化工进展 ›› 2025, Vol. 44 ›› Issue (2): 887-898.DOI: 10.16085/j.issn.1000-6613.2024-0248
李章良1,3,4(), 杨月珠1,3,4, 伍传田1,2, 吕源财2
收稿日期:
2024-02-01
修回日期:
2024-05-24
出版日期:
2025-02-25
发布日期:
2025-03-10
通讯作者:
李章良
作者简介:
李章良(1975—),男,硕士,教授,研究方向为污水处理与资源化。E-mail:ptulizhangliang@126.com。
基金资助:
LI Zhangliang1,3,4(), YANG Yuezhu1,3,4, WU Chuantian1,2, LYU Yuancai2
Received:
2024-02-01
Revised:
2024-05-24
Online:
2025-02-25
Published:
2025-03-10
Contact:
LI Zhangliang
摘要:
以活性炭纤维毡(ACFF)为基底,采用水热法与超声法相结合方式制备了活性炭纤维毡负载N-TiO2/MoS2/N-TiO2光催化剂(NT/MS/NT/ACFF),并以此作为载体,通过共价结合法制得NT/MS/NT/ACFF固定化漆酶。利用扫描电子显微镜、X射线衍射仪、比表面积分析、拉曼光谱、紫外-可见分光光度计和傅里叶变换红外光谱等手段对样品的形貌、微观结构进行了表征,研究了不同体系对双酚A(BPA)的降解效果、反应动力学及矿化率,考察了催化剂的重复使用性能。结果表明,与其他体系相比,可见光下NT/MS/NT/ACFF固定化漆酶对BPA降解率高达82.5%,表观速率常数kobs为0.00764min-1,矿化率可达64.5%。NT/MS/NT/ACFF固定化漆酶具有良好的光催化、酶催化的活性及稳定性,循环使用4次后BPA降解率仍可达到69.4%。通过气相色谱-质谱(GC-MS)结果分析,推断BPA被NT/MS/NT/ACFF固定化漆酶的催化降解过程包括断裂重组、氧化分解、开环等反应。
中图分类号:
李章良, 杨月珠, 伍传田, 吕源财. 活性炭纤维毡负载N-TiO2/MoS2/N-TiO2固定化漆酶降解双酚A[J]. 化工进展, 2025, 44(2): 887-898.
LI Zhangliang, YANG Yuezhu, WU Chuantian, LYU Yuancai. Degradation of bisphenol A by N-TiO2/MoS2/N-TiO2 immobilized laccase on activated carbon fiber felt[J]. Chemical Industry and Engineering Progress, 2025, 44(2): 887-898.
样品 | 比表面积/m2·g-1 | 总孔容/cm3·g-1 | 平均孔径/nm |
---|---|---|---|
ACFF | 1084.73 | 0.57 | 2.89 |
NT/MS/NT/ACFF | 443.98 | 0.24 | 3.59 |
表1 ACFF、NT/MS/NT/ACFF的比表面积、总孔容及平均孔径
样品 | 比表面积/m2·g-1 | 总孔容/cm3·g-1 | 平均孔径/nm |
---|---|---|---|
ACFF | 1084.73 | 0.57 | 2.89 |
NT/MS/NT/ACFF | 443.98 | 0.24 | 3.59 |
不同体系 | 拟一级动力学拟合方程 | kobs/min-1 | R2 |
---|---|---|---|
固定化灭活漆酶 | y = 0.000162x | 0.000162 | 0.8731 |
可见光下固定化灭活漆酶 | y = 0.00176x | 0.00176 | 0.9526 |
固定化漆酶 | y = 0.0022x | 0.0022 | 0.9493 |
可见光下固定化漆酶 | y = 0.00764x | 0.00764 | 0.9858 |
表2 不同体系对BPA降解的拟一级动力学拟合参数
不同体系 | 拟一级动力学拟合方程 | kobs/min-1 | R2 |
---|---|---|---|
固定化灭活漆酶 | y = 0.000162x | 0.000162 | 0.8731 |
可见光下固定化灭活漆酶 | y = 0.00176x | 0.00176 | 0.9526 |
固定化漆酶 | y = 0.0022x | 0.0022 | 0.9493 |
可见光下固定化漆酶 | y = 0.00764x | 0.00764 | 0.9858 |
序号 | 停留时间/min | 化合物 | 化学式 | 质核比(m/z) |
---|---|---|---|---|
1 | 29.083 | 双酚A | C15H16O2 | 228 |
2 | 10.708 | 2,4-二叔丁基苯酚 | C14H22O | 206 |
3 | 9.133 | 3-异丙基苯甲酸 | C10H12O2 | 164 |
4 | 7.258 | 对苯甲酸 | C8H8O2 | 136 |
5 | 10.308 | 2,5-二甲基对苯醌 | C8H8O2 | 136 |
6 | 7.808 | 丁烯二酸 | C5H6O4 | 130 |
表3 GC-MS测定的BPA中间产物
序号 | 停留时间/min | 化合物 | 化学式 | 质核比(m/z) |
---|---|---|---|---|
1 | 29.083 | 双酚A | C15H16O2 | 228 |
2 | 10.708 | 2,4-二叔丁基苯酚 | C14H22O | 206 |
3 | 9.133 | 3-异丙基苯甲酸 | C10H12O2 | 164 |
4 | 7.258 | 对苯甲酸 | C8H8O2 | 136 |
5 | 10.308 | 2,5-二甲基对苯醌 | C8H8O2 | 136 |
6 | 7.808 | 丁烯二酸 | C5H6O4 | 130 |
1 | CORRALES Jone, KRISTOFCO Lauren A, Baylor STEELE W, et al. Global assessment of bisphenol A in the environment: Review and analysis of its occurrence and bioaccumulation[J]. Dose-response, 2015, 13(3): 1559325815598308. |
2 | 李熠明, 焦昭杰, 张贤明, 等. 典型内分泌干扰物双酚A废水处理研究进展[J]. 环境化学, 2023, 42(11): 4019-4031. |
LI Yiming, JIAO Zhaojie, ZHANG Xianming, et al. Progress in the treatment technologies toward endocrine disrupter bisphenol A[J]. Environmental Chemistry, 2023, 42(11): 4019-4031. | |
3 | BHATNAGAR Amit, ANASTOPOULOS Ioannis. Adsorptive removal of bisphenol A (BPA) from aqueous solution: A review[J]. Chemosphere, 2017, 168: 885-902. |
4 | GASSARA Fatma, BRAR Satinder K, VERMA M, et al. Bisphenol A degradation in water by ligninolytic enzymes[J]. Chemosphere, 2013, 92(10): 1356-1360. |
5 | WU Enhui, LI Yuexian, HUANG Qing, et al. Laccase immobilization on amino-functionalized magnetic metal organic framework for phenolic compound removal[J]. Chemosphere, 2019, 233: 327-335. |
6 | BAYRAMOGLU Gulay, KARAGOZ Bunyamin, Yakup ARICA M. Cyclic-carbonate functionalized polymer brushes on polymeric microspheres: Immobilized laccase for degradation of endocrine disturbing compounds[J]. Journal of Industrial and Engineering Chemistry, 2018, 60: 407-417. |
7 | ANSARI Shakeel Ahmed, HUSAIN Qayyum. Potential applications of enzymes immobilized on/in nano materials: A review[J]. Biotechnology Advances, 2012, 30(3): 512-523. |
8 | BONINGARI Thirupathi, INTURI Siva Nagi Reddy, SUIDAN Makram, et al. Novel continuous single-step synthesis of nitrogen-modified TiO2 by flame spray pyrolysis for photocatalytic degradation of phenol in visible light[J]. Journal of Materials Science & Technology, 2018, 34(9): 1494-1502. |
9 | HU Xiaolin, LU Shucao, TIAN Jian, et al. The selective deposition of MoS2 nanosheets onto (101) facets of TiO2 nanosheets with exposed (001) facets and their enhanced photocatalytic H2 production[J]. Applied Catalysis B: Environmental, 2019, 241: 329-337. |
10 | ZHAO Haitao, MU Xueliang, ZHENG Chenghang, et al. Structural defects in 2D MoS2 nanosheets and their roles in the adsorption of airborne elemental mercury[J]. Journal of Hazardous Materials, 2019, 366: 240-249. |
11 | LI Min, LU Bin, KE Qinfei, et al. Synergetic effect between adsorption and photodegradation on nanostructured TiO2/activated carbon fiber felt porous composites for toluene removal[J]. Journal of Hazardous Materials, 2017, 333: 88-98. |
12 | 范星, 唐玉朝, 张倩倩, 等. 活性炭纤维负载柠檬酸铁活化过硫酸氢钾降解罗丹明B的研究[J]. 环境科学研究, 2019, 32(11): 1928-1935. |
FAN Xing, TANG Yuchao, ZHANG Qianqian, et al. Degradation of rhodamine B by PMS activated with ferric citrate loaded carbon fiber[J]. Research of Environmental Sciences, 2019, 32(11): 1928-1935. | |
13 | 张鹏辉, 秦鸿杰, 郑其玲, 等. CoPc-PCN异质结高效界面电荷转移活化PMS降解四环素[J]. 精细化工, 2024, 41(3): 657-665, 696. |
ZHANG Penghui, QIN Hongjie, ZHENG Qiling, et al. CoPc-PCN heterojunction activating PMS by efficient interfacial charge transfer for tetracycline degradation[J]. Fine Chemicals, 2024, 41(3): 657-665, 696. | |
14 | 张明明, 李静, 龚焱, 等. 铁酸锰纳米球修饰石墨相氮化碳光催化活化过一硫酸盐去除双酚A[J]. 环境工程学报, 2019, 13(1): 9-19. |
ZHANG Mingming, LI Jing, GONG Yan, et al. Photocatalytic degradation of BPA by a MnFe2O4 manosphere modified graphite carbon nitride composite photocatalyst with peroxymonosulfate activation ability[J]. Chinese Journal of Environmental Engineering, 2019, 13(1): 9-19. | |
15 | SHI Jianwen, CUI Haojie, CHEN Jianwei, et al. TiO2/activated carbon fibers photocatalyst: Effects of coating procedures on the microstructure, adhesion property, and photocatalytic ability[J]. Journal of Colloid and Interface Science, 2012, 388(1): 201-208. |
16 | ZHENG Mingtao, LIU Yingliang, JIANG Kemin, et al. Alcohol-assisted hydrothermal carbonization to fabricate spheroidal carbons with a tunable shape and aspect ratio[J]. Carbon, 2010, 48(4): 1224-1233. |
17 | CHEN Xiaobo, MAO Samuel S. Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications[J]. Chemical Reviews, 2007, 107(7): 2891-2959. |
18 | PEI Fuyun, LIU Yingliang, XU Shengang, et al. Nanocomposite of graphene oxide with nitrogen-doped TiO2 exhibiting enhanced photocatalytic efficiency for hydrogen evolution[J]. International Journal of Hydrogen Energy, 2013, 38(6): 2670-2677. |
19 | HE Haiyong, LIN Junhao, FU Wei, et al. MoS2/TiO2 edge-on heterostructure for efficient photocatalytic hydrogen evolution[J]. Advanced Energy Materials, 2016, 6(14): 1600464. |
20 | LIN Yi, REN Pinyun, WEI Chengyang. Fabrication of MoS2/TiO2 heterostructures with enhanced photocatalytic activity[J]. CrystEngComm, 2019, 21(22): 3439-3450. |
21 | JAGADALE Tushar C, TAKALE Shrikant P, SONAWANE Ravindra S, et al. N-doped TiO2 nanoparticle based visible light photocatalyst by modified peroxide Sol-gel method[J]. The Journal of Physical Chemistry C, 2008, 112(37): 14595-14602. |
22 | WANG Fangzhi, LI Wenjun, GU Shaonan, et al. Facile fabrication of direct Z-scheme MoS2/Bi2WO6 heterojunction photocatalyst with superior photocatalytic performance under visible light irradiation[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 335: 140-148. |
23 | CHOI Hyun Chul, JUNG Young Mee, KIM Seung Bin. Size effects in the Raman spectra of TiO2 nanoparticles[J]. Vibrational Spectroscopy, 2005, 37(1): 33-38. |
24 | LI Haidong, WANG Yana, CHEN Guohui, et al. Few-layered MoS2 nanosheets wrapped ultrafine TiO2 nanobelts with enhanced photocatalytic property[J]. Nanoscale, 2016, 8(11): 6101-6109. |
25 | CHANDRABOSE Gauthaman, Avishek DEY, GAUR Shivani Singh, et al. Removal and degradation of mixed dye pollutants by integrated adsorption-photocatalysis technique using 2-D MoS2/TiO2 nanocomposite[J]. Chemosphere, 2021, 279: 130467. |
26 | SHEN Meng, YAN Zhiping, YANG Lei, et al. MoS2 nanosheet/TiO2 nanowire hybrid nanostructures for enhanced visible-light photocatalytic activities[J]. Chemical Communications, 2014, 50(97): 15447-15449. |
27 | XIANG Quanjun, YU Jiaguo, JARONIEC Mietek. Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles[J]. Journal of the American Chemical Society, 2012, 134(15): 6575-6578. |
28 | TIAN Mingjun, LIAO Fang, KE Qinfei, et al. Synergetic effect of titanium dioxide ultralong nanofibers and activated carbon fibers on adsorption and photodegradation of toluene[J]. Chemical Engineering Journal, 2017, 328: 962-976. |
29 | LIU Hui, Ting LYU, ZHU Chunkui, et al. Efficient synthesis of MoS2 nanoparticles modified TiO2 nanobelts with enhanced visible-light-driven photocatalytic activity[J]. Journal of Molecular Catalysis A: Chemical, 2015, 396: 136-142. |
30 | GUPTA Shipra Mital, TRIPATHI Manoj. A review of TiO2 nanoparticles[J]. Chinese Science Bulletin, 2011, 56(16): 1639-1657. |
31 | HAMDI Abderrhamane, BOUSSEKEY Luc, ROUSSEL Pascal, et al. Hydrothermal preparation of MoS2/TiO2/Si nanowires composite with enhanced photocatalytic performance under visible light[J]. Materials & Design, 2016, 109: 634-643. |
32 | SHAO Binbin, LIU Zhifeng, ZENG Guangming, et al. Immobilization of laccase on hollow mesoporous carbon nanospheres: Noteworthy immobilization, excellent stability and efficacious for antibiotic contaminants removal[J]. Journal of Hazardous Materials, 2019, 362: 318-326. |
33 | JIA Yating, CHEN Yuancai, LUO Jun, et al. Immobilization of laccase onto meso-MIL-53(Al) via physical adsorption for the catalytic conversion of triclosan[J]. Ecotoxicology and Environmental Safety, 2019, 184: 109670. |
34 | BURDA Clemens, LOU Yongbing, CHEN Xiaobo, et al. Enhanced nitrogen doping in TiO2 nanoparticles[J]. Nano Letters, 2003, 3(8): 1049-1051. |
35 | WANG Minggui, HU Yimin, HAN Jie, et al. TiO2/NiO hybrid shells: P-n junction photocatalysts with enhanced activity under visible light[J]. Journal of Materials Chemistry A, 2015, 3(41): 20727-20735. |
36 | LAN Shenyu, CHEN Yanxi, ZENG Lixi, et al. Piezo-activation of peroxymonosulfate for benzothiazole removal in water[J]. Journal of Hazardous Materials, 2020, 393: 122448. |
37 | SITARZ Anna K, MIKKELSEN Jørn D, MEYER Anne S. Structure, functionality and tuning up of laccases for lignocellulose and other industrial applications[J]. Critical Reviews in Biotechnology, 2016, 36(1): 70-86. |
38 | 丁惠君, 吴亦潇, 钟家有, 等. 两种介体物质在漆酶降解磺胺类抗生素中的作用[J]. 中国环境科学, 2016, 36(5): 1469-1475. |
DING Huijun, WU Yixiao, ZHONG Jiayou, et al. Role of two mediators in sulfonamide antibiotics degradation by laccase oxidation system[J]. China Environmental Science, 2016, 36(5): 1469-1475. | |
39 | LIU Hongyan, ZHANG Zexiong, XIE Shiwei, et al. Study on transformation and degradation of bisphenol A by Trametes versicolor laccase and simulation of molecular docking[J]. Chemosphere, 2019, 224: 743-750. |
40 | TAGHIZADEH Tohid, Amin TALEBIAN-KIAKALAIEH, JAHANDAR Hoda, et al. Biodegradation of bisphenol A by the immobilized laccase on some synthesized and modified forms of zeolite Y[J]. Journal of Hazardous Materials, 2020, 386: 121950. |
41 | Dalel DAÂSSI, PRIETO Alicia, Héla ZOUARI-MECHICHI, et al. Degradation of bisphenol A by different fungal laccases and identification of its degradation products[J]. International Biodeterioration & Biodegradation, 2016, 110: 181-188. |
[1] | 庄柯, 陈宏, 许芸, 仲兆平, 周峻伍, 周凯, 董月红. SiO2改性Ce-V-W/Ti催化剂载体的抗碱(土)金属中毒性能[J]. 化工进展, 2025, 44(1): 266-276. |
[2] | 熊磊, 丁飞燕, 李聪, 王群乐, 吕起, 翟晓娜, 刘峰. 金属Pt负载型非均相催化剂研究进展[J]. 化工进展, 2024, 43(S1): 295-304. |
[3] | 宋财城, 陈晓贞, 刘丽, 杨成敏, 郑步梅, 尹晓莹, 孙进, 姚运海, 段为宇. 碳基载体负载加氢脱硫催化剂的研究进展[J]. 化工进展, 2024, 43(S1): 305-314. |
[4] | 张日东, 吕建华, 刘继东, 郭豹, 李文松. Ru-K-NaY催化草酸二甲酯脱羰基制备碳酸二甲酯[J]. 化工进展, 2024, 43(S1): 382-390. |
[5] | 李琳, 黄国勇, 徐盛明, 郁丰善, 翁雅青, 曹才放, 温嘉玮, 王春霞, 王俊莲, 顾斌涛, 张袁华, 刘斌, 王才平, 潘剑明, 徐泽良, 王翀, 王珂. 铝基废催化剂载体的回收与再生制备[J]. 化工进展, 2024, 43(S1): 640-649. |
[6] | 赵星程, 贾方旭, 刘晨雨, 韩宝红, 梅宁, 姚宏. 实际规模PN/A工艺载体挂膜性能与微生物群落[J]. 化工进展, 2024, 43(9): 5242-5249. |
[7] | 于立爽, 李青云, 刘兆明, 张淑茹, 刘幽燕, 唐爱星. 油菜花粉生物炭固定化脂肪酶催化蒎烯环氧化[J]. 化工进展, 2024, 43(7): 3996-4004. |
[8] | 万成凤, 李志达, 张春月, 路璐. MXene负载CoP纳米棒高效电催化分解水制氢[J]. 化工进展, 2024, 43(6): 3232-3239. |
[9] | 季骁彦, 许蕊, 王飞, 李迅. VKT多肽介导的固定化疏棉状嗜热丝孢菌脂肪酶催化制备生物柴油[J]. 化工进展, 2024, 43(6): 3285-3292. |
[10] | 刘雨蓉, 王兴宝, 李文英. 分子筛负载Pt催化剂酸性位点调控及对蒽深度加氢性能的影响[J]. 化工进展, 2024, 43(4): 1832-1839. |
[11] | 王璧琮, 潘大伟, 谢锐, 巨晓洁, 刘壮, 汪伟, 褚良银. 复合酶@ZIF-8的制备及其黑米花青素提取性能[J]. 化工进展, 2024, 43(3): 1403-1411. |
[12] | 吴佳楠, 张华, 李哲, 徐珊, 尹勇, 张文艺. 牛骨炭载体菌剂(HD)协同蚯蚓生物降解土壤中的2,4-DCP及对微生物群落的影响[J]. 化工进展, 2024, 43(12): 6896-6904. |
[13] | 马香港, 丁远, 张俊格, 刘应良, 徐慎刚, 曹少魁. 改性g-C3N4光催化降解双酚A的研究进展[J]. 化工进展, 2024, 43(11): 6271-6292. |
[14] | 牛前进, 李春光, 刘振中, 刘龙成. Ca(OH)2注浆对碱激发固化铀尾矿渣性能的影响[J]. 化工进展, 2024, 43(11): 6458-6467. |
[15] | 盖宏伟, 张辰君, 屈晶莹, 孙怀禄, 脱永笑, 王斌, 金旭, 张茜, 冯翔, CHEN De. 有机液体储氢技术催化脱氢过程强化研究进展[J]. 化工进展, 2024, 43(1): 164-185. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 14
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 24
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |