化工进展 ›› 2025, Vol. 44 ›› Issue (3): 1368-1377.DOI: 10.16085/j.issn.1000-6613.2024-0389
陈宇航(
), 李巧艳, 梁美生(
), 宋天远, 汪玥, 李思萌, 周宇璇
收稿日期:2024-03-08
修回日期:2024-05-02
出版日期:2025-03-25
发布日期:2025-04-16
通讯作者:
梁美生
作者简介:陈宇航(1999—),男,硕士研究生,研究方向为大气污染控制。E-mail:2249033886@qq.com。
基金资助:
CHEN Yuhang(
), LI Qiaoyan, LIANG Meisheng(
), SONG Tianyuan, WANG Yue, LI Simeng, ZHOU Yuxuan
Received:2024-03-08
Revised:2024-05-02
Online:2025-03-25
Published:2025-04-16
Contact:
LIANG Meisheng
摘要:
三效催化剂的高活性和耐用性是满足日益严格的汽车尾气排放标准的关键因素。然而,尾气中的二氧化硫容易被三效催化剂吸附,导致催化剂失活。本文采用浸渍法制备了Cu/CeZrO2/γ-Al2O3和Cu/CeZrSnO2/γ-Al2O3催化剂,并对其进行了三效催化性能和SO2抗性测试。结果表明,掺杂Sn的催化剂展现出更高的三效催化性能和二氧化硫抗性。结合XRD、H2-TPR、O2-TPD、XPS、SO2-TPD和TG表征证实,Sn掺杂诱导产生了丰富的Ce3+和更多的氧空位,并加速了晶格氧迁移,使得大量表面吸附氧参与了催化反应。此外,Sn的掺杂有助于产生不饱和位点,可以接受来自Cu+的电子转移,从而促进了Cu2+的形成。并且Cu2+作为三效催化反应的活性位点,它和SO2接触进行吸附时具有较高的吸附能,有效减弱了SO2在Cu/CeZrSnO2/γ-Al2O3上的吸附,在提高三效催化剂催化效率的同时,进一步保护了活性组分免受硫化作用,使其抗性提高。
中图分类号:
陈宇航, 李巧艳, 梁美生, 宋天远, 汪玥, 李思萌, 周宇璇. Sn掺杂Cu/CeZrO2/γ-Al2O3对三效催化(TWC)反应的作用:提高低温活性和抗硫性[J]. 化工进展, 2025, 44(3): 1368-1377.
CHEN Yuhang, LI Qiaoyan, LIANG Meisheng, SONG Tianyuan, WANG Yue, LI Simeng, ZHOU Yuxuan. Role of the Sn dopant on Cu/CeZrO2/γ-Al2O3 three-way catalyst: Enhancement of low-temperature activity and sulfur resistance[J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1368-1377.
图3 不同浓度的SO2对Cu/CeZrSnO2/γ-Al2O3和Cu/CeZrO2/γ-Al2O3催化剂催化性能的影响(GHSV=40000h-1、[CO]=10000mL/m3、[NO]=1000mL/m3、[HC]=3000mL/m3、[SO2]=50mL/m3或100mL/m3、[O2]=2%(体积分数)、N2为平衡气体)
| 样品 | XRD | ICP-OES(质量分数)/% | ||||
|---|---|---|---|---|---|---|
| 晶胞参数/nm | 晶粒尺寸/nm | Cu | Ce | Zr | Sn | |
| Cu/CeZrO2/γ-Al2O3 | 0.54022 | 73 | 1.02 | 12.24 | 2.14 | — |
| Cu/CeZrSnO2/γ-Al2O3 | 0.53886 | 61 | 1 | 11.02 | 1.88 | 0.98 |
表1 Cu/CeZrSnO2/γ-Al2O3和Cu/CeZrO2/γ-Al2O3催化剂的XRD和ICP-OES结果
| 样品 | XRD | ICP-OES(质量分数)/% | ||||
|---|---|---|---|---|---|---|
| 晶胞参数/nm | 晶粒尺寸/nm | Cu | Ce | Zr | Sn | |
| Cu/CeZrO2/γ-Al2O3 | 0.54022 | 73 | 1.02 | 12.24 | 2.14 | — |
| Cu/CeZrSnO2/γ-Al2O3 | 0.53886 | 61 | 1 | 11.02 | 1.88 | 0.98 |
| 样品 | 相对含量/% | ||
|---|---|---|---|
| Cu2+/Cu1++Cu2+ | Ce3+/Ce3++Ce4+ | O′/O+O′+O″ | |
| Cu/CeZrO2/γ-Al2O3 | 70.73 | 29.23 | 55.15 |
| Cu/CeZrSnO2/γ-Al2O3 | 78.01 | 30.69 | 63.99 |
表2 XPS拟合结果
| 样品 | 相对含量/% | ||
|---|---|---|---|
| Cu2+/Cu1++Cu2+ | Ce3+/Ce3++Ce4+ | O′/O+O′+O″ | |
| Cu/CeZrO2/γ-Al2O3 | 70.73 | 29.23 | 55.15 |
| Cu/CeZrSnO2/γ-Al2O3 | 78.01 | 30.69 | 63.99 |
| 1 | ROOD Shawn, ESLAVA Salvador, MANIGRASSO Alexis, et al. Recent advances in gasoline three-way catalyst formulation: A review[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2020, 234(4): 936-949. |
| 2 | ZHAO Han, BIAN Longchun, DU Junchen, et al. Moderating the interaction among Pd, CeO2, and Al2O3 for improved three-way catalysts[J]. Dalton Transactions, 2022, 51(48): 18562-18571. |
| 3 | ZHOU Xuan, HAN Kai, LI Kai, et al. Dual-site single-atom catalysts with high performance for three-way catalysis[J]. Advanced Materials, 2022, 34(20): 2201859. |
| 4 | REN Shouxian, SCHMIEG Steven J, KOCH Calvin K, et al. Investigation of Ag-based low temperature NO x adsorbers[J]. Catalysis Today, 2015, 258: 378-385. |
| 5 | GUO Jiaxiu, SHI Zhonghua, WU Dongdong, et al. Effects of Nd on the properties of CeO2-ZrO2 and catalytic activities of three-way catalysts with low Pt and Rh[J]. Journal of Alloys and Compounds, 2015, 621: 104-115. |
| 6 | WILBURN Monique Shauntá, EPLING William S. Formation and decomposition of sulfite and sulfate species on Pt/Pd catalysts: An SO2 oxidation and sulfur exposure study[J]. ACS Catalysis, 2019, 9(1): 640-648. |
| 7 | VAN EVERBROECK Tim, WU Jianxiong, Daniel ARENAS-ESTEBAN, et al. ZnAl layered double hydroxide based catalysts (with Cu, Mn, Ti) used as noble metal-free three-way catalysts[J]. Applied Clay Science, 2022, 217: 106390. |
| 8 | HIRAKAWA Taiki, SHIMOKAWA Yushi, MIYAHARA Yuma, et al. Activity-composition relationships of Fe-Ni-Cu ternary nanoparticles supported on Al2O3 as three-way catalysts for NO reduction[J]. ACS Applied Nano Materials, 2021, 4(10): 10613-10622. |
| 9 | CHEN Deli, SU Ziang, SI Wenzhe, et al. Boosting CO catalytic oxidation performance via highly dispersed copper atomic clusters: Regulated electron interaction and reaction pathways[J]. Environmental Science & Technology, 2023, 57(7): 2928-2938. |
| 10 | JIA Chunmiao, GAO Jiajian, HUANG Kuniadi Wandy, et al. Selective catalytic reduction of NO x in marine engine exhaust gas over supported transition metal oxide catalysts[J]. Chemical Engineering Journal, 2021, 414: 128794. |
| 11 | 张会, 王星雨, 赵钰明, 等. 铈锆基稀土催化剂在汽车尾气净化用三效催化剂中的研究进展[J]. 当代化工, 2022, 51(9): 2157-2161. |
| ZHANG Hui, WANG Xingyu, ZHAO Yuming, et al. Research progress of cerium zirconium based rare earth catalyst in three-way catalyst for automobile exhaust purification[J]. Contemporary Chemical Industry, 2022, 51(9): 2157-2161. | |
| 12 | 金向亮, 孟明. Ce x Zr1- x O2固溶体三效催化剂研究进展[J]. 化学工业与工程, 2007, 24(4): 345-349. |
| JIN Xiangliang, MENG Ming. Advances in three-way catalysts containing Ce x Zr1- x O2 solid solution[J]. Chemical Industry and Engineering, 2007, 24(4): 345-349. | |
| 13 | LI Guangfeng, WANG Qiuyan, ZHAO Bo, et al. A new insight into the role of transition metals doping with CeO2-ZrO2 and its application in Pd-only three-way catalysts for automotive emission control[J]. Fuel, 2012, 92(1): 360-368. |
| 14 | MESILOV Vitaly, DAHLIN Sandra, BERGMAN Susanna L, et al. Regeneration of sulfur-poisoned Cu-SSZ-13 catalysts: Copper speciation and catalytic performance evaluation[J]. Applied Catalysis B: Environmental, 2021, 299: 120626. |
| 15 | HE Jiebing, DENG Jiang, ZHANG Jin, et al. SO2-resistant NO x reduction over Cu-SAPO-34 catalysts via creating sulfur-phobic Cu sites[J]. Catalysis Science & Technology, 2023, 13(8): 2480-2492. |
| 16 | HAMMERSHØI Peter S, VENNESTRØM Peter N R, FALSIG Hanne, et al. Importance of the Cu oxidation state for the SO2 - poisoning of a Cu-SAPO-34 catalyst in the NH3-SCR reaction[J]. Applied Catalysis B: Environmental, 2018, 236: 377-383. |
| 17 | TAN Wei, WANG Jiaming, LI Lulu, et al. Gas phase sulfation of ceria-zirconia solid solutions for generating highly efficient and SO2 resistant NH3-SCR catalysts for NO removal[J]. Journal of Hazardous Materials, 2020, 388: 121729. |
| 18 | CHANG Huazhen, LI Junhua, CHEN Xiaoyin, et al. Effect of Sn on MnO x -CeO2 catalyst for SCR of NO x by ammonia: Enhancement of activity and remarkable resistance to SO2 [J]. Catalysis Communications, 2012, 27: 54-57. |
| 19 | YU Ming’e, LI Caiting, ZENG Guangming, et al. The selective catalytic reduction of NO x with NH3 over a novel Ce-Sn-Ti mixed oxides catalyst: Promotional effect of SnO2 [J]. Applied Surface Science, 2015, 342: 174-182. |
| 20 | LI Xiaoliang, LI Yonghong, DENG Shanshan, et al. A Ce-Sn-O x catalyst for the selective catalytic reduction of NO x with NH3 [J]. Catalysis Communications, 2013, 40: 47-50. |
| 21 | DONG Qiang, YIN Shu, GUO Chongshen, et al. Ce0.5Zr0.4Sn0.1O2/Al2O3 catalysts with enhanced oxygen storage capacity and high CO oxidation activity[J]. Catalysis Science & Technology, 2012, 2(12): 2521-2524. |
| 22 | YAO Xiaojiang, CHEN Li, CAO Jun, et al. Morphology and crystal-plane effects of CeO2 on TiO2/CeO2 catalysts during NH3-SCR reaction[J]. Industrial & Engineering Chemistry Research, 2018, 57(37): 12407-12419. |
| 23 | REDDY Benjaram M, LAKSHMANAN Pandian, KHAN Ataullah, et al. Structural characterization of CeO2-ZrO2/TiO2 and V2O5/CeO2-ZrO2/TiO2 mixed oxide catalysts by XRD, Raman spectroscopy, HREM, and other techniques[J]. The Journal of Physical Chemistry B, 2005, 109(5): 1781-1787. |
| 24 | DENG Changshun, QIAN Junning, YU Chuxuan, et al. Influences of doping and thermal stability on the catalytic performance of CuO/Ce20M1O x (M = Zr, Cr, Mn, Fe, Co, Sn) catalysts for NO reduction by CO[J]. RSC Advances, 2016, 6(114): 113630-113647. |
| 25 | ZHANG Hailong, WANG Jianli, ZHANG Yanhua, et al. A study on H2-TPR of Pt/Ce0.27Zr0.73O2 and Pt/Ce0.27Zr0.70La0.03O x for soot oxidation[J]. Applied Surface Science, 2016, 377: 48-55. |
| 26 | CHEN Dingkai, HE Dedong, LU Jichang, et al. Investigation of the role of surface lattice oxygen and bulk lattice oxygen migration of cerium-based oxygen carriers: XPS and designed H2-TPR characterization[J]. Applied Catalysis B: Environmental, 2017, 218: 249-259. |
| 27 | 张彤, 李巧艳, 王小燕, 等. Pr掺杂Ni~(Ce-Zr)O2/Al2O3用于三效催化(TWC)反应: 缺陷性质-活性关系[J]. 中国环境科学, 2023, 43(10): 5157-5169. |
| ZHANG Tong, LI Qiaoyan, WANG Xiaoyan, et al. Pr-doped Ni-(Ce-Zr)O2/Al2O3 for TWC reaction: Defect property-activity relationship[J]. China Environmental Science, 2023, 43(10): 5157-5169. | |
| 28 | ZHENG Yanfei, LIU Qingling, SHAN Cangpeng, et al. Defective ultrafine MnO x nanoparticles confined within a carbon matrix for low-temperature oxidation of volatile organic compounds[J]. Environmental Science & Technology, 2021, 55(8): 5403-5411. |
| 29 | SUDARSANAM Putla, HILLARY Brendan, AMIN Mohamad Hassan, et al. Structure-activity relationships of nanoscale MnO x /CeO2 heterostructured catalysts for selective oxidation of amines under eco-friendly conditions[J]. Applied Catalysis B: Environmental, 2016, 185: 213-224. |
| 30 | YAO Xiaojiang, TANG Changjin, JI Zeyang, et al. Investigation of the physicochemical properties and catalytic activities of Ce0.67M0.33O2 (M = Zr4+, Ti4+, Sn4+) solid solutions for NO removal by CO[J]. Catalysis Science & Technology, 2013, 3(3): 688-698. |
| 31 | AUXILIA Francis Malar, ISHIHARA Shinsuke, MANDAL Saikat, et al. Low-temperature remediation of NO catalyzed by interleaved CuO nanoplates[J]. Advanced Materials, 2014, 26(26): 4481-4485. |
| 32 | HE Hong, DAI Hongxing, Chak Tong AU, et al. Defective structure, oxygen mobility, oxygen storage capacity, and redox properties of RE-based (RE = Ce, Pr) solid solutions[J]. Catalysis Today, 2004, 90(3/4): 245-254. |
| 33 | ZHANG Zhen, LIU Jing, WANG Zhen, et al. Bimetallic Fe-Cu-based metal-organic frameworks as efficient adsorbents for gaseous elemental mercury removal[J]. Industrial & Engineering Chemistry Research, 2021, 60(1): 781-789. |
| 34 | ZENG Yiqing, Kok-Giap HAW, WANG Zhigang, et al. Double redox process to synthesize CuO-CeO2 catalysts with strong Cu-Ce interaction for efficient toluene oxidation[J]. Journal of Hazardous Materials, 2021, 404: 124088. |
| 35 | SONG Binghong, LI Caiting, DU Xueyu, et al. Superior performance of Cu-Ce binary oxides for toluene catalytic oxidation: Cu-Ce synergistic effect and reaction pathways[J]. Fuel, 2021, 306: 121654. |
| 36 | SIERRA-PEREIRA Cristiane Alves, URQUIETA-GONZÁLEZ Ernesto Antonio. Reduction of NO with CO on CuO or Fe2O3 catalysts supported on TiO2 in the presence of O2, SO2 and water steam[J]. Fuel, 2014, 118: 137-147. |
| 37 | DEVAIAH Damma, TSUZUKI Takuya, BONINGARI Thirupathi, et al. Ce0.80M0.12Sn0.08O2- δ (M = Hf, Zr, Pr, and La) ternary oxide solid solutions with superior properties for CO oxidation[J]. RSC Advances, 2015, 5(38): 30275-30285. |
| 38 | DENG Changshun, QIAN Xiaofeng, LU Minping, et al. CO oxidation and NO reduction by CO over Sn4+ doped CeO2 catalysts: Determination of active sites as well as commonness and differences[J]. Applied Catalysis B: Environment and Energy, 2023, 333: 122791. |
| 39 | 宋天远, 梁美生, 李巧艳, 等. Sn调变Cu电子结构改善Cu/CeZrO2抗硫性能[J]. 太原理工大学学报, 2023, 54(1): 39-47. |
| SONG Tianyuan, LIANG Meisheng, LI Qiaoyan, et al. Sn-doping modulated Cu electronic structure to improves the sulfur resistance of Cu/CeZrO2 [J]. Journal of Taiyuan University of Technology, 2023, 54(1): 39-47. | |
| 40 | KANG Lin, HAN Lupeng, WANG Penglu, et al. SO2-tolerant NO x reduction by marvelously suppressing SO2 adsorption over Fe δ Ce1- δ VO4 catalysts[J]. Environmental Science & Technology, 2020, 54(21): 14066-14075. |
| 41 | ZHANG Xiaopeng, LI Zhuofeng, ZHAO Jijun, et al. Mechanism of Ce promoting SO2 resistance of MnO x /γ-Al2O3: An experimental and DFT study[J]. Korean Journal of Chemical Engineering, 2017, 34(7): 2065-2071. |
| 42 | MONTINI Tiziano, MELCHIONNA Michele, MONAI Matteo, et al. Fundamentals and catalytic applications of CeO2-based materials[J]. Chemical Reviews, 2016, 116(10): 5987-6041. |
| [1] | 陶金泉, 贾亦静, 白天瑜, 姚荣鹏, 黄文斌, 崔岩, 周亚松, 魏强. Silicalite-1分子筛的低成本合成及其MTP催化性能[J]. 化工进展, 2025, 44(3): 1550-1558. |
| [2] | 张伊, 么秋香, 孙鸣. 天然斜发沸石基方沸石及其改性对Pb2+的吸附性能[J]. 化工进展, 2025, 44(3): 1726-1738. |
| [3] | 张馨儿, 裴刘军, 周雨蝶, 靳凯丽, 王际平. 基于TiO2的光催化剂利用太阳能裂解水制氢研究进展[J]. 化工进展, 2025, 44(3): 1298-1308. |
| [4] | 刘俊杰, 吴建民, 孙启文, 王建成, 孙燕. 茂金属催化线性α-烯烃聚合获取高分子量产物研究进展[J]. 化工进展, 2025, 44(3): 1309-1322. |
| [5] | 朱国瑜, 葛棋, 付名利. 甲醇重整制氢催化剂耐久性评价和寿命预测方法[J]. 化工进展, 2025, 44(3): 1338-1346. |
| [6] | 左骥, 罗莉, 谢永锴, 陈文尧, 钱刚, 周兴贵, 段学志. 甲醇无氧脱氢制甲醛Cu催化剂的粒径效应[J]. 化工进展, 2025, 44(3): 1347-1354. |
| [7] | 毕文涛, 王学林, 曲炜, 王从新, 田志坚. Mg改性对低铂载量Pt/ZSM-22烷烃加氢异构性能的影响[J]. 化工进展, 2025, 44(3): 1355-1367. |
| [8] | 张琪, 王涛, 张雪冰, 李为真, 程萌, 张魁, 吕毅军, 门卓武. 合成气/CO2转化制高级醇Fe基催化剂研究进展[J]. 化工进展, 2025, 44(3): 1323-1337. |
| [9] | 张琪, 王涛, 张雪冰, 李为真, 冯波, 蒋智慧, 吕毅军, 门卓武. 合成气制高级醇Co基催化剂研究进展[J]. 化工进展, 2025, 44(2): 773-787. |
| [10] | 贾亦静, 陶金泉, 黄文斌, 刘昊然, 李蓉蓉, 姚荣鹏, 白天瑜, 魏强, 周亚松. CO2加氢制低碳烯烃Fe基催化剂研究进展[J]. 化工进展, 2025, 44(2): 820-833. |
| [11] | 廖旭, 王玮, 黄文婷, 熊文涛, 王泽宇, 覃佐东, 林金清. 生物质基催化剂在二氧化碳转化为环状碳酸酯中的研究进展[J]. 化工进展, 2025, 44(2): 834-846. |
| [12] | 李章良, 杨月珠, 伍传田, 吕源财. 活性炭纤维毡负载N-TiO2/MoS2/N-TiO2固定化漆酶降解双酚A[J]. 化工进展, 2025, 44(2): 887-898. |
| [13] | 张爱京, 王桢钰, 肖宁宁, 宋艳娜, 李军, 冯江涛, 延卫. 新型汞离子吸附材料研究进展[J]. 化工进展, 2025, 44(2): 899-913. |
| [14] | 赵鹬, 石翎, 张栋强, 李宁. 沉淀法合成氧化镁吸附剂及其对氟化物的吸附机理[J]. 化工进展, 2025, 44(2): 971-981. |
| [15] | 李琢宇, 余美琪, 陈孝彦, 胡若晖, 王庆宏, 陈春茂, 詹亚力. 炼油废催化剂吸附去除水中硝基苯的特性与机制[J]. 化工进展, 2025, 44(2): 1076-1087. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |