化工进展 ›› 2025, Vol. 44 ›› Issue (7): 3965-3975.DOI: 10.16085/j.issn.1000-6613.2024-0895
• 材料科学与技术 • 上一篇
收稿日期:2024-06-02
修回日期:2024-07-25
出版日期:2025-07-25
发布日期:2025-08-04
通讯作者:
梁书玮
作者简介:梁书玮(1996—),男,硕士,研究方向为核空气净化、气体吸附材料。E-mail:liangsw0910@163.com。
基金资助:
LIANG Shuwei(
), YU Jie, XIE Zhongyin, PEI Jianlu, LIN Zhongxin, CHEN Zexiang
Received:2024-06-02
Revised:2024-07-25
Online:2025-07-25
Published:2025-08-04
Contact:
LIANG Shuwei
摘要:
核裂变产物中的放射性气态碘是污染环境的主要核素。核电厂采用固体吸附的方法捕集废气中的放射性碘。浸渍活性炭作为工业用碘吸附材料,具有吸附效率高、制造成本低的优点,但存在吸附容量低、易老化、高温易分解等问题。共价有机框架(covalent organic frameworks,COFs)作为一类共价键连接的新型晶态多孔材料,具有比表面积高、孔道结构有序、结构可设计性以及物理化学稳定性强等特点,展现出优异的碘吸附性能。本文探讨了不同种类碘化合物在COFs内的吸附机理,概述了不同种类COFs的碘吸附性能,系统总结了影响COFs碘吸附性能的多种因素,提出了高碘吸附性能COFs材料的设计策略。最后,总结了COFs实现工业应用的主要挑战及发展前景,指出需开发具有普适性的低成本COFs制备方法并加强其在实际工况条件下吸附性能的研究。
中图分类号:
梁书玮, 俞杰, 谢钟音, 裴鉴禄, 林中鑫, 陈泽翔. 共价有机框架吸附放射性气态碘的研究进展[J]. 化工进展, 2025, 44(7): 3965-3975.
LIANG Shuwei, YU Jie, XIE Zhongyin, PEI Jianlu, LIN Zhongxin, CHEN Zexiang. Covalent organic frameworks for radioactive gaseous iodine adsorption[J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3965-3975.
| COFs材料 | 种类 | 比表面积/m2·g-1 | 孔径/nm | 孔容/cm3·g-1 | I2饱和吸附时间/h | 饱和吸附容量/g·g-1 | 参考文献 |
|---|---|---|---|---|---|---|---|
| COF-TAPT | 二维亚胺COFs | 2348 | 1.92 | 0.97 | 96 | 8.61,1.53① 2.38②,1.30③ | [ |
| TPB-DMTP | 二维亚胺COFs | 1927 | 3.3 | 1.28 | 96 | 6.26 | [ |
| SCU-COF-2 | 联吡啶基COFs | 413.4 | — | — | 96 | 6.0,1.45① 0.979④,0.564⑤ | [ |
| TGDM | 胍基离子COFs | 645.8 | 0.66 | 0.46 | 10 | 0.29⑥ | [ |
| OM-COF-300 | 大孔单晶三维COFs | 1410 | 0.5 | 0.63 | 36 | 3.15 | [ |
| micro-COF-1 | 微孔二维亚胺COFs | 816 | 1.7 | 0.59 | 75 | 2.9 | [ |
| CTF-1@ZnCl2 | 二维三嗪COFs | 1476 | 2.0 | — | 24 | 4.31 | [ |
| TPT-DHBD | 羟基修饰亚胺COFs | 297 | 3.43 | — | 46 | 4.03 | [ |
| FAL-COF-1 | 柔性胺类COFs | 168 | 3.69 | 0.32 | 75 | 4.94 | [ |
| Hz-COF | 腙类COFs | 145 | 2.16 | — | 70 | 2.05 | [ |
| NH-COF | 胺类COFs | 78 | 2.16 | — | 70 | 2.60 | [ |
| QTD-COF-1 | 准三维COFs | — | 1.36/1.66 | — | 5 | 4.62 | [ |
| JUC-561 | 三维COFs | 2359 | 2.46 | 1.92 | 18 | 8.19 | [ |
| SIOC-COF-7 | 二维亚胺COFs | 618 | 0.50/1.18 | 0.41 | 48 | 4.81 | [ |
| TJNU-201 | 二维亚胺COFs | 2510 | 1.4 | — | 96 | 5.625 | [ |
| COF-p-NEU1 | C | 186 | 4.93 | — | 30 | 4.58 | [ |
| 肼-MTH-TFPB | 酰胺类COFs | 364.3 | 2.9 | 0.23 | 61 | 3.05 | [ |
| COF-LZU-1 | π共轭COFs | 858 | 1.6 | 0.48 | 48 | 5.30 | [ |
| TFPB-PyTTA-COF | 芘环COFs | 1897 | 1.20 | 1.78 | 36 | 5.62 | [ |
| TTA-FMTA-COF | 甲氧基COFs | 1985 | 1.97 | 1.12 | 24 | 5.07 | [ |
| NH2-Th-Bta | 氨基COFs | 10 | 2.4 | — | 37 | 3.58 | [ |
| TJNU-204 | 羟基COFs | 2048 | 0.89 | — | 48 | 5.34 | [ |
| TAPD-DHTA | 羟基COFs | 213.6 | 1.56/2.73 | — | 44 | 4.02 | [ |
| BTT-TAPT | 噻吩基COFs | 864 | 1.0-2.0 | 0.56 | 50 | 2.76 | [ |
| PB-TT | 吡啶基COFs | 1306.3 | 3.67 | 0.986 | 30 | 5.97 | [ |
| C-TP-PDA | 吡啶基离子COFs | 133 | 1.3 | 0.08 | 24 | 3.05 | [ |
| COF-PA | 苯炔基COFs | 1471 | 2.1 | — | 16 | 4.47 | [ |
| CPOF-2 | 炔基三维COFs | 580 | 1.1 | — | 68 | 5.40 | [ |
| P-COF | 磷基COFs | 1056 | 1.0-2.0 | 0.60 | 66 | 6.19 | [ |
| TTF-TAPT | 四硫富瓦烯基COFs | 461 | — | 0.28 | 18 | 5.02 | [ |
| iCOF-AB-50 | 阳离子COFs | 1390 | 3.3 | 1.21 | 30 | 10.21,2.79②,0.44⑦ | [ |
| TAPB-PDA | 晶态COFs气凝胶 | 2273 | 3.3 | — | 90 | 7.7 | [ |
| TPB-DMTP-COF | COFs薄膜 | — | — | — | 4 | 6.87 | [ |
| COF@棉纤维 | COFs@棉纤维 | 124 | — | — | 20 | 0.534 | [ |
| CF/COF | COFs@棉纤维 | 166 | — | — | 12 | 0.824 | [ |
表1 COFs材料及碘吸附性能汇总
| COFs材料 | 种类 | 比表面积/m2·g-1 | 孔径/nm | 孔容/cm3·g-1 | I2饱和吸附时间/h | 饱和吸附容量/g·g-1 | 参考文献 |
|---|---|---|---|---|---|---|---|
| COF-TAPT | 二维亚胺COFs | 2348 | 1.92 | 0.97 | 96 | 8.61,1.53① 2.38②,1.30③ | [ |
| TPB-DMTP | 二维亚胺COFs | 1927 | 3.3 | 1.28 | 96 | 6.26 | [ |
| SCU-COF-2 | 联吡啶基COFs | 413.4 | — | — | 96 | 6.0,1.45① 0.979④,0.564⑤ | [ |
| TGDM | 胍基离子COFs | 645.8 | 0.66 | 0.46 | 10 | 0.29⑥ | [ |
| OM-COF-300 | 大孔单晶三维COFs | 1410 | 0.5 | 0.63 | 36 | 3.15 | [ |
| micro-COF-1 | 微孔二维亚胺COFs | 816 | 1.7 | 0.59 | 75 | 2.9 | [ |
| CTF-1@ZnCl2 | 二维三嗪COFs | 1476 | 2.0 | — | 24 | 4.31 | [ |
| TPT-DHBD | 羟基修饰亚胺COFs | 297 | 3.43 | — | 46 | 4.03 | [ |
| FAL-COF-1 | 柔性胺类COFs | 168 | 3.69 | 0.32 | 75 | 4.94 | [ |
| Hz-COF | 腙类COFs | 145 | 2.16 | — | 70 | 2.05 | [ |
| NH-COF | 胺类COFs | 78 | 2.16 | — | 70 | 2.60 | [ |
| QTD-COF-1 | 准三维COFs | — | 1.36/1.66 | — | 5 | 4.62 | [ |
| JUC-561 | 三维COFs | 2359 | 2.46 | 1.92 | 18 | 8.19 | [ |
| SIOC-COF-7 | 二维亚胺COFs | 618 | 0.50/1.18 | 0.41 | 48 | 4.81 | [ |
| TJNU-201 | 二维亚胺COFs | 2510 | 1.4 | — | 96 | 5.625 | [ |
| COF-p-NEU1 | C | 186 | 4.93 | — | 30 | 4.58 | [ |
| 肼-MTH-TFPB | 酰胺类COFs | 364.3 | 2.9 | 0.23 | 61 | 3.05 | [ |
| COF-LZU-1 | π共轭COFs | 858 | 1.6 | 0.48 | 48 | 5.30 | [ |
| TFPB-PyTTA-COF | 芘环COFs | 1897 | 1.20 | 1.78 | 36 | 5.62 | [ |
| TTA-FMTA-COF | 甲氧基COFs | 1985 | 1.97 | 1.12 | 24 | 5.07 | [ |
| NH2-Th-Bta | 氨基COFs | 10 | 2.4 | — | 37 | 3.58 | [ |
| TJNU-204 | 羟基COFs | 2048 | 0.89 | — | 48 | 5.34 | [ |
| TAPD-DHTA | 羟基COFs | 213.6 | 1.56/2.73 | — | 44 | 4.02 | [ |
| BTT-TAPT | 噻吩基COFs | 864 | 1.0-2.0 | 0.56 | 50 | 2.76 | [ |
| PB-TT | 吡啶基COFs | 1306.3 | 3.67 | 0.986 | 30 | 5.97 | [ |
| C-TP-PDA | 吡啶基离子COFs | 133 | 1.3 | 0.08 | 24 | 3.05 | [ |
| COF-PA | 苯炔基COFs | 1471 | 2.1 | — | 16 | 4.47 | [ |
| CPOF-2 | 炔基三维COFs | 580 | 1.1 | — | 68 | 5.40 | [ |
| P-COF | 磷基COFs | 1056 | 1.0-2.0 | 0.60 | 66 | 6.19 | [ |
| TTF-TAPT | 四硫富瓦烯基COFs | 461 | — | 0.28 | 18 | 5.02 | [ |
| iCOF-AB-50 | 阳离子COFs | 1390 | 3.3 | 1.21 | 30 | 10.21,2.79②,0.44⑦ | [ |
| TAPB-PDA | 晶态COFs气凝胶 | 2273 | 3.3 | — | 90 | 7.7 | [ |
| TPB-DMTP-COF | COFs薄膜 | — | — | — | 4 | 6.87 | [ |
| COF@棉纤维 | COFs@棉纤维 | 124 | — | — | 20 | 0.534 | [ |
| CF/COF | COFs@棉纤维 | 166 | — | — | 12 | 0.824 | [ |
| [1] | WREN Jungsook Clara, MOORE Chris J, RASMUSSEN Miyoko Tateishi, et al. Methyl iodide trapping efficiency of aged charcoal samples from Bruce—A emergency filtered air discharge systems[J]. Nuclear Technology, 1999, 125(1): 28-39. |
| [2] | KEVIN Winegardner W. Phase Ⅰ aging assessment of nuclear air-treatment system high efficiency particulate air and adsorbers[J]. Nuclear Engineering and Design, 1996, 163(3): 315-322. |
| [3] | HUVE Joffrey, RYZHIKOV Andrey, NOUALI Habiba, et al. Porous sorbents for the capture of radioactive iodine compounds: A review[J]. RSC Advances, 2018, 8(51): 29248-29273. |
| [4] | BERSENEVA Anna A, MARTIN Corey R, GALITSKIY Vladimir A, et al. “Boarding-up”: Radiation damage and radionuclide leaching kinetics in linker-capped metal-organic frameworks[J]. Inorganic Chemistry, 2020, 59(1): 179-183. |
| [5] | SAVA Dorina F, CHAPMAN Karena W, RODRIGUEZ Mark A, et al. Competitive I2 sorption by Cu-BTC from humid gas streams[J]. Chemistry of Materials, 2013, 25(13): 2591-2596. |
| [6] | KURISINGAL Jintu Francis, YUN Hongryeol, HONG Chang Seop. Porous organic materials for iodine adsorption[J]. Journal of Hazardous Materials, 2023, 458: 131835. |
| [7] | ZHANG Ning, ISHAG Alhadi, LI Ying, et al. Recent investigations and progress in environmental remediation by using covalent organic framework-based adsorption method: A review[J]. Journal of Cleaner Production, 2020, 277: 123360. |
| [8] | XIE Yaqiang, PAN Tingting, LEI Qiong, et al. Efficient and simultaneous capture of iodine and methyl iodide achieved by a covalent organic framework[J]. Nature Communications, 2022, 13(1): 2878. |
| [9] | WANG Ping, XU Qing, LI Zhongping, et al. Exceptional iodine capture in 2D covalent organic frameworks[J]. Advanced Materials, 2018, 30(29): 1801991. |
| [10] | HE Linwei, CHEN Long, DONG Xinglong, et al. A nitrogen-rich covalent organic framework for simultaneous dynamic capture of iodine and methyl iodide[J]. Chem, 2021, 7(3): 699-714. |
| [11] | ZHANG Zhiyuan, DONG Xinglong, YIN Jun, et al. Chemically stable guanidinium covalent organic framework for the efficient capture of low-concentration iodine at high temperatures[J]. Journal of the American Chemical Society, 2022, 144(15): 6821-6829. |
| [12] | Keon HO, MOON Seunghyun, LEE Hyung Chae, et al. Adsorptive removal of gaseous methyl iodide by triethylenediamine (TEDA)-metal impregnated activated carbons under humid conditions[J]. Journal of Hazardous Materials, 2019, 368: 550-559. |
| [13] | CHAPMAN Karena W, CHUPAS Peter J, NENOFF Tina M. Radioactive iodine capture in silver-containing mordenites through nanoscale silver iodide formation[J]. Journal of the American Chemical Society, 2010, 132(26): 8897-8899. |
| [14] | LIU Tong, ZHAO Yi, SONG Min, et al. Ordered macro-microporous single crystals of covalent organic frameworks with efficient sorption of iodine[J]. Journal of the American Chemical Society, 2023, 145(4): 2544-2552. |
| [15] | AN Shuhao, ZHU Xiang, HE Yanyan, et al. Porosity modulation in two-dimensional covalent organic frameworks leads to enhanced iodine adsorption performance[J]. Industrial & Engineering Chemistry Research, 2019, 58(24): 10495-10502. |
| [16] | HE Xunming, ZHANG Suyun, TANG Xiang, et al. Exploration of 1D channels in stable and high-surface-area covalent triazine polymers for effective iodine removal[J]. Chemical Engineering Journal, 2019, 371: 314-318. |
| [17] | GUO Xinghua, TIAN Yin, ZHANG Meicheng, et al. Mechanistic insight into hydrogen-bond-controlled crystallinity and adsorption property of covalent organic frameworks from flexible building blocks[J]. Chemistry of Materials, 2018, 30(7): 2299-2308. |
| [18] | ZHANG Meicheng, LI Yang, YUAN Wenli, et al. Construction of flexible amine-linked covalent organic frameworks by catalysis and reduction of formic acid via the Eschweiler-Clarke reaction[J]. Angewandte Chemie International Edition, 2021, 60(22): 12396-12405. |
| [19] | MOKHTARI Nazanin, DINARI Mohammad. Developing novel amine-linked covalent organic frameworks towards reversible iodine capture[J]. Separation and Purification Technology, 2022, 301: 121948. |
| [20] | GUO Xinghua, LI Yang, ZHANG Meicheng, et al. Colyliform crystalline 2D covalent organic frameworks (COFs) with quasi-3D topologies for rapid I2 adsorption[J]. Angewandte Chemie International Edition, 2020, 59(50): 22697-22705. |
| [21] | CHANG Jianhong, LI Hui, ZHAO Jie, et al. Tetrathiafulvalene-based covalent organic frameworks for ultrahigh iodine capture[J]. Chemical Science, 2021, 12(24): 8452-8457. |
| [22] | WANG Jianlong, ZHUANG Shuting. Covalent organic frameworks (COFs) for environmental applications[J]. Coordination Chemistry Reviews, 2019, 400: 213046. |
| [23] | YIN Zhijian, XU Shunqi, ZHAN Tianguang, et al. Ultrahigh volatile iodine uptake by hollow microspheres formed from a heteropore covalent organic framework[J]. Chemical Communications, 2017, 53(53): 7266-7269. |
| [24] | LI Jinheng, ZHANG Huixin, ZHANG Lingyan, et al. Two-dimensional covalent-organic frameworks for ultrahigh iodine capture[J]. Journal of Materials Chemistry A, 2020, 8(19): 9523-9527. |
| [25] | XU Yulong, WU Chengxin, CHU Ning, et al. Design and synthesis of stable sp2-carbon-linked two-dimensional conjugated covalent organic framework for efficient capture of iodine[J]. Separation and Purification Technology, 2023, 307: 122776. |
| [26] | YANG Yixuan, TANG Xihao, WU Jialin, et al. Transformation of a hydrazone-linked covalent organic framework into a highly stable hydrazide-linked one[J]. ACS Applied Polymer Materials, 2022, 4(7): 4624-4631. |
| [27] | YANG Yuling, XIONG Xiaohong, FAN Yaling, et al. Insight into volatile iodine uptake properties of covalent organic frameworks with different conjugated structures[J]. Journal of Solid State Chemistry, 2019, 279: 120979. |
| [28] | ZHOU Mingan, LI Zhongping, MUNYENTWALI Alexis, et al. Highly conjugated two-dimensional covalent organic frameworks for efficient iodine uptake[J]. Chemistry-An Asian Journal, 2022, 17(15): e202200358. |
| [29] | ZHAI Lipeng, HAN Diandian, DONG Jinhuan, et al. Constructing stable and porous covalent organic frameworks for efficient iodine vapor capture[J]. Macromolecular Rapid Communications, 2021, 42(13): 2100032. |
| [30] | ZHANG Shuyuan, TANG Xihao, YAN Yilun, et al. Facile and site-selective synthesis of an amine-functionalized covalent organic framework[J]. ACS Macro Letters, 2021, 10(12): 1590-1596. |
| [31] | ZHANG Lingyan, LI Jinheng, ZHANG Huixin, et al. High iodine uptake in two-dimensional covalent organic frameworks[J]. Chemical Communications, 2021, 57(45): 5558-5561. |
| [32] | JIANG Bo, QI Yue, LI Xiaofeng, et al. Efficient gaseous iodine capture enhanced by charge-induced effect of covalent organic frameworks with dense tertiary-amine nodes[J]. Chinese Chemical Letters, 2022, 33(7): 3556-3560. |
| [33] | PAN Xiaowei, QIN Xihao, ZHANG Qiheng, et al. N- and S-rich covalent organic framework for highly efficient removal of indigo carmine and reversible iodine capture[J]. Microporous and Mesoporous Materials, 2020, 296: 109990. |
| [34] | YAN Xi, YANG Yixin, LI Guorong, et al. Thiophene-based covalent organic frameworks for highly efficient iodine capture[J]. Chinese Chemical Letters, 2023, 34(1): 107201. |
| [35] | ZHAI Lipeng, SUN Shuzhuan, CHEN Pengjing, et al. Constructing cationic covalent organic frameworks by a post-function process for an exceptional iodine capture via electrostatic interactions[J]. Materials Chemistry Frontiers, 2021, 5(14): 5463-5470. |
| [36] | ZHAO Yuxiang, LIU Xin, LI Yongpeng, et al. Ultra-stable fluorescent 2D covalent organic framework for rapid adsorption and selective detection of radioiodine[J]. Microporous and Mesoporous Materials, 2021, 319: 111046. |
| [37] | ZOU Junyan, WEN Dan, ZHAO Yu. Flexible three-dimensional diacetylene functionalized covalent organic frameworks for efficient iodine capture[J]. Dalton Transactions, 2023, 52(3): 731-736. |
| [38] | LI Yuan, LI Xiaoguang, LI Jufeng, et al. Phosphine-based covalent organic framework for highly efficient iodine capture[J]. Microporous and Mesoporous Materials, 2021, 325: 111351. |
| [39] | WANG Guangbo, XIE Kehui, ZHU Fucheng, et al. Construction of tetrathiafulvalene-based covalent organic frameworks for superior iodine capture[J]. Chemical Research in Chinese Universities, 2022, 38(2): 409-414. |
| [40] | XIE Yaqiang, PAN Tingting, LEI Qiong, et al. Ionic functionalization of multivariate covalent organic frameworks to achieve an exceptionally high iodine-capture capacity[J]. Angewandte Chemie International Edition, 2021, 60(41): 22432-22440. |
| [41] | ZHU Dongyang, ZHU Yifan, YAN Qianqian, et al. Pure crystalline covalent organic framework aerogels[J]. Chemistry of Materials, 2021, 33(11): 4216-4224. |
| [42] | WANG Lingling, XU Changwen, ZHANG Weiqi, et al. Electrocleavage synthesis of solution-processed, imine-linked, and crystalline covalent organic framework thin films[J]. Journal of the American Chemical Society, 2022, 144(20): 8961-8968. |
| [43] | LI Yongqiang, LI Yarong, ZHAO Qinghua, et al. Cotton fiber functionalized with 2D covalent organic frameworks for iodine capture[J]. Cellulose, 2020, 27(3): 1517-1529. |
| [44] | LI Li, CHEN Run, LI Yarong, et al. Novel cotton fiber-covalent organic framework hybrid monolith for reversible capture of iodine[J]. Cellulose, 2020, 27(10): 5879-5892. |
| [1] | 高姣姣, 颜诗宇, 杨太顺, 谢尚志, 杨艳娟, 徐晶. 不同晶型Al2O3负载Ru催化剂对聚乙烯氢解的影响[J]. 化工进展, 2025, 44(7): 3917-3927. |
| [2] | 任鹏锟, 仲兆平, 张小霓, 杨宇轩, 冉真真. 污泥-木屑基活性炭的制备及其对苯系VOCs的吸附性能[J]. 化工进展, 2025, 44(6): 3031-3040. |
| [3] | 李佩燚, 孙波龙, 刘瑞岩, 周歆尧, 刘瑞林, 胡园园, 徐功涛, 李新平. 海藻酸钠/二氧化钛复合多孔材料的制备及油水分离应用[J]. 化工进展, 2025, 44(6): 3053-3061. |
| [4] | 陈崇明, 李栋, 郁金星, 车凯, 何伟, 陈传敏. 钛基MXene气凝胶对脱硫废水中Hg(Ⅱ)的吸附性能[J]. 化工进展, 2025, 44(6): 3112-3120. |
| [5] | 韩沛, 李金键, 柯天, 张治国, 鲍宗必, 任其龙, 杨启炜. 新型多孔材料吸附分离六氟化硫/氮气研究进展[J]. 化工进展, 2025, 44(6): 3592-3617. |
| [6] | 罗伊雯, 赵亮, 张宇豪, 刘东阳, 高金森, 徐春明. 轻烃分离材料和机理的研究进展[J]. 化工进展, 2025, 44(5): 2938-2954. |
| [7] | 王沛淦, 李乐利, 谢颂专, 宋冰冰, 孔巧平, 刘改革, 麻微微, 施雪卿. 污泥基FeCa-ALE复合材料对磷酸盐的吸附机制[J]. 化工进展, 2025, 44(4): 2365-2373. |
| [8] | 仇玉静, 刘畅, 罗国华, 董森, 李建华. 脱除苯中二硫化碳吸附剂的制备及其吸附性能[J]. 化工进展, 2025, 44(4): 2374-2382. |
| [9] | 赵凯强, 刘浩, 戴振华, 孙振峰, 杨超, 马诚. 植物油制备高硫聚合物的研究进展[J]. 化工进展, 2025, 44(3): 1454-1465. |
| [10] | 张琪, 王涛, 张雪冰, 李为真, 程萌, 张魁, 吕毅军, 门卓武. 合成气/CO2转化制高级醇Fe基催化剂研究进展[J]. 化工进展, 2025, 44(3): 1323-1337. |
| [11] | 陈宇航, 李巧艳, 梁美生, 宋天远, 汪玥, 李思萌, 周宇璇. Sn掺杂Cu/CeZrO2/γ-Al2O3对三效催化(TWC)反应的作用:提高低温活性和抗硫性[J]. 化工进展, 2025, 44(3): 1368-1377. |
| [12] | 张伊, 么秋香, 孙鸣. 天然斜发沸石基方沸石及其改性对Pb2+的吸附性能[J]. 化工进展, 2025, 44(3): 1726-1738. |
| [13] | 李琢宇, 余美琪, 陈孝彦, 胡若晖, 王庆宏, 陈春茂, 詹亚力. 炼油废催化剂吸附去除水中硝基苯的特性与机制[J]. 化工进展, 2025, 44(2): 1076-1087. |
| [14] | 张琪, 王涛, 张雪冰, 李为真, 冯波, 蒋智慧, 吕毅军, 门卓武. 合成气制高级醇Co基催化剂研究进展[J]. 化工进展, 2025, 44(2): 773-787. |
| [15] | 张爱京, 王桢钰, 肖宁宁, 宋艳娜, 李军, 冯江涛, 延卫. 新型汞离子吸附材料研究进展[J]. 化工进展, 2025, 44(2): 899-913. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |