化工进展 ›› 2023, Vol. 42 ›› Issue (11): 5747-5755.DOI: 10.16085/j.issn.1000-6613.2022-2312
王露珠1(), 安家康1, 张涛2, 邓立峰2, 任英杰2, 李扬2, 李涛1(), 任保增1
收稿日期:
2022-12-13
修回日期:
2023-02-20
出版日期:
2023-11-20
发布日期:
2023-12-15
通讯作者:
李涛
作者简介:
王露珠(1993—),女,硕士研究生,研究方向为低温脱硝催化剂。E-mail:wanglz6201@163.com。
基金资助:
WANG Luzhu1(), AN Jiakang1, ZHANG Tao2, DENG Lifeng2, REN Yingjie2, LI Yang2, LI Tao1(), REN Baozeng1
Received:
2022-12-13
Revised:
2023-02-20
Online:
2023-11-20
Published:
2023-12-15
Contact:
LI Tao
摘要:
为了提升催化剂的低温脱硝性能,利用挤出成型法制备了一系列氮掺杂钒钛蜂窝式催化剂,考察了氮掺杂量对催化剂低温脱硝性能的影响及其稳定性,并通过XRD、BET、SEM、XPS、H2-TPR、NH3-TPD和O2-TPD等分析方法表征催化剂。结果表明:氮掺杂钒钛催化剂的低温脱硝性能显著提高,在140~200℃温度区间催化剂的脱硝性能良好,其中以氮钛摩尔比为0.2的催化剂具有最优的脱硝效果,并在200℃连续72h的稳定性测试过程中,表现出了良好的脱硝稳定性。氮掺杂能够使钒钛催化剂颗粒粒径变小,比表面积和孔容增大,表面V4+和化学吸附氧Oα的比率增加,表面酸性位点数量增加,使催化剂表面NH3吸附能力增强,氧化还原能力提高,促进了催化剂低温脱硝性能的提升。
中图分类号:
王露珠, 安家康, 张涛, 邓立峰, 任英杰, 李扬, 李涛, 任保增. 氮掺杂钒钛蜂窝式催化剂低温脱硝性能[J]. 化工进展, 2023, 42(11): 5747-5755.
WANG Luzhu, AN Jiakang, ZHANG Tao, DENG Lifeng, REN Yingjie, LI Yang, LI Tao, REN Baozeng. Catalytic performance of N-doped vanadium-titanium honeycomb catalysts at low temperature[J]. Chemical Industry and Engineering Progress, 2023, 42(11): 5747-5755.
样品 | 比表面积/m2·g-1 | 孔容/cm3·g-1 | 平均孔径/nm |
---|---|---|---|
N0 | 60.9 | 0.28 | 16.99 |
N0.1 | 61.5 | 0.28 | 16.14 |
N0.2 | 63.7 | 0.29 | 16.36 |
N0.3 | 59.1 | 0.26 | 16.31 |
表1 不同催化剂的结构特性
样品 | 比表面积/m2·g-1 | 孔容/cm3·g-1 | 平均孔径/nm |
---|---|---|---|
N0 | 60.9 | 0.28 | 16.99 |
N0.1 | 61.5 | 0.28 | 16.14 |
N0.2 | 63.7 | 0.29 | 16.36 |
N0.3 | 59.1 | 0.26 | 16.31 |
样品 | Oα/(Oα+Oβ) | V4+/(V4++V5+) |
---|---|---|
N0 | 38.7% | 5.67% |
N0.2 | 44.1% | 45.0% |
表2 不同催化剂表面不同O和V原子浓度之比
样品 | Oα/(Oα+Oβ) | V4+/(V4++V5+) |
---|---|---|
N0 | 38.7% | 5.67% |
N0.2 | 44.1% | 45.0% |
1 | XU Junqiang, ZOU Xianlin, CHEN Guorong, et al. Tailored activity of Ce—Ni bimetallic modified V2O5/TiO2 catalyst for NH3-SCR with promising wide temperature window[J]. Vacuum, 2021, 191: 110384. |
2 | 周佳丽, 马子然, 赵俊平, 等. 杂多酸改性V-Mo/Ti-W催化剂的宽温SCR脱硝性能[J]. 化工进展, 2022, 41(7): 3615-3623. |
ZHOU Jiali, MA Ziran, ZHAO Junping, et al. HPAs-modified V-Mo/Ti-W catalysts for the selective catalytic reduction of NO x over a wide temperature range[J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3615-3623. | |
3 | 王韵杰, 张少君, 郝吉明. 中国大气污染治理: 进展·挑战·路径[J]. 环境科学研究, 2019, 32(10): 1755-1762. |
WANG Yunjie, ZHANG Shaojun, HAO Jiming. Air pollution control in China: Progress, challenge and future pathways[J]. Research of Environmental Sciences, 2019, 32(10): 1755-1762. | |
4 | XU Guangyan, LI Hao, YU Yunbo, et al. Dynamic change of active sites of supported vanadia catalysts for selective catalytic reduction of nitrogen oxides[J]. Environmental Science & Technology, 2022, 56(6): 3710-3718. |
5 | 戴豪波, 陈瑶姬, 方华, 等. 非电行业钒基催化剂SCR脱硝研究进展[J]. 广州化工, 2020, 48(24): 29-33. |
DAI Haobo, CHEN Yaoji, FANG Hua, et al. Research progress on SCR deNO x of vanadium-based catalysts in non-coal fired power industries[J]. Guangzhou Chemical Industry, 2020, 48(24): 29-33. | |
6 | 张道军, 马子然, 王宝冬, 等. SCR脱硝技术在非电行业烟气治理中的应用进展[J]. 现代化工, 2019, 39(10): 24-28. |
ZHANG Daojun, MA Ziran, WANG Baodong, et al. Progress in application of SCR denitrification technology in treating flue gas of non-electric industries[J]. Modern Chemical Industry, 2019, 39(10): 24-28. | |
7 | ZHANG Shule, ZHONG Qin, ZHAO Wei, et al. Surface characterization studies on F-doped V2O5/TiO2 catalyst for NO reduction with NH3 at low-temperature[J]. Chemical Engineering Journal, 2014, 253: 207-216. |
8 | ZHANG Shule, ZHONG Qin. F-Doped V2O5-WO3/TiO2 as a catalyst for NO reduction with NH3 at low-temperature[J]. International Journal of Environmental Science and Development, 2012. DOI: 10.7763/IJESD. 2012. V3 263 . |
9 | ZHAO Wei, ZHONG Qin, ZHANG Tianjiao, et al. Characterization study on the promoting effect of F-doping V2O5/TiO2 SCR catalysts[J]. RSC Advances, 2012, 2(20): 7906-7914. |
10 | ZHAO Wei, ZHONG Qin, PAN Yanxiao, et al. Systematic effects of S-doping on the activity of V2O5/TiO2 catalyst for low-temperature NH3-SCR[J]. Chemical Engineering Journal, 2013, 228: 815-823. |
11 | 甘丽娜. 低温V2O5-WO3/TiO2脱硝催化剂开发与应用研究[D]. 北京: 中国科学院研究生院(过程工程研究所), 2016. |
GAN Lina. Development of V2O5-WO3/TiO2 catalyst and its application in NH3-SCR of NOx at low temperatures[D]. Beijing: Institute of Process Engineering, Chinese Academy of Sciences, 2016. | |
12 | 梁全明. 耐硫抗水型低温SCR脱硝催化剂研究[D]. 北京: 北京工业大学, 2018. |
LIANG Quanming. Research on low temperature SCR de-NO x catalyst with sulfur and water-resistance[D]. Beijing: Beijing University of Technology, 2018. | |
13 | 崔晶, 黄华存, 董文华, 等. F掺杂改性及其制备方法优化对V2O5-WO3/TiO2催化剂低温SCR脱硝性能的影响[J]. 环境工程学报, 2018, 12(11): 3139-3152. |
CUI Jing, HUANG Huacun, DONG Wenhua, et al. Influence of F-doping modification and preparation method optimization of V2O5-WO3/TiO2 catalyst on its NO reduction at low temperature[J]. Chinese Journal of Environmental Engineering, 2018, 12(11): 3139-3152. | |
14 | 李航航, 赵炜, 王谦, 等. B改性钒钛催化剂低温NH3-SCR还原NO x [J]. 分子催化, 2021, 35(2): 121-129. |
LI Hanghang, ZHAOWei, WANG Qian, et al. Boron-modified vanadia/titania catalyst for low-temperature NH3-SCR of NO x [J]. Journal of Molecular Catalysis (China), 2021, 35(2): 121-129. | |
15 | HUANG Li, ZENG Yiqing, GAO Yibo, et al. Promotional effect of phosphorus addition on improving the SO2 resistance of V2O5-MoO3/TiO2 catalyst for NH3-SCR of NO[J]. Journal of Physics and Chemistry of Solids, 2022, 163: 110566. |
16 | 李红玉. N掺杂TiO2载体的低温SCR催化剂的制备、性能及作用机制的研究[D]. 南京: 南京理工大学, 2013. |
LI Hongyu. Study on the preparation, performance and its mechanism of low-temperature SCR catalysts loaded N-doped TiO2 [D]. Nanjing: Nanjing University of Science & Technology, 2012. | |
17 | PUTLURU Siva Sankar Reddy, JENSEN Anker Degn, RIISAGER Anders, et al. Heteropoly acid promoted V2O5/TiO2 catalysts for NO abatement with ammonia in alkali containing flue gases[J]. Catalysis Science & Technology, 2011, 1(4): 631-637. |
18 | MA Zhudong, Li Jian, ZHANG Ling, et al. Denitrification activities of Mo-V-Ti catalysts prepared by dipping method at low temperature[J]. Materials Science Forum, 2018, 913: 893-899. |
19 | WANG Chizhong, YANG Shijian, CHANG Huazhen, et al. Dispersion of tungsten oxide on SCR performance of V2O5-WO3/TiO2: Acidity, surface species and catalytic activity[J]. Chemical Engineering Journal, 2013, 225: 520-527. |
20 | PENG Feng, CAI Lingfeng, HUANG Lei, et al. Preparation of nitrogen-doped titanium dioxide with visible-light photocatalytic activity using a facile hydrothermal method[J]. Journal of Physics and Chemistry of Solids, 2008, 69(7): 1657-1664. |
21 | KWON Dong Wook, PARK Kwang Hee, HONG Sung Chang. Enhancement of SCR activity and SO2 resistance on VO x /TiO2 catalyst by addition of molybdenum[J]. Chemical Engineering Journal, 2016, 284: 315-324. |
22 | CHENG Kai, LIU Jian, ZHAO Zhen, et al. Direct synthesis of V-W-Ti nanoparticle catalysts for selective catalytic reduction of NO with NH3 [J]. RSC Advances, 2015, 5(56): 45172-45183. |
23 | ZHAO Xuteng, YAN Yongyi, MAO Lei, et al. A relationship between the V4+/V5+ ratio and the surface dispersion, surface acidity, and redox performance of V2O5-WO3/TiO2 SCR catalysts[J]. RSC Advances, 2018, 8(54): 31081-31093. |
24 | 白洋. V2O5(MO x )/TiO2脱硝催化剂表面V4+(3+)/V5+比值与活性关系[D]. 哈尔滨: 哈尔滨工程大学, 2016. |
BAI Yang. Relationship between the denitration activity and the V4+(3+)/V5+ ratio of V2O5(MO x )/TiO2 catalyst [D]. Harbin: Harbin Engineering University, 2016. | |
25 | 段瑞瑞. V4+/V5+比值调变影响因素及其V4+和V5+转化的氧化还原速率与SCR脱硝活性[D]. 哈尔滨: 哈尔滨工程大学, 2014. |
DUAN Ruirui. Influences on modulation of the V4+/V5+ ratio and rate of V4+ and V5+ redox and SCR DeNO x activity[D]. Harbin: Harbin Engineering University, 2014. | |
26 | ZHAO Xin, HUANG Lei, LI Hongrui, et al. Highly dispersed V2O5/TiO2 modified with transition metals (Cu, Fe, Mn, Co) as efficient catalysts for the selective reduction of NO with NH3 [J]. Chinese Journal of Catalysis, 2015, 36(11): 1886-1899. |
27 | YU Wenchao, WU Xiaodong, SI Zhichun, et al. Influences of impregnation procedure on the SCR activity and alkali resistance of V2O5-WO3/TiO2 catalyst[J]. Applied Surface Science, 2013, 283: 209-214. |
28 | YE Bora, LEE Myeung-jin, CHUN Seung-yeop, et al. Promotional effect of surface treated N-TiO2 as support for VO x -based catalysts on the selective catalytic reduction of NO using NH3 [J]. Applied Surface Science, 2021, 560: 149934. |
29 | CHMIELARZ L, DZIEMBAJ R, GRZYBEK T, et al. Pillared smectite modified with carbon and Manganese as catalyst for SCR of NO x with NH3. Part II. Temperature-programmed studies[J]. Catalysis Letters, 2000, 70(1): 51-56. |
30 | WANG Jinxiu, YI Xianfang, SU Qingfa, et al. Effect of FeO x and MnO x doping into the CeO2-V2O5/TiO2 nanocomposite on the performance and mechanism in selective catalytic reduction of NO x with NH3 [J]. Catalysis Science & Technology, 2021, 11(8): 2852-2863. |
31 | MARTÍN-MARTÍN J A, GALLASTEGI-VILLA M, GONZÁLEZ-MARCOS M P, et al. Bimodal effect of water on V2O5/TiO2 catalysts with different vanadium species in the simultaneous NO reduction and 1,2-dichlorobenzene oxidation[J]. Chemical Engineering Journal, 2021, 417: 129013. |
32 | ZHU Junjiang, ZHAO Zhen, XIAO Dehai, et al. Study of La2- x Sr x CuO4 (x=0.0, 0.5, 1.0) catalysts for NO+CO reaction from the measurements of O2-TPD, H2-TPR and cyclic voltammetry[J]. Journal of Molecular Catalysis A: Chemical, 2005, 238(1/2): 35-40. |
33 | XUE Li, ZHANG Changbin, HE Hong, et al. Catalytic decomposition of N2O over CeO2 promoted Co3O4 spinel catalyst[J]. Applied Catalysis B: Environmental, 2007, 75(3/4): 167-174. |
34 | ZHAO Zhen, YANG Xiangguang, WU Yue. Comparative study of Nickel-based perovskite-like mixed oxide catalysts for direct decomposition of NO[J]. Applied Catalysis B: Environmental, 1996, 8(3): 281-297. |
35 | 郭家秀, 史雪珂, 范爱东, 等. Ce改性锰酸镧催化剂的制备及脱硝性能研究[J]. 工程科学与技术, 2021, 53(4): 233-239. |
GUO Jiaxiu, SHI Xueke, FAN Aidong, et al. Study on the preparation and denitration performance of Ce modified La-Mn perovskite catalyst[J]. Advanced Engineering Sciences, 2021, 53(4): 233-239. | |
36 | ZHANG Shule, LI Hongyu, ZHONG Qin. Promotional effect of F-doped V2O5-WO3/TiO2 catalyst for NH3-SCR of NO at low-temperature[J]. Applied Catalysis A: General, 2012, 435: 156-162. |
[1] | 李艳玲, 卓振, 池亮, 陈曦, 孙堂磊, 刘鹏, 雷廷宙. 氮掺杂生物炭的制备与应用研究进展[J]. 化工进展, 2023, 42(7): 3720-3735. |
[2] | 蒋博龙, 崔艳艳, 史顺杰, 常嘉城, 姜楠, 谭伟强. 过渡金属Co3O4/ZnO-ZIF氧还原催化剂Co/Zn-ZIF模板法制备及其产电性能[J]. 化工进展, 2023, 42(6): 3066-3076. |
[3] | 张巍, 秦川, 谢康, 周运河, 董梦瑶, 李婕, 汤云灏, 马英, 宋健. H2-SCR改性铂系催化剂低温脱硝的应用及性能强化挑战[J]. 化工进展, 2023, 42(6): 2954-2962. |
[4] | 何晨露, 邱晨茜, 方娟, 杨旋, 赖建军, 郑新宇, 吕建华, 陈燕丹, 黄彪. 基于低共熔溶剂体系的氮掺杂超级电容炭[J]. 化工进展, 2022, 41(9): 4946-4953. |
[5] | 张爱京, 江胜娟, 周明正, 柴茂荣, 张劲. 纳米管壁数对氮掺杂碳纳米管氧还原反应活性的影响[J]. 化工进展, 2022, 41(4): 2038-2045. |
[6] | 黄鑫, 刘成, 唐如佳, 韩欣欣, 陈世霞, 王珺. 氮掺杂碳限域的花状SnS催化CO2电还原制甲酸[J]. 化工进展, 2022, 41(11): 5887-5895. |
[7] | 鞠梦灿, 严丽丽, 简铃, 江思雨, 饶品华, 李光辉. 氮掺杂生物炭材料的制备及其在环境中的应用[J]. 化工进展, 2022, 41(10): 5588-5598. |
[8] | 张燕, 王淼, 赵佳辉, 冯宇, 米杰. 氮掺杂石墨烯/碳纳米管/无定形炭复合材料制备及其电化学性能[J]. 化工进展, 2022, 41(10): 5501-5509. |
[9] | 秦晓伟, 张国杰, 李晟, 郭晓菲, 阎煌煜, 徐英, 刘俊. 非金属氮掺杂活性炭催化剂制备及其催化CH4-CO2重整反应[J]. 化工进展, 2021, 40(6): 3203-3214. |
[10] | 邓秀春, 卓祖优, 白小杰, 孙杰, 陈燕丹. 银耳菌糠衍生的三维多级孔炭及其电化学应用性能[J]. 化工进展, 2021, 40(10): 5642-5651. |
[11] | 唐彤, 杨永见, 万祖德, 池少聪, 赵攀, 黄文凤, 李明. 15000m3/h耐火材料厂焙烧窑炉烟气低温脱硝工程实验[J]. 化工进展, 2020, 39(S2): 401-405. |
[12] | 刘清浩, 何艳飞, 梁丽娜, 念继鹏, 胡志勇, 郭金春, 梁栋, 刘红彦. 基于氮掺杂碳量子点的荧光微球制备和Fe3+检测[J]. 化工进展, 2018, 37(10): 3936-3942. |
[13] | 李月华, 张蓉, 姜孟秀, 王文洋. 氮掺杂石墨烯负载八面体氧化亚铜复合材料的制备及其电催化性能[J]. 化工进展, 2017, 36(09): 3316-3322. |
[14] | 胡小波, 袁伟杰, 朱秋莲, 陈银飞, 卢晗锋. 3-甲基吡啶一步气相氧化合成烟酸的V2O5/TiO2催化剂研究进展[J]. 化工进展, 2016, 35(04): 1101-1106. |
[15] | 张德懿, 雷龙艳, 尚永花. 氮掺杂对碳材料性能的影响研究进展[J]. 化工进展, 2016, 35(03): 831-836. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |