化工进展 ›› 2025, Vol. 44 ›› Issue (9): 5140-5149.DOI: 10.16085/j.issn.1000-6613.2024-1099
• 材料科学与技术 • 上一篇
程静雯1(
), 陈庆彩1(
), 于博2, 刘欢1, 徐腾飞1, 呼宇坤1, 刘思彤1
收稿日期:2024-07-08
修回日期:2024-09-02
出版日期:2025-09-25
发布日期:2025-09-30
通讯作者:
陈庆彩
作者简介:程静雯(2001—),女,硕士研究生,研究方向为VOCs气体传感器。E-mail:230311038@sust.edu.cn。
基金资助:
CHENG Jingwen1(
), CHEN Qingcai1(
), YU Bo2, LIU Huan1, XU Tengfei1, HU Yukun1, LIU Sitong1
Received:2024-07-08
Revised:2024-09-02
Online:2025-09-25
Published:2025-09-30
Contact:
CHEN Qingcai
摘要:
我国近地面臭氧(O3)污染日益严重,“十四五”生态环境规划把O3列为控制重点,因此,作为O3前驱物质的挥发性有机物(VOCs)测量成为了一个焦点。本研究以VOCs的便携监测为需求,制备基于SnO2的气体传感器,并分别用Sb、Co、Zn掺杂改善SnO2的气敏性能。利用SEM和XRD表征材料,纯SnO2材料为球状颗粒;Sb-SnO2材料为碎屑状并聚集成团;Co-SnO2材料似麦片状;Zn-SnO2材料为规则的矩形薄片。对各传感器进行VOCs气敏测试,结果表明,SnO2气体传感器对乙醇有最高的响应值;而Co-SnO2气体传感器的目标气体变为丙酮;Sb-SnO2与Zn-SnO2气体传感器均对三乙胺有选择性。其中,Zn-SnO2气体传感器对三乙胺响应速度快(6s)、选择性好、稳定性佳、检测下限低(<1μL/L)。Zn-SnO2传感器在最适工作温度250℃下对50μL/L三乙胺的灵敏度为49.6,较SnO2气体传感器的灵敏度提升了8.1倍。最后,简要分析了气体传感器的敏感机理,以期为痕量大气VOCs环境检测提供一定的技术支持。
中图分类号:
程静雯, 陈庆彩, 于博, 刘欢, 徐腾飞, 呼宇坤, 刘思彤. 不同金属掺杂的SnO2基气体传感器对挥发性有机物的检测性能及机制[J]. 化工进展, 2025, 44(9): 5140-5149.
CHENG Jingwen, CHEN Qingcai, YU Bo, LIU Huan, XU Tengfei, HU Yukun, LIU Sitong. Detection performance and mechanism of VOCs by different metal-doped SnO2-based gas sensors[J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5140-5149.
| 样品 | 平均孔径/nm | 孔容积/cm3·g-1 | 比表面积/m2·g-1 |
|---|---|---|---|
| SnO2 | 4.1999 | 0.0908 | 86.5241 |
| Sb-SnO2 | 19.8434 | 0.2244 | 45.2376 |
| Co-SnO2 | 23.5044 | 0.1558 | 26.5188 |
| Zn-SnO2 | 26.1887 | 0.2291 | 34.9946 |
表1 孔径和比表面积
| 样品 | 平均孔径/nm | 孔容积/cm3·g-1 | 比表面积/m2·g-1 |
|---|---|---|---|
| SnO2 | 4.1999 | 0.0908 | 86.5241 |
| Sb-SnO2 | 19.8434 | 0.2244 | 45.2376 |
| Co-SnO2 | 23.5044 | 0.1558 | 26.5188 |
| Zn-SnO2 | 26.1887 | 0.2291 | 34.9946 |
| [1] | 李万勇, 黄浩瑜, 王艳振, 等. 聊城市城区夏季VOCs污染特征及来源解析[J]. 环境科学, 2023, 44(12): 6564-6575. |
| LI Wanyong, HUANG Haoyu, WANG Yanzhen, et al. Pollution characteristics and source apportionment of VOCs in urban areas of Liaocheng in summer[J]. Environmental Science, 2023, 44(12): 6564-6575. | |
| [2] | ZHANG Kai, DING Honglei, PAN Weiguo, et al. Research progress of a composite metal oxide catalyst for VOC degradation[J]. Environmental Science & Technology, 2022, 56(13): 9220-9236. |
| [3] | WANG Shuyi, ZHAO Yilong, HAN Yu, et al. Spatiotemporal variation, source and secondary transformation potential of volatile organic compounds (VOCs) during the winter days in Shanghai, China[J]. Atmospheric Environment, 2022, 286: 119203. |
| [4] | DAI Mingjun, ZHAO Liupeng, GAO Hongyu, et al. Hierarchical assembly of α -Fe2O3 nanorods on multiwall carbon nanotubes as a high-performance sensing material for gas sensors[J]. ACS Applied Materials & Interfaces, 2017, 9(10): 8919-8928. |
| [5] | WANG Qingji, KOU Xueying, LIU Chang, et al. Hydrothermal synthesis of hierarchical CoO/SnO2 nanostructures for ethanol gas sensor[J]. Journal of Colloid and Interface Science, 2018, 513: 760-766. |
| [6] | HSIAO Yu-Jen, NAGARJUNA Yempati, TSAI Chun-An, et al. High selectivity Fe3O4 nanoparticle to volatile organic compound (VOC) for MEMS gas sensors[J]. Materials Research Express, 2020, 7(6): 065013. |
| [7] | LIU Yaning, GAO Lilin, FU Shiyang, et al. Highly efficient VOC gas sensors based on Li-doped diamane[J]. Applied Surface Science, 2023, 611: 155694. |
| [8] | TIAN Qinghua, CHEN Yanbin, ZHANG Feng, et al. Hierarchical carbon-riveted 2D@0D TiO2 nanosheets@SnO2 nanoparticles composite for an improved lithium-ion battery anode[J]. Applied Surface Science, 2020, 511: 145625. |
| [9] | GAILLARD Nicolas, PRASHER Dixit, CHONG Marina, et al. Wide-bandgap Cu(In, Ga)S2 photocathodes integrated on transparent conductive F:SnO2 substrates for chalcopyrite-based water splitting tandem devices[J]. ACS Applied Energy Materials, 2019, 2(8): 5515-5524. |
| [10] | HUANG Shahua, Nasir ALI, HUAI Zhaoxiang, et al. A facile strategy for enhanced performance of inverted organic solar cells based on low-temperature solution-processed SnO2 electron transport layer[J]. Organic Electronics, 2020, 78: 105555. |
| [11] | 张清. SnO2气体传感器选择性改善研究进展[J]. 微纳电子技术, 2022, 59(12): 1263-1270. |
| ZHANG Qing. Research progress on selectivity improvement of SnO2 gas sensors[J]. Micronanoelectronic Technology, 2022, 59(12): 1263-1270. | |
| [12] | BAIK Nam Seok, SAKAI Go, MIURA Norio, et al. Preparation of stabilized nanosized tin oxide particles by hydrothermal treatment[J]. Journal of the American Ceramic Society, 2000, 83(12): 2983-2987. |
| [13] | LIU X M, WU S L, CHU Paul K, et al. Characteristics of nano Ti-doped SnO2 powders prepared by sol-gel method[J]. Materials Science and Engineering: A, 2006, 426(1/2): 274-277. |
| [14] | ZENG Yi, WANG Yanzhe, QIAO Liang, et al. Synthesis and the improved sensing properties of hierarchical SnO2 hollow nanosheets with mesoporous and multilayered interiors[J]. Sensors and Actuators B: Chemical, 2016, 222: 354-361. |
| [15] | 胡瑞金, 王兢, 朱慧超. PdO, Au, CdO修饰SnO2纳米纤维的制备及其气敏特性[J]. 物理化学学报, 2015, 31(10): 1997-2004. |
| HU Ruijin, WANG Jing, ZHU Huichao. Preparation and gas sensing properties of PdO, Au, CdO coatings on SnO2 nanofibers[J]. Acta Physico-Chimica Sinica, 2015, 31(10): 1997-2004. | |
| [16] | YANG Jiaqi, HAN Wenjiang, MA Jian, et al. Sn doping effect on NiO hollow nanofibers based gas sensors about the humidity dependence for triethylamine detection[J]. Sensors and Actuators B: Chemical, 2021, 340: 129971. |
| [17] | FAN Yaru, XU Yanyan, WANG Yuxuan, et al. Fabrication and characterization of Co-doped ZnO nanodiscs for selective TEA sensor applications with high response, high selectivity and ppb-level detection limit[J]. Journal of Alloys and Compounds, 2021, 876: 160170. |
| [18] | MA Longtao, FAN Huiqing, TIAN Hailin, et al. The n-ZnO/n-In2O3 heterojunction formed by a surface-modification and their potential barrier-control in methanal gas sensing[J]. Sensors and Actuators B: Chemical, 2016, 222: 508-516. |
| [19] | WANG Yun, ZHANG Hui, SUN Xuhui. Electrospun nanowebs of NiO/SnO2 p-n heterojunctions for enhanced gas sensing[J]. Applied Surface Science, 2016, 389: 514-520. |
| [20] | WANG Dongxue, GU Kuikun, ZHANG Jing, et al. MOF-derived NiWO4@NiO p-p heterostructure for distinguish detection of TEA and xylene by temperature regulation[J]. Journal of Alloys and Compounds, 2021, 875: 160015. |
| [21] | 璩光明, 杨莹丽, 王国东, 等. 金属氧化物半导体气体传感器改性研究进展[J]. 传感器与微系统, 2022, 41(2): 1-4. |
| QU Guangming, YANG Yingli, WANG Guodong, et al. Research progress in properties modification of metal oxide semiconductor gas sensors[J]. Transducer and Microsystem Technologies, 2022, 41(2): 1-4. | |
| [22] | WANG Li, MA Shuyi, LI Jianpeng, et al. Mo-doped SnO2 nanotubes sensor with abundant oxygen vacancies for ethanol detection[J]. Sensors and Actuators B: Chemical, 2021, 347: 130642. |
| [23] | TOMER Vijay K, SINGH Kulvinder, KAUR Harmanjit, et al. Rapid acetone detection using indium loaded WO3/SnO2 nanohybrid sensor[J]. Sensors and Actuators B: Chemical, 2017, 253: 703-713. |
| [24] | FAN Guijun, NIE Linfeng, WANG Hang, et al. Ce doped SnO/SnO2 heterojunctions for highly formaldehyde gas sensing at low temperature[J]. Sensors and Actuators B: Chemical, 2022, 373: 132640. |
| [25] | 于丹, 田振玉, 杜利军, 等. 国内VOCs来源、 排放标准及脱除技术分析[J]. 工程热物理学报, 2024, 45(6): 1825-1837. |
| YU Dan, TIAN Zhenyu, DU Lijun, et al. Source, emission standard and abatement technique of VOCs in China[J]. Journal of Engineering Thermophysics, 2024, 45(6): 1825-1837. | |
| [26] | 翟增秀, 李佳音, 杨伟华, 等. 典型化学制品企业OVOCs排放特征及环境影响[J]. 环境科学学报, 2024, 44(10): 111-120. |
| ZHAI Zengxiu, LI Jiayin, YANG Weihua, et al. Emission characteristics and environmental impact of OVOCs in typical chemical product enterprises[J]. Acta Scientiae Circumstantiae, 2024, 44(10): 111-120. | |
| [27] | SHAO Ping, AN Junlin, XIN Jinyuan, et al. Source apportionment of VOCs and the contribution to photochemical ozone formation during summer in the typical industrial area in the Yangtze River Delta, China[J]. Atmospheric Research, 2016, 176: 64-74. |
| [28] | TONG Dan, CHEN Jiangyao, QIN Dandan, et al. Mechanism of atmospheric organic amines reacted with ozone and implications for the formation of secondary organic aerosols[J]. Science of the Total Environment, 2020, 737: 139830. |
| [29] | 苑雪玲. 热解金属有机骨架法制备SnO2基复合材料及其气敏性能研究[D]. 南宁: 广西大学, 2021. |
| YUAN Xueling. Preparation by pyrolyzation of metallic organic frameworks and gas-sensing properties of SnO2-based composites [D]. Nanning: Guangxi University, 2021. | |
| [30] | 张晓, 徐瑶华, 刘皓, 等. 基于金属氧化物的乙醇检测气敏材料的研究进展[J]. 化工进展, 2019, 38(7): 3207-3226. |
| ZHANG Xiao, XU Yaohua, LIU Hao, et al. Recent advances of ethanol detection materials based on metal oxides[J]. Chemical Industry and Engineering Progress, 2019, 38(7): 3207-3226. | |
| [31] | LUO Yifan, Ahmadou LY, LAHEM Driss, et al. Role of cobalt in Co-ZnO nanoflower gas sensors for the detection of low concentration of VOCs[J]. Sensors and Actuators B: Chemical, 2022, 360: 131674. |
| [32] | 曾文, 林志东, 高俊杰. 金属离子掺杂纳米SnO2材料的气敏性能及掺杂机理[J]. 纳米技术与精密工程, 2008(3): 174-179. |
| ZENG Wen, LIN Zhidong, GAO Junjie. Gas sensitivity and the mechanism of nano-SnO2 doped by metallic ions[J]. Nanotechnology and Precision Engineering, 2008(3): 174-179. | |
| [33] | LI Yuxiu, CHEN Nan, DENG Dongyang, et al. Formaldehyde detection: SnO2 microspheres for formaldehyde gas sensor with high sensitivity, fast response/recovery and good selectivity[J]. Sensors and Actuators B: Chemical, 2017, 238: 264-273. |
| [34] | 徐林婕. 基于传感器阵列的多组分VOCs检测及工业应用验证研究[D]. 杭州: 浙江大学, 2023. |
| XU Linjie. Research on multi-component VOCs detection based on sensor array and its industrial application verification[D]. Hangzhou: Zhejiang University, 2023. | |
| [35] | LIU Fangmeng, YANG Zijie, HE Junming, et al. Ultrafast-response stabilized zirconia-based mixed potential type triethylamine sensor utilizing CoMoO4 sensing electrode[J]. Sensors and Actuators B: Chemical, 2018, 272: 433-440. |
| [36] | 金士成, 闫爽. 金属氧化物室温气敏材料的结构调控及传感机理[J]. 化学进展, 2021, 33(12): 2348-2361. |
| JIN Shicheng, YAN Shuang. Nanostructure construction and sensing mechanism of metal oxides for room temperature gas sensing[J]. Progress in Chemistry, 2021, 33(12): 2348-2361. | |
| [37] | XU Keng, ZOU Jingping, TIAN Shouqin, et al. Single-crystalline porous nanosheets assembled hierarchical Co3O4 microspheres for enhanced gas-sensing properties to trace xylene[J]. Sensors and Actuators B: Chemical, 2017, 246: 68-77. |
| [38] | HU Jie, YANG Jie, WANG Wenda, et al. Synthesis and gas sensing properties of NiO/SnO2 hierarchical structures toward ppb-level acetone detection[J]. Materials Research Bulletin, 2018, 102: 294-303. |
| [39] | WANG Wanjing, XIAN Jianbiao, LI Jin, et al. Construction of Co3O4/SnO2 yolk-shell nanofibers for acetone gas detection[J]. Sensors and Actuators B: Chemical, 2024, 398: 134724. |
| [40] | MENG Xiaoning, YAO Mengxia, MU Shifang, et al. Oxygen vacancies enhance triethylamine sensing properties of SnO2 nanoparticles[J]. ChemistrySelect, 2019, 4(38): 11268-11274. |
| [41] | ZHAO Liupeng, LI Yiwen, ZHOU Yue, et al. Mechanism of high- and low-valence doping on adsorbed oxygen of SnO2-based gas sensors and a strategy to combine the advantages of both dopants[J]. Sensors and Actuators B: Chemical, 2022, 371: 132603. |
| [42] | WANG Mengjie, LIU Hongyan, SUN Caixuan, et al. High efficiency toluene sensor based on iron-doped nickel oxide triple-shell microspheres with high moisture resistance[J]. Materials Science and Engineering: B, 2024, 299: 117001. |
| [43] | WANG Yanzhe, LIU Chunbao, QIAO Liang, et al. Localized inside-out Ostwald ripening of hybrid double-shelled cages into SnO2 triple-shelled hollow cubes for improved toluene detection[J]. Nanoscale, 2020, 12(3): 2011-2021. |
| [44] | RAMANATHAN Ramarajan, NAGARAJAN Selvakumar, SATHIYAM OORTHY Surya, et al. A highly sensitive and room temperature ethanol gas sensor based on spray deposited Sb doped SnO2 thin films[J]. Materials Advances, 2024, 5(1): 293-305. |
| [1] | 车兴灏, 罗晨辉, 段东全, 冯雅娟, 曹俊雅, 张香兰, 解强. 基于流程模拟的工业涂装行业VOCs治理工程安全评价体系及应用[J]. 化工进展, 2025, 44(8): 4741-4753. |
| [2] | 刘世达, 侯栓弟, 刘忠生. 中美石化行业源空气污染物控制标准对比分析与展望和建议[J]. 化工进展, 2024, 43(7): 4089-4101. |
| [3] | 杜倩, 侯明, 高冀芸, 杨黎, 鲁元佳, 郭胜惠. f-Ti3C2T x /ZIF-8异质结构增强NO2气体传感器的敏感性能[J]. 化工进展, 2024, 43(7): 3946-3954. |
| [4] | 刘世达, 王海燕, 侯栓弟, 刘忠生, 廖昌建, 王宽岭. 我国石化储罐VOCs安全高效深度减排、回收和热氧化技术进展[J]. 化工进展, 2024, 43(4): 2063-2076. |
| [5] | 钟彩丽, 莫秋莲, 孙建华, 丁宁宁, 廖丹葵, 孙丽霞. CeO2-In2O3异质结复合材料的制备及其在三乙胺气敏监测中的应用[J]. 化工进展, 2024, 43(3): 1446-1455. |
| [6] | 薛博, 杨婷婷, 王雪峰. 聚苯胺/碳纳米管气敏材料的研究进展[J]. 化工进展, 2023, 42(3): 1448-1456. |
| [7] | 周红阳, 周逸寰, 张连秀, 梁鼎成, 解强. VOCs在活性炭中的堆积:形成机制及影响因素[J]. 化工进展, 2023, 42(11): 5969-5980. |
| [8] | 曹冬冬, 李兴春, 薛明. 石化中间储罐挥发性有机物排放特征与反应活性[J]. 化工进展, 2022, 41(7): 3974-3982. |
| [9] | 郑亚梅, 林胜男, 荆国华, 申华臻, 吕碧洪. 基于FAHP的农药生产VOCs末端治理技术评价[J]. 化工进展, 2022, 41(6): 3372-3380. |
| [10] | 张巍, 汤云灏, 尹艳山, 龚蔚成, 宋健, 马英, 阮敏, 徐慧芳, 陈冬林. 改性镧系钙钛矿催化剂强化挥发性有机物催化氧化的研究进展[J]. 化工进展, 2021, 40(3): 1425-1437. |
| [11] | 杨宇轩, 朱晨曦, 黄群星. 废弃物衍生分级多孔炭的制备及吸附应用进展[J]. 化工进展, 2021, 40(1): 427-439. |
| [12] | 李孟, 李炜, 张帅, 李雨薇, 刘芳, 赵朝成, 王永强. MOF及其复合材料吸附去除VOCs应用研究进展[J]. 化工进展, 2021, 40(1): 415-426. |
| [13] | 冷星月, 胡彩虹, 王炜月, 李丹丹, 陈建, 罗孟飞. 低浓度挥发性有机物吸附浓缩材料的研究进展[J]. 化工进展, 2020, 39(S2): 336-345. |
| [14] | 王炜月, 赵培培, 金凌云, 岑丙横, 陈建, 罗孟飞. 挥发性有机物燃烧催化剂的研究进展[J]. 化工进展, 2020, 39(S2): 185-195. |
| [15] | 赵亚飞, 叶凯, 庄烨, 郑进保. 锰基催化剂协同等离子降解VOCs研究进展[J]. 化工进展, 2020, 39(S2): 175-184. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |