| [1] |
刘波, 吴雨, 王元华, 等. 低NO x 工业燃气燃烧技术研究进展[J]. 化工进展, 2013, 32(1): 199-204.
|
|
LIU Bo, WU Yu, WANG Yuanhua, et al. Research progress on low-NO x industrial gas combustion technology[J]. Chemical Industry and Engineering Progress, 2013, 32(1): 199-204.
|
| [2] |
靳苏毅, 王登辉, 惠世恩, 等. 天然气低氮氧化物燃烧研究进展与展望[J]. 节能技术, 2021, 39(4): 291-298.
|
|
JIN Suyi, WANG Denghui, HUI Shien, et al. Research progress and prospects of low-NO x combustion of natural gas[J]. Energy Conservation Technology, 2021, 39(4): 291-298.
|
| [3] |
王晶, 廖昌建, 王海波, 等. 锅炉低氮燃烧技术研究进展[J]. 洁净煤技术, 2022, 28(2): 99-114.
|
|
WANG Jing, LIAO Changjian, WANG Haibo, et al. Research progress of low-NO x combustion technology for boilers[J]. Clean Coal Technology, 2022, 28(2): 99-114.
|
| [4] |
CAVALIERE Antonio, DE JOANNON Mara. Mild combustion[J]. Progress in Energy and Combustion Science, 2004, 30(4): 329-366.
|
| [5] |
WÜNNING J A, WÜNNING J G. Flameless oxidation to reduce thermal no-formation[J]. Progress in Energy and Combustion Science, 1997, 23(1): 81-94.
|
| [6] |
李鹏飞, 米建春, DALLY B B, 等. MILD燃烧的最新进展和发展趋势[J]. 中国科学: 技术科学, 2011, 41(2): 135-149.
|
|
LI Pengfei, MI Jianchun, DALLY B B, et al. The latest progress and development trend of MILD combustion[J]. Scientia Sinica (Technologica), 2011, 41(2): 135-149.
|
| [7] |
TSUJI Hiroshi, GUPTA Ashwani K, HASEGAWA Toshiaki, et al. High temperature air combustion: From energy conservation to pollution reduction[M]. Boca Raton: CRC Press, 2002.
|
| [8] |
KUMAR Sudarshan, PAUL P J, MUKUNDA H S. Studies on a new high-intensity low-emission burner[J]. Proceedings of the Combustion Institute, 2002, 29(1): 1131-1137.
|
| [9] |
邢献军, 林其钊. 常温空气无焰燃烧中NO x 生成的研究[J]. 环境科学学报, 2006, 26(10): 1671-1676.
|
|
XING Xianjun, LIN Qizhao. Research on NO x formation in normal temperature air flameless combustion[J]. Acta Scientiae Circumstantiae, 2006, 26(10): 1671-1676.
|
| [10] |
MI Jianchun, LI Pengfei, DALLY Bassam B, et al. Importance of initial momentum rate and air-fuel premixing on moderate or intense low oxygen dilution (MILD) combustion in a recuperative furnace[J]. Energy & Fuels, 2009, 23(11): 5349-5356.
|
| [11] |
MI Jianchun, LI Pengfei, ZHENG Chuguang. Numerical simulation of flameless premixed combustion with an annular nozzle in a recuperative furnace[J]. Chinese Journal of Chemical Engineering, 2010, 18(1): 10-17.
|
| [12] |
Ghufran ALI, ZHOU Yuegui. Numerical analysis of NO x formation mechanisms and emission characteristics with different types of reactants dilution during MILD combustion of methane and coke oven gas[J]. Fuel, 2022, 309: 122131.
|
| [13] |
LIU Zhigang, XIONG Yan, ZHU Ziru, et al. Effects of hydrogen addition on combustion characteristics of a methane fueled MILD model combustor[J]. International Journal of Hydrogen Energy, 2022, 47(36): 16309-16320.
|
| [14] |
FORDOEI E Ebrahimi, MAZAHERI Kiumars, MOHAMMADPOUR Amirreza. Numerical study on the heat transfer characteristics, flame structure, and pollutants emission in the MILD methane-air, oxygen-enriched and oxy-methane combustion[J]. Energy, 2021, 218: 119524.
|
| [15] |
REBOLA Amândio, Mário COSTA, COELHO Pedro J. Experimental evaluation of the performance of a flameless combustor[J]. Applied Thermal Engineering, 2013, 50(1): 805-815.
|
| [16] |
SZEGÖ G G, DALLY B B, NATHAN G J. Operational characteristics of a parallel jet MILD combustion burner system[J]. Combustion and Flame, 2009, 156(2): 429-438.
|