| Asp-NGA | 2.89 | 0.81 | 1.78 | 0.30 | 28.03 | 61.60 | 10.37 |
| DA-NGA | 4.56 | 1.41 | 2.35 | 0.8 | 30.92 | 51.54 | 17.54 |
| 2-APy-NGA | 5.14 | 3.57 | 0.9 | 0.67 | 69.46 | 17.51 | 13.03 |
| 2-MI-NGA | 5.51 | 1.83 | 3.35 | 0.33 | 33.21 | 60.80 | 5.99 |
| 样品名称 | 2θ/(°) | d/Å |
|---|---|---|
| GO | 11.188 | 7.94 |
| GA | 25.97 | 3.42 |
| Asp-NGA | 25.70 | 3.47 |
| DA-NGA | 24.46 | 3.63 |
| 2-APy-NGA | 24.33 | 3.65 |
| 2-MI-NGA | 24.2 | 3.67 |
表3 GO、GA及NGA的2θ角度及层间距
| 样品名称 | 2θ/(°) | d/Å |
|---|---|---|
| GO | 11.188 | 7.94 |
| GA | 25.97 | 3.42 |
| Asp-NGA | 25.70 | 3.47 |
| DA-NGA | 24.46 | 3.63 |
| 2-APy-NGA | 24.33 | 3.65 |
| 2-MI-NGA | 24.2 | 3.67 |
| 名称 | 峰值电流比Ipa/Ipc | 峰电位差ΔEp/V | 内阻Rs/Ω·cm-2 | 电荷转移电阻Rct/Ω·cm-2 | 低频区斜线斜率 |
|---|---|---|---|---|---|
| GA | 2.14 | 0.88 | 2.34 | 172.86 | 1.09 |
| Asp-NGA | 1.75 | 0.84 | 2.15 | 140.52 | 1.25 |
| DA-NGA | 1.80 | 0.86 | 2.03 | 122.47 | 1.72 |
| 2-APy-NGA | 1.63 | 0.82 | 1.96 | 110.86 | 1.98 |
| 2-MI-NGA | 1.42 | 0.78 | 1.92 | 91.92 | 6.65 |
表4 GA及NGA的CV曲线参数和EIS曲线参数
| 名称 | 峰值电流比Ipa/Ipc | 峰电位差ΔEp/V | 内阻Rs/Ω·cm-2 | 电荷转移电阻Rct/Ω·cm-2 | 低频区斜线斜率 |
|---|---|---|---|---|---|
| GA | 2.14 | 0.88 | 2.34 | 172.86 | 1.09 |
| Asp-NGA | 1.75 | 0.84 | 2.15 | 140.52 | 1.25 |
| DA-NGA | 1.80 | 0.86 | 2.03 | 122.47 | 1.72 |
| 2-APy-NGA | 1.63 | 0.82 | 1.96 | 110.86 | 1.98 |
| 2-MI-NGA | 1.42 | 0.78 | 1.92 | 91.92 | 6.65 |
| 电极材料 | 充电电压/V | 放电电压/V | 过电位/V | 放电容量/mA·h |
|---|---|---|---|---|
| CF | 1.46 | 1.26 | 0.2 | 816 |
| GA@CF | 1.40 | 1.32 | 0.08 | 968 |
| 2-MI-NGA@CF | 1.37 | 1.35 | 0.02 | 1057 |
表5 CF、GA@CF及2-MI-NGA@CF的充放电曲线参数
| 电极材料 | 充电电压/V | 放电电压/V | 过电位/V | 放电容量/mA·h |
|---|---|---|---|---|
| CF | 1.46 | 1.26 | 0.2 | 816 |
| GA@CF | 1.40 | 1.32 | 0.08 | 968 |
| 2-MI-NGA@CF | 1.37 | 1.35 | 0.02 | 1057 |
| [1] | 闫一诺, 邵雪莹, 梁精龙, 等. 钙化重构含钒钢渣微波酸浸提钒研究[J]. 储能科学与技术, 2023, 12(5): 1461-1468. |
| YAN Yinuo, SHAO Xueying, LIANG Jinglong, et al. Study on microwave acid leaching of vanadium from calcified reconstructed steel slag[J]. Energy Storage Science and Technology, 2023, 12(5): 1461-1468. | |
| [2] | 戴纹硕, 郭骞远, 陈向南, 等. 全钒液流电池双极板材料研究进展[J]. 储能科学与技术, 2024, 13(4): 1310-1325. |
| DAI Wenshuo, GUO Qianyuan, CHEN Xiangnan, et al. Research progress of bipolar plate materials for vanadium flow battery[J]. Energy Storage Science and Technology, 2024, 13(4): 1310-1325. | |
| [3] | 李振鹏, 颜东梅, 李军, 等. 全钒液流电池在储能领域的应用与展望[J]. 电池, 2024, 54(3): 422-426. |
| LI Zhenpeng, YAN Dongmei, LI Jun, et al. Application and prospect of all-vanadium flow battery in energy storage field[J]. Battery Bimonthly, 2024, 54(3): 422-426. | |
| [4] | 王刚, 陈金伟, 朱世富, 等. 全钒氧化还原液流电池碳素类电极的活化[J]. 化学进展, 2015, 27(10): 1343-1355. |
| WANG Gang, CHEN Jinwei, ZHU Shifu, et al. Activation of carbon electrodes for all-vanadium redox flow battery[J]. Progress in Chemistry, 2015, 27(10): 1343-1355. | |
| [5] | JIANG Tao, ZHAI Han, YANG Kun, et al. Nitrogen-doped porous graphene electrodes for highly efficient capacitive deionization[J]. International Journal of Electrochemical Science, 2024, 19(1): 100434. |
| [6] | PARAMASIVAM Naveena, SAMBANDAM Anandan, NASTESAN Baskaran. Metalloids (B, Si) and non-metal (N, P, S) doped graphene nanosheet as a supercapacitor electrode: A density functional theory study[J]. Materials Today Communications, 2023, 35: 105905. |
| [7] | 吴云鹏, 王晓峰, 李本仙, 等. 杂原子掺杂石墨烯的制备及其作为超级电容器电极材料[J]. 化学进展, 2023, 35(7): 1005-1017. |
| WU Yunpeng, WANG Xiaofeng, LI Benxian, et al. Preparation of heteroatom doped graphene and its application as electrode materials for supercapacitors[J]. Progress in Chemistry, 2023, 35(7): 1005-1017. | |
| [8] | 李雨情, 陈蕊, 吉雪荣, 等. 杂原子掺杂的碳基无金属电催化剂对氧还原和氧析出反应的性能研究[J]. 化工科技, 2023, 31(6): 65-71. |
| LI Yuqing, CHEN Rui, JI Xuerong, et al. Performance study of heteroatom doped carbon-based metal-free electrocatalysts for oxygen reduction and oxygen evolution reaction[J]. Science & Technology in Chemical Industry, 2023, 31(6): 65-71. | |
| [9] | 夏晨皓. 基于表面修饰和空位缺陷的氮掺杂石墨烯量子点氧还原反应的机理研究[D]. 青岛: 青岛科技大学, 2023. |
| XIA Chenhao. Study on the mechanism of oxygen reduction reaction of nitrogen-doped graphene quantum dots based on surface modification and vacancy defects[D]. Qingdao: Qingdao University of Science & Technology, 2023. | |
| [10] | 刘慧平, 杨懿, 李云鹏, 等. 掺杂时间对水热法制备氮掺杂还原氧化石墨烯的影响研究[J]. 武汉理工大学学报, 2024, 46(2): 13-20, 27. |
| LIU Huiping, YANG Yi, LI Yunpeng, et al. Hydrothermal preparation of nitrogen-doped reduced graphene oxide and its properties as a function of doping time[J]. Journal of Wuhan University of Technology, 2024, 46(2): 13-20, 27. | |
| [11] | JIA Yan, ZHAO Yisong, YANG Xiaoxiao, et al. Sulfur encapsulated in nitrogen-doped graphene aerogel as a cathode material for high performance lithium-sulfur batteries[J]. International Journal of Hydrogen Energy, 2021, 46(10): 7642-7652. |
| [12] | KUMAR Rajesh, SAHOO Sumanta, JOANNI Ednan, et al. Heteroatom doped graphene engineering for energy storage and conversion[J]. Materials Today, 2020, 39: 47-65. |
| [13] | AHMED Nashaat, AMER Aya, Basant A ALI, et al. Boosting the cyclic stability and supercapacitive performance of graphene hydrogels via excessive nitrogen doping: Experimental and DFT insights[J]. Sustainable Materials and Technologies, 2020, 25: e00206. |
| [14] | MICHEL MYURES X, SURESH S. Nanofluidic electrolyte based on nitrogen doped reduced graphene oxide as an electrocatalyst for VO2 +/VO2+ in vanadium redox flow battery[J]. Journal of Energy Storage, 2023, 58: 106387. |
| [15] | YADAV Ankit, KUMAR Rajeev, SAHOO Balaram. Exploring supercapacitance of solvothermally synthesized N-rGO sheet: Role of N-doping and the insight mechanism[J]. Physical Chemistry Chemical Physics, 2022, 24(2): 1059-1071. |
| [16] | LI Shengcai, ZHANG Ningshuang, ZHOU Haihui, et al. An all-in-one material with excellent electrical double-layer capacitance and pseudocapacitance performances for supercapacitor[J]. Applied Surface Science, 2018, 453: 63-72. |
| [17] | LI Yi, YANG Juan, ZHAO Na, et al. Facile fabrication of N-doped three-dimensional reduced graphene oxide as a superior electrocatalyst for oxygen reduction reaction[J]. Applied Catalysis A: General, 2017, 534: 30-39. |
| [18] | 李子庆, 赫文秀, 张永强, 等. 不同氮源对掺氮石墨烯的结构和性能的影响[J]. 材料研究学报, 2018, 32(8): 616-624. |
| LI Ziqing, HE Wenxiu, ZHANG Yongqiang, et al. Effect of different nitrogen sources on structure and properties of nitrogen-doped graphene[J]. Chinese Journal of Materials Research, 2018, 32(8): 616-624. | |
| [19] | 王佳瑞, 李春丽, 程佳豪, 等. 磷酸在GO插层阶段的功能化调控及机理[J]. 高等学校化学学报, 2024, 45(1): 69-79. |
| WANG Jiarui, LI Chunli, CHENG Jiahao, et al. Functional regulation and mechanism of phosphoric acid in GO intercalation stage[J]. Chemical Journal of Chinese Universities, 2024, 45(1): 69-79. | |
| [20] | 张浩月, 李春丽, 徐博, 等. 分段取样法研究改进Hummers法制备GO结构特性及其机理[J]. 化工进展, 2023, 42(5): 2606-2615. |
| ZHANG Haoyue, LI Chunli, XU Bo, et al. Structural characteristics and mechanism of GO prepared via improved Hummers method based on segmental sampling[J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2606-2615. | |
| [21] | AI Shun, CHEN Yuxin, LIU Yulan, et al. Facile synthesis of nitrogen-doped graphene aerogels for electrochemical detection of dopamine[J]. Solid State Sciences, 2018, 86: 6-11. |
| [22] | SHANG Yan, XU Huizhu, LI Mingyue, et al. Preparation of N-doped graphene by hydrothermal method and interpretation of N-doped mechanism[J]. Nano, 2017, 12(2): 1750018. |
| [23] | WANG Tao, WANG Luxiang, WU Dongling, et al. Hydrothermal synthesis of nitrogen-doped graphene hydrogels using amino acids with different acidities as doping agents[J]. Journal of Materials Chemistry A, 2014, 2(22): 8352-8361. |
| [24] | KANG Mingu, Wook AHN, KANG Joonhee, et al. Superior electrocatalytic negative electrode with tailored nitrogen functional group for vanadium redox flow battery[J]. Journal of Energy Chemistry, 2023, 78: 148-157. |
| [25] | GRZYB B, GRYGLEWICZ S, ŚLIWAK A, et al. Guanidine, amitrole and imidazole as nitrogen dopants for the synthesis of N-graphenes[J]. RSC Advances, 2016, 6(19): 15782-15787. |
| [26] | ZHU Yanyun, YAN Luting, XU Mingyuan, et al. Difference between ammonia and urea on nitrogen doping of graphene quantum dots[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 610: 125703. |
| [27] | ZHANG Minwei, WU Wanfeng, CHEN Fei, et al. Amino acid assisted one-pot green synthesis of N-doped 3D graphene for ultrasensitive neurochemical sensing[J]. ChemistrySelect, 2020, 5(44): 13951-13956. |
| [28] | ZHANG Yong, LIU Kaige, LIU Xijun, et al. Functionalization of partially reduced graphene oxide hydrogels with 2-aminopyridine for high-performance symmetric supercapacitors[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(14): 18728-18740. |
| [29] | CHEN Ping, YANG Jingjing, LI Shanshan, et al. Hydrothermal synthesis of macroscopic nitrogen-doped graphene hydrogels for ultrafast supercapacitor[J]. Nano Energy, 2013, 2(2): 249-256. |
| [30] | FENG Quantao, LI Tianlin, SUI Yanwei, et al. Facile synthesis and first-principles study of nitrogen and sulfur dual-doped porous graphene aerogels/natural graphite as anode materials for Li-ion batteries[J]. Journal of Alloys and Compounds, 2021, 884: 160923. |
| [31] | 张志国, 杨观华, 张杰, 等. 氮掺杂淀粉基硬碳负极材料制备及其储钠性能研究[J]. 广西科技大学学报, 2024, 35(3): 83-90. |
| ZHANG Zhiguo, YANG Guanhua, ZHANG Jie, et al. Research on the preparation and sodium storage properties of nitrogen-doped starch-based hard carbon anode material[J]. Journal of Guangxi University of Science and Technology, 2024, 35(3): 83-90. | |
| [32] | AJRAVAT Kaveri, PANDEY O P, BRAR Loveleen K. Significance of N bonding configurations in N-doped graphene for enhanced supercapacitive performance: A comparative study in aqueous electrolytes[J]. FlatChem, 2024, 43: 100588. |
| [33] | YOON Sang Jun, KIM Sangwon, KIM Dong Kyu, et al. Ionic liquid derived nitrogen-doped graphite felt electrodes for vanadium redox flow batteries[J]. Carbon, 2020, 166: 131-137. |
| [34] | OPAR David O, NANKYA Rosalynn, LEE Jihye, et al. Assessment of three-dimensional nitrogen-doped mesoporous graphene functionalized carbon felt electrodes for high-performance all vanadium redox flow batteries[J]. Applied Surface Science, 2020, 531: 147391. |
| [35] | YANG Zhixin, XING Guangjian, HOU Pengchao, et al. Amino acid-mediated N-doped graphene aerogels and its electrochemical properties[J]. Materials Science and Engineering: B, 2018, 228: 198-205. |
| [36] | 张清. 应用于液流电池的铁电解液及电极材料研究[D]. 长沙: 中南大学, 2014. |
| ZHANG Qing. Study on iron electrolyte and electrode materials for flow battery[D]. Changsha: Central South University, 2014. | |
| [37] | LI Qiang, BAI Anyu, XUE Zhichao, et al. Nitrogen and sulfur co-doped graphene composite electrode with high electrocatalytic activity for vanadium redox flow battery application[J]. Electrochimica Acta, 2020, 362: 137223. |
| [38] | AZIZ Md Abdul, HOSSAIN Syed Imdadul, SHANMUGAM Sangaraju. Hierarchical oxygen rich-carbon nanorods: Efficient and durable electrode for all-vanadium redox flow batteries[J]. Journal of Power Sources, 2020, 445: 227329. |
| [1] | 付元鹏, 董宪姝, 马晓敏, 樊玉萍. 液相溶胶-凝胶法LiNi1/3Co1/3Mn1/3O2三元电极材料的再生及电化学性能[J]. 化工进展, 2025, 44(6): 3561-3569. |
| [2] | 李净珊, 徐洋洋, 叶仪鹏, 董梦娇, 李秉芯, 陈昊天. 两步溶剂热法构筑NCNF/NiCo-LDH/NiCo-LDH复合电极用于超级电容器[J]. 化工进展, 2025, 44(1): 379-387. |
| [3] | 张巍, 宋权斌, 周运河, 董梦瑶, 李婕, 伍乔, 付业昊, 梁垚城, 尹艳山, 成珊, 宋健. 全钒液流电池离子导电膜的选择性[J]. 化工进展, 2024, 43(9): 4859-4870. |
| [4] | 孙悦, 邢宝林, 张耀杰, 冯来宏, 曾会会, 蒋振东, 徐冰, 贾建波, 张传祥, 谌伦建, 张越, 张文豪. B掺杂多孔碳纳米片的制备及其储锂性能[J]. 化工进展, 2024, 43(6): 3209-3220. |
| [5] | 李莹莹, 刘安, 姜乐妍, 李晖, 陈春钰, 居殿春. 过渡金属硫化物Co9S8的制备及电化学性能研究进展[J]. 化工进展, 2024, 43(6): 3114-3127. |
| [6] | 王庆泰, 张赛, 王杰敏. 全钒液流电池多孔电极非均匀压缩的数值模拟[J]. 化工进展, 2024, 43(6): 2940-2949. |
| [7] | 刘思宇, 杨卷, 陈培, 陈祖田, 闫斌, 刘育红, 邱介山. 富氮多孔碳纳米片的氮掺杂构型调控及其储锌性能[J]. 化工进展, 2024, 43(5): 2673-2683. |
| [8] | 陈国徽, 王君雷, 李世龙, 李金宇, 徐运飞, 罗俊潇, 王昆. 火焰喷雾热解制备锂离子电池三元正极材料研究进展[J]. 化工进展, 2024, 43(2): 971-983. |
| [9] | 杨成功, 黄蓉, 王冬娥, 田志坚. 氮掺杂二硫化钼纳米催化剂的电催化析氢性能[J]. 化工进展, 2024, 43(1): 465-472. |
| [10] | 李艳玲, 卓振, 池亮, 陈曦, 孙堂磊, 刘鹏, 雷廷宙. 氮掺杂生物炭的制备与应用研究进展[J]. 化工进展, 2023, 42(7): 3720-3735. |
| [11] | 蒋博龙, 崔艳艳, 史顺杰, 常嘉城, 姜楠, 谭伟强. 过渡金属Co3O4/ZnO-ZIF氧还原催化剂Co/Zn-ZIF模板法制备及其产电性能[J]. 化工进展, 2023, 42(6): 3066-3076. |
| [12] | 李龙, 邢宝林, 鲍倜傲, 靳鹏, 曾会会, 郭晖, 张越, 张文豪. 微扩层改性对煤基石墨微观结构和储锂性能的影响[J]. 化工进展, 2023, 42(12): 6259-6269. |
| [13] | 肖巍, 鲜小彬, 梁果, 杨欣雨, 张艳华. 紫菜衍生的氮掺杂分级多孔炭制备及其超级电容性能[J]. 化工进展, 2023, 42(11): 5871-5881. |
| [14] | 王露珠, 安家康, 张涛, 邓立峰, 任英杰, 李扬, 李涛, 任保增. 氮掺杂钒钛蜂窝式催化剂低温脱硝性能[J]. 化工进展, 2023, 42(11): 5747-5755. |
| [15] | 何晨露, 邱晨茜, 方娟, 杨旋, 赖建军, 郑新宇, 吕建华, 陈燕丹, 黄彪. 基于低共熔溶剂体系的氮掺杂超级电容炭[J]. 化工进展, 2022, 41(9): 4946-4953. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |