化工进展 ›› 2025, Vol. 44 ›› Issue (6): 3208-3223.DOI: 10.16085/j.issn.1000-6613.2024-2009
• 专栏:化工过程强化 • 上一篇
王家慧1(
), 李培雅1, 杨福胜1,2, 王斌1,2(
), 方涛1,2(
)
收稿日期:2024-12-10
修回日期:2025-03-01
出版日期:2025-06-25
发布日期:2025-07-08
通讯作者:
王斌,方涛
作者简介:王家慧(2000—),女,博士研究生,研究方向为有机液态储氢。E-mail:jh_wang@stu.xjtu.edu.cn。
基金资助:
WANG Jiahui1(
), LI Peiya1, YANG Fusheng1,2, WANG Bin1,2(
), FANG Tao1,2(
)
Received:2024-12-10
Revised:2025-03-01
Online:2025-06-25
Published:2025-07-08
Contact:
WANG Bin, FANG Tao
摘要:
氢能作为一种清洁、无污染的替代能源而受到广泛关注,而储氢技术是制约其发展的关键。甲基环己烷(MCH)-甲苯-氢气系统(MTH)作为一种有机液态储氢体系,由于其安全性高和成本低而具有大规模利用的潜力。甲基环己烷脱氢过程作为MTH体系发展的瓶颈,反应条件苛刻、能耗高,理解其反应机理、寻找高性能的催化剂并对反应进行优化是其研究的重点。本文从机理出发,对甲基环己烷脱氢动力学、催化剂设计以及反应过程强化的研究现状进行总结,重点阐述目前贵金属Pt基催化剂和非贵金属Ni基催化剂的研究进展,探讨了通过载体调控、处理方法改进、助剂添加等策略提升催化剂性能的方法。同时,对反应器设计和操作条件调整实现过程强化的相关研究进行了总结。本文旨在为MTH体系的进一步发展提供理论指导和技术支持,并在此基础上对未来发展方向进行展望。
中图分类号:
王家慧, 李培雅, 杨福胜, 王斌, 方涛. 有机液态储氢载体甲基环己烷脱氢研究进展[J]. 化工进展, 2025, 44(6): 3208-3223.
WANG Jiahui, LI Peiya, YANG Fusheng, WANG Bin, FANG Tao. Research progress on the dehydrogenation of methylcyclohexane as a liquid organic hydrogen carrier[J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3208-3223.
| 催化剂 | 动力学模型 | 主要结论 | 文献 |
|---|---|---|---|
Pt/Al2O3, Pt-Re/Al2O3, | 幂律模型/Hougen-Watson模型 | 反应阶数与分压有关,不同的催化剂反应速率控制步骤会偏移 | [ |
Pt/Al2O3, Pt-Re/Al2O3, | Langmuir-Hinshelwood模型 | 同时分析了主反应速率和催化剂失活速率,甲基环己烯脱氢为甲基环己二烯是主反应的控速步骤 | [ |
Pt/γ-Al2O3, Pt-Re/γ-Al2O3, Pt-Pd/γ-Al2O3 | 幂律模型/非Langmuir和非竞争性的Horiuti-Polanyi模型 | 对甲基环己烷的近零级依赖性和对氢气的级阶依赖性,引入长期失活模型 | [ |
| Pt/γ-Al2O3 | 幂律模型 | 幂律模型参数(如反应阶次、活化能和动力学速率常数)取决于操作条件 | [ |
| Pt/beta 沸石 | 幂律模型 | 对甲基环己烷来说是零级动力学,简单的幂律模型不适用于甲基环己烷脱氢 | [ |
| Pt/Al2O3 | 幂律模型/LHHW模型/HP模型 | 基于单位点或双位点表面反应动力学的LHHW模型拟合效果更佳 | [ |
| Pt-Sn/Al2O3 | 经验模型 | 考虑3种吸附形式的形成,为正向和反向反应路线的实验数据提供充分描述 | [ |
| Pt-Se/TiO2 | 单位点LHHW模型 | 通过动力学分析确定了Se的促进作用 | [ |
表1 甲基环己烷的脱氢动力学
| 催化剂 | 动力学模型 | 主要结论 | 文献 |
|---|---|---|---|
Pt/Al2O3, Pt-Re/Al2O3, | 幂律模型/Hougen-Watson模型 | 反应阶数与分压有关,不同的催化剂反应速率控制步骤会偏移 | [ |
Pt/Al2O3, Pt-Re/Al2O3, | Langmuir-Hinshelwood模型 | 同时分析了主反应速率和催化剂失活速率,甲基环己烯脱氢为甲基环己二烯是主反应的控速步骤 | [ |
Pt/γ-Al2O3, Pt-Re/γ-Al2O3, Pt-Pd/γ-Al2O3 | 幂律模型/非Langmuir和非竞争性的Horiuti-Polanyi模型 | 对甲基环己烷的近零级依赖性和对氢气的级阶依赖性,引入长期失活模型 | [ |
| Pt/γ-Al2O3 | 幂律模型 | 幂律模型参数(如反应阶次、活化能和动力学速率常数)取决于操作条件 | [ |
| Pt/beta 沸石 | 幂律模型 | 对甲基环己烷来说是零级动力学,简单的幂律模型不适用于甲基环己烷脱氢 | [ |
| Pt/Al2O3 | 幂律模型/LHHW模型/HP模型 | 基于单位点或双位点表面反应动力学的LHHW模型拟合效果更佳 | [ |
| Pt-Sn/Al2O3 | 经验模型 | 考虑3种吸附形式的形成,为正向和反向反应路线的实验数据提供充分描述 | [ |
| Pt-Se/TiO2 | 单位点LHHW模型 | 通过动力学分析确定了Se的促进作用 | [ |
| 催化剂 | 反应器 | 催化剂用量 | 测试条件 | 反应结果 | 文献 |
|---|---|---|---|---|---|
| Pt/La0.7Y0.3NiO3 | 喷雾脉冲反应器 | 300mg | 350℃,频率0.33Hz,脉宽10ms | 45.26 mmol/(gmet·min) | [ |
| Pt/TiO2 | 固定床反应器 | 50mg | 350℃,MCH∶Ar∶N2=6.4∶20∶5 | X=97% | [ |
| 0.55Pt/TiO2-Al2O3 | 固定床反应器 | 10mL | 310℃,H2/MCH=0.713,LHSV=1.5h-1 | X=95% | [ |
| 0.5Pt/TiO2-Al2O3 | 固定床反应器 | 2000mg | 400℃,MCH∶N2∶H2=0.2∶30∶30 | X=93.2% | [ |
| Pt/0.5TiO2/M41 | 固定床反应器 | 1000mg | 310℃,MCH=0.1mL·min | X=88% | [ |
| Pt/CeO2-S | 固定床反应器 | 300mg | 350℃,MCH∶N2=0.05∶15 | X=78.3% | [ |
| Pt/CeO2-SiO2 | 固定床反应器 | 500mg | 340℃,LHSV=2.45~2.5mL/(gcat·h) | X=100% | [ |
| Pt-1B/Al2O3 | 固定床反应器 | 100mg | 350℃,MCH∶N2=0.05∶5 | X=81.5% | [ |
| 0.5Pt/Mg-Al-O | 固定床反应器 | 500mg | 300℃,MCH=0.1mL/min | X=92% | [ |
| 0.4Pt/Ce14-Mg-Al-O | 固定床反应器 | 500mg | 350℃,MCH=0.1mL/min | X=98.5% | [ |
| 3Pt/Co3-Al-O | 固定床反应器 | 300mg | 330℃,MCH∶N2=0.1∶35 | X=90% | [ |
| 0.5Pt/MA | 固定床反应器 | 200mg | 350℃,MCH=0.1mL/min | X=80.2% | [ |
| 0.25Pt/SC-CNT | 固定床反应器 | 500mg | 315℃,MCH=5mL/min(气体) | X=95% | [ |
| Pt/AC | 固定床反应器 | 50mg | 300℃,MCH=0.03mL/min,Ar/MCH=3 | X=88% | [ |
| Pt/CB | 固定床反应器 | 554mg | 300℃,MCH∶N2=0.03∶5 | X=95% | [ |
| 0.2Pt/CNTs | 固定床反应器 | 300mg | 300℃,MCH=0.03mL/min | X=28.6% | [ |
| 3.34Pt/CN | 间歇反应器 | 120mg | 180℃,MCH=420μL | X=99% | [ |
| 0.2Pt/GAC-S | 固定床反应器 | 300mg | 300℃,MCH=0.03mL/min | X=63% | [ |
| 0.2Pt/PTC-S | 固定床反应器 | 300mg | 300℃,MCH=0.03mL/min | X=84.3% | [ |
| 3Pt/HAC | 固定床反应器 | 300mg | 330℃,MCH∶N2=0.05∶35 | X=91% | [ |
| Pt/CF-GL | 固定床反应器 | 300mg | 350℃,MCH∶N2=0.05∶15 | X=96.9% | [ |
| 0.68Pt(acac)2/CS | 固定床反应器 | 554mg | 320℃,MCH∶N2=0.03∶5 | X=97% | [ |
| 3.1Pt/SBA | 固定床反应器 | 50mg | 315℃,WHSV=27.1h-1 | X=95% | [ |
| Pt/KIT-6 | 固定床反应器 | 1000mg | 300℃,LHSV=3.6mL/(gcat·h) | X=98.5% | [ |
表2 单金属Pt基催化剂用于MCH脱氢
| 催化剂 | 反应器 | 催化剂用量 | 测试条件 | 反应结果 | 文献 |
|---|---|---|---|---|---|
| Pt/La0.7Y0.3NiO3 | 喷雾脉冲反应器 | 300mg | 350℃,频率0.33Hz,脉宽10ms | 45.26 mmol/(gmet·min) | [ |
| Pt/TiO2 | 固定床反应器 | 50mg | 350℃,MCH∶Ar∶N2=6.4∶20∶5 | X=97% | [ |
| 0.55Pt/TiO2-Al2O3 | 固定床反应器 | 10mL | 310℃,H2/MCH=0.713,LHSV=1.5h-1 | X=95% | [ |
| 0.5Pt/TiO2-Al2O3 | 固定床反应器 | 2000mg | 400℃,MCH∶N2∶H2=0.2∶30∶30 | X=93.2% | [ |
| Pt/0.5TiO2/M41 | 固定床反应器 | 1000mg | 310℃,MCH=0.1mL·min | X=88% | [ |
| Pt/CeO2-S | 固定床反应器 | 300mg | 350℃,MCH∶N2=0.05∶15 | X=78.3% | [ |
| Pt/CeO2-SiO2 | 固定床反应器 | 500mg | 340℃,LHSV=2.45~2.5mL/(gcat·h) | X=100% | [ |
| Pt-1B/Al2O3 | 固定床反应器 | 100mg | 350℃,MCH∶N2=0.05∶5 | X=81.5% | [ |
| 0.5Pt/Mg-Al-O | 固定床反应器 | 500mg | 300℃,MCH=0.1mL/min | X=92% | [ |
| 0.4Pt/Ce14-Mg-Al-O | 固定床反应器 | 500mg | 350℃,MCH=0.1mL/min | X=98.5% | [ |
| 3Pt/Co3-Al-O | 固定床反应器 | 300mg | 330℃,MCH∶N2=0.1∶35 | X=90% | [ |
| 0.5Pt/MA | 固定床反应器 | 200mg | 350℃,MCH=0.1mL/min | X=80.2% | [ |
| 0.25Pt/SC-CNT | 固定床反应器 | 500mg | 315℃,MCH=5mL/min(气体) | X=95% | [ |
| Pt/AC | 固定床反应器 | 50mg | 300℃,MCH=0.03mL/min,Ar/MCH=3 | X=88% | [ |
| Pt/CB | 固定床反应器 | 554mg | 300℃,MCH∶N2=0.03∶5 | X=95% | [ |
| 0.2Pt/CNTs | 固定床反应器 | 300mg | 300℃,MCH=0.03mL/min | X=28.6% | [ |
| 3.34Pt/CN | 间歇反应器 | 120mg | 180℃,MCH=420μL | X=99% | [ |
| 0.2Pt/GAC-S | 固定床反应器 | 300mg | 300℃,MCH=0.03mL/min | X=63% | [ |
| 0.2Pt/PTC-S | 固定床反应器 | 300mg | 300℃,MCH=0.03mL/min | X=84.3% | [ |
| 3Pt/HAC | 固定床反应器 | 300mg | 330℃,MCH∶N2=0.05∶35 | X=91% | [ |
| Pt/CF-GL | 固定床反应器 | 300mg | 350℃,MCH∶N2=0.05∶15 | X=96.9% | [ |
| 0.68Pt(acac)2/CS | 固定床反应器 | 554mg | 320℃,MCH∶N2=0.03∶5 | X=97% | [ |
| 3.1Pt/SBA | 固定床反应器 | 50mg | 315℃,WHSV=27.1h-1 | X=95% | [ |
| Pt/KIT-6 | 固定床反应器 | 1000mg | 300℃,LHSV=3.6mL/(gcat·h) | X=98.5% | [ |
| 催化剂 | 反应器 | 催化剂用量 | 测试条件 | 反应结果 | 文献 |
|---|---|---|---|---|---|
| 0.1K-0.6Pt/Al2O3 | 固定床反应器 | 10cm3 | 320℃,LHSV=2.0h-1 | X=95% | [ |
| 0.2K-0.5PtE/θ-Al2O3 | 固定床反应器 | 500mg | 320℃,LHSV=2.0h-1 | X=99.99% | [ |
| 20Ni-0.5Pt/Al2O3 | 固定床反应器 | 500mg | 250~330℃,MCH∶N2=0.015∶5 | X=97% | [ |
| 5Pt-10Mo/SiO2 | 固定床反应器 | 100mg | 400℃,WHSV=92.4h-1 H2/MCH=250 | 1.5mmol/(gmet·min) | [ |
| Pt-1.4Mn/Al2O3 | 固定床反应器 | 50mg | 350℃,MCH∶Ar∶N2=6.4∶20∶5 | X≈90% | [ |
| 2Pt-2Sn/Al2O3 | 固定床反应器 | 10mg | 300℃,MCH(气体)∶He=1.6∶98.4 | X=23.6% | [ |
| 2Pt-5Ir/Mg-Al-O | 固定床反应器 | 500mg | 350℃,MCH=0.1mL/min | X=99.9% | [ |
| 2Pt-0.5Sn/Mg-Al-O | 固定床反应器 | 500mg | 300℃,MCH=0.1mL/min | X=90.5% | [ |
| 0.5Zn-Pt/Al2O3 | 固定床反应器 | 20mg | 350℃,MCH∶N2=0.043∶32.8 | X≈78% | [ |
| Pt-2Ga2O3/Al2O3 | 固定床反应器 | 400mg | 320℃,MCH=0.067mL/min | X=91.4% | [ |
| 0.4Pt-0.4Cu/S-1 | 固定床反应器 | 1000mg | 400℃,MCH=0.1mL/min | X=92% | [ |
| 3Pt3(Fe0.75Zn0.25)/SiO2 | 固定床反应器 | 10mg | 350℃,MCH(气体)∶He=1.55∶23.45 | X=78.9% | [ |
| Pt-0.2Se/TiO2 | 固定床反应器 | 30mg | 280℃,MCH∶N2=0.6∶39.4 | X=66.4% | [ |
表3 添加金属/助剂对甲基环己烷脱氢的影响
| 催化剂 | 反应器 | 催化剂用量 | 测试条件 | 反应结果 | 文献 |
|---|---|---|---|---|---|
| 0.1K-0.6Pt/Al2O3 | 固定床反应器 | 10cm3 | 320℃,LHSV=2.0h-1 | X=95% | [ |
| 0.2K-0.5PtE/θ-Al2O3 | 固定床反应器 | 500mg | 320℃,LHSV=2.0h-1 | X=99.99% | [ |
| 20Ni-0.5Pt/Al2O3 | 固定床反应器 | 500mg | 250~330℃,MCH∶N2=0.015∶5 | X=97% | [ |
| 5Pt-10Mo/SiO2 | 固定床反应器 | 100mg | 400℃,WHSV=92.4h-1 H2/MCH=250 | 1.5mmol/(gmet·min) | [ |
| Pt-1.4Mn/Al2O3 | 固定床反应器 | 50mg | 350℃,MCH∶Ar∶N2=6.4∶20∶5 | X≈90% | [ |
| 2Pt-2Sn/Al2O3 | 固定床反应器 | 10mg | 300℃,MCH(气体)∶He=1.6∶98.4 | X=23.6% | [ |
| 2Pt-5Ir/Mg-Al-O | 固定床反应器 | 500mg | 350℃,MCH=0.1mL/min | X=99.9% | [ |
| 2Pt-0.5Sn/Mg-Al-O | 固定床反应器 | 500mg | 300℃,MCH=0.1mL/min | X=90.5% | [ |
| 0.5Zn-Pt/Al2O3 | 固定床反应器 | 20mg | 350℃,MCH∶N2=0.043∶32.8 | X≈78% | [ |
| Pt-2Ga2O3/Al2O3 | 固定床反应器 | 400mg | 320℃,MCH=0.067mL/min | X=91.4% | [ |
| 0.4Pt-0.4Cu/S-1 | 固定床反应器 | 1000mg | 400℃,MCH=0.1mL/min | X=92% | [ |
| 3Pt3(Fe0.75Zn0.25)/SiO2 | 固定床反应器 | 10mg | 350℃,MCH(气体)∶He=1.55∶23.45 | X=78.9% | [ |
| Pt-0.2Se/TiO2 | 固定床反应器 | 30mg | 280℃,MCH∶N2=0.6∶39.4 | X=66.4% | [ |
| 催化剂 | 反应器 | 催化剂用量 | 测试条件 | 反应结果 | 文献 |
|---|---|---|---|---|---|
| NiZn0.6/Al2O3 | 固定床反应器 | 20mg | 350℃,H2∶MCH=42.9∶1.37(压力比) | S=96.6%,X=32.2% | [ |
| 8Ni-2Cu/ACC | 喷雾脉冲反应器 | — | 350℃,MCH=0.32mL/min | 39.45mmol/(gmet·min) | [ |
| 2Si-3Ni/SiO2 | 固定床反应器 | 100mg | 350℃,MCH(气体)∶He=0.84∶20 | S≈89%,X≈45% | [ |
| 20Ni/SiO2 | 固定床反应器 | 1000mg | 380~440℃ | X=90% | [ |
| p80Ni-20Cu/SiO2 | 固定床反应器 | 500mg | 325℃,MCH∶H2∶Ar=0.2∶100∶100 | S≈83%,X≈70% | [ |
| p80Ni-20Cu/SiO2 | 固定床反应器 | 500mg | 275℃,MCH∶H2∶Ar=0.2∶100∶100 | S=89%,X=80% | [ |
| 85Ni-15Zn/SiO2 | 固定床反应器 | 500mg | 350℃,MCH∶H2∶Ar=0.2∶100∶100 | Y=80% | [ |
| 80Ni-20Sn/SiO2 | 固定床反应器 | 500mg | 350℃,MCH∶H2∶Ar=0.2∶100∶100 | S=99.9%,X=60.4% | [ |
| Ni20AlO | 固定床反应器 | 600mg | 450℃,MCH∶H2=0.06∶50 | S=84.6%,X=77.4% | [ |
| Ni20/TiO2 | 固定床反应器 | 500mg | 375℃,WHSV=1.9h-1,H2=10mL/min | S=96.5%,X=86.5% | [ |
| Ni10/CuZnAl | 固定床反应器 | 500mg | 350℃,MCH=0.05mL/min,载气比为4 | S=99.9%,X=54.3% | [ |
表4 非贵金属催化剂
| 催化剂 | 反应器 | 催化剂用量 | 测试条件 | 反应结果 | 文献 |
|---|---|---|---|---|---|
| NiZn0.6/Al2O3 | 固定床反应器 | 20mg | 350℃,H2∶MCH=42.9∶1.37(压力比) | S=96.6%,X=32.2% | [ |
| 8Ni-2Cu/ACC | 喷雾脉冲反应器 | — | 350℃,MCH=0.32mL/min | 39.45mmol/(gmet·min) | [ |
| 2Si-3Ni/SiO2 | 固定床反应器 | 100mg | 350℃,MCH(气体)∶He=0.84∶20 | S≈89%,X≈45% | [ |
| 20Ni/SiO2 | 固定床反应器 | 1000mg | 380~440℃ | X=90% | [ |
| p80Ni-20Cu/SiO2 | 固定床反应器 | 500mg | 325℃,MCH∶H2∶Ar=0.2∶100∶100 | S≈83%,X≈70% | [ |
| p80Ni-20Cu/SiO2 | 固定床反应器 | 500mg | 275℃,MCH∶H2∶Ar=0.2∶100∶100 | S=89%,X=80% | [ |
| 85Ni-15Zn/SiO2 | 固定床反应器 | 500mg | 350℃,MCH∶H2∶Ar=0.2∶100∶100 | Y=80% | [ |
| 80Ni-20Sn/SiO2 | 固定床反应器 | 500mg | 350℃,MCH∶H2∶Ar=0.2∶100∶100 | S=99.9%,X=60.4% | [ |
| Ni20AlO | 固定床反应器 | 600mg | 450℃,MCH∶H2=0.06∶50 | S=84.6%,X=77.4% | [ |
| Ni20/TiO2 | 固定床反应器 | 500mg | 375℃,WHSV=1.9h-1,H2=10mL/min | S=96.5%,X=86.5% | [ |
| Ni10/CuZnAl | 固定床反应器 | 500mg | 350℃,MCH=0.05mL/min,载气比为4 | S=99.9%,X=54.3% | [ |
| [1] | MARKIEWICZ M, ZHANG Y Q, BÖSMANN A, et al. Environmental and health impact assessment of liquid organic hydrogen carrier (LOHC) systems-challenges and preliminary results[J]. Energy & Environmental Science, 2015, 8(3): 1035-1045. |
| [2] | PREUSTER Patrick, PAPP Christian, WASSERSCHEID Peter. Liquid organic hydrogen carriers (LOHCs): Toward a hydrogen-free hydrogen economy[J]. Accounts of Chemical Research, 2017, 50(1): 74-85. |
| [3] | TEICHMANN Daniel, ARLT Wolfgang, WASSERSCHEID Peter. Liquid organic hydrogen carriers as an efficient vector for the transport and storage of renewable energy[J]. International Journal of Hydrogen Energy, 2012, 37(23): 18118-18132. |
| [4] | OZAKI Makoto, TOMURA Shigeo, OHMURA Ryo, et al. Comparative study of large-scale hydrogen storage technologies: Is hydrate-based storage at advantage over existing technologies?[J]. International Journal of Hydrogen Energy, 2014, 39(7): 3327-3341. |
| [5] | PARK Sanghyoun, NASEEM Mujahid, LEE Sangyong. Experimental assessment of perhydro-dibenzyltoluene dehydrogenation reaction kinetics in a continuous flow system for stable hydrogen supply[J]. Materials, 2021, 14(24): 7613. |
| [6] | 张林海, 丁学强, 张新, 等. 储氢技术研究现状及进展[J]. 中外能源, 2024, 29(4): 17-27. |
| ZHANG Linhai, DING Xueqiang, ZHANG Xin, et al. Research status and progress in hydrogen storage technologies[J]. Sino-Global Energy, 2024, 29(4): 17-27. | |
| [7] | KWAK Yeonsu, KIRK Jaewon, MOON Seongeun, et al. Hydrogen production from homocyclic liquid organic hydrogen carriers (LOHCs): Benchmarking studies and energy-economic analyses[J]. Energy Conversion and Management, 2021, 239: 114124. |
| [8] | YU Shengping, ZENG Qun, YANG Shengyong, et al. A first-principles study of methylcyclohexane adsorption on Pt4 clusters[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2010, 43(18): 185101. |
| [9] | ZHAO Wei, CHIZALLET Céline, SAUTET Philippe, et al. Dehydrogenation mechanisms of methyl-cyclohexane on γ-Al2O3 supported Pt13: Impact of cluster ductility[J]. Journal of Catalysis, 2019, 370: 118-129. |
| [10] | MI Chengjing, HUANG Yanping, CHEN Fengtao, et al. Density functional theory study on dehydrogenation of methylcyclohexane on Ni-Pt(111)[J]. International Journal of Hydrogen Energy, 2021, 46(1): 875-885. |
| [11] | CHEN Fengtao, HUANG Yanping, MI Chengjing, et al. Density functional theory study on catalytic dehydrogenation of methylcyclohexane on Pt(111)[J]. International Journal of Hydrogen Energy, 2020, 45(11): 6727-6737. |
| [12] | OUMA Cecil N M, OBODO Kingsley O, MODISHA Phillimon M, et al. Si, P, S and Se surface additives as catalytic activity boosters for dehydrogenation of methylcyclohexane to toluene—A liquid organic hydrogen carrier system: Density functional theory insights[J]. Materials Chemistry and Physics, 2022, 279: 125728. |
| [13] | MANABE Shota, YABE Tomohiro, NAKANO Atsushi, et al. Theoretical investigation on structural effects of Pt-Mn catalyst on activity and selectivity for methylcyclohexane dehydrogenation[J]. Chemical Physics Letters, 2018, 711: 73-76. |
| [14] | ONYEBUCHI OBODO Kingsley, NAPHTALY MORO OUMA Cecil, BESSARABOV Dmitri. Modified Pt (211) and (311) surfaces towards the dehydrogenation of methylcyclohexane to toluene: A density functional theory study[J]. Applied Surface Science, 2022, 584: 152590. |
| [15] | USMAN M R, CRESSWELL D L, GARFORTH A A. By-products formation in the dehydrogenation of methylcyclohexane[J]. Petroleum Science and Technology, 2011, 29(21): 2247-2257. |
| [16] | ALHUMAIDAN Faisal, TSAKIRIS Dimos, CRESSWELL David, et al. Hydrogen storage in liquid organic hydride: Selectivity of MCH dehydrogenation over monometallic and bimetallic Pt catalysts[J]. International Journal of Hydrogen Energy, 2013, 38(32): 14010-14026. |
| [17] | VAN TRIMPONT P A, MARIN G B, FROMENT G F. Kinetics of methylcyclohexane dehydrogenation on sulfided commercial platinum/alumina and platinum-rhenium/alumina catalysts[J]. Industrial & Engineering Chemistry Fundamentals, 1986, 25(4): 544-553. |
| [18] | CHAI Maorong, KAWAKAMI Koei. Kinetic model and simulation for catalyst deactivation during dehydrogenation of methylcyclohexane over commercial Pt-, PtRe- and presulfided PtRe-Al2O3 catalysts[J]. Journal of Chemical Technology & Biotechnology, 1991, 51(3): 335-345. |
| [19] | ALHUMAIDAN Faisal, CRESSWELL David, GARFORTH Arthur. Kinetic model of the dehydrogenation of methylcyclohexane over monometallic and bimetallic Pt catalysts[J]. Industrial & Engineering Chemistry Research, 2011, 50(5): 2509-2522. |
| [20] | ALHUMAIDAN Faisal, CRESSWELL David, GARFORTH Arthur. Long-term deactivation of supported Pt catalysts in the dehydrogenation of methylcyclohexane to toluene[J]. Industrial & Engineering Chemistry Research, 2010, 49(20): 9764-9770. |
| [21] | USMAN Muhammad R, ASLAM Rabya. Dehydrogenation of methylcyclohexane for on-board hydrogen use: Initial rate kinetics over 1.0wt% Pt/γ-Al2O3 [J]. Arabian Journal for Science and Engineering, 2014, 39(2): 615-620. |
| [22] | USMAN Muhammad R, CRESSWELL David L, GARFORTH Arthur A. Dehydrogenation of methylcyclohexane: Parametric sensitivity of the power law kinetics[J]. International Scholarly Research Notices, 2013, 2013: 152893. |
| [23] | USMAN Muhammad R, ALOTAIBI Faisal M, ASLAM Rabya. Dehydrogenation-hydrogenation of methylcyclohexane-toluene system on 1.0wt% Pt/zeolite beta catalyst[J]. Progress in Reaction Kinetics and Mechanism, 2015, 40(4): 353-366. |
| [24] | USMAN Muhammad, CRESSWELL David, GARFORTH Arthur. Detailed reaction kinetics for the dehydrogenation of methylcyclohexane over Pt catalyst[J]. Industrial & Engineering Chemistry Research, 2012, 51(1): 158-170. |
| [25] | AKRAM Muhammad Sarfraz, MUNIR Dureem, USMAN Muhammad Rashid. Associative adsorption kinetics: A novel kinetic model for the dehydrogenation of methylcyclohexane[J]. Progress in Reaction Kinetics and Mechanism, 2014, 39(4): 404-417. |
| [26] | AKRAM Muhammad S, ASLAM Rabya, ALHUMAIDAN Faisal S, et al. An exclusive kinetic model for the methylcyclohexane dehydrogenation over alumina-supported Pt catalysts[J]. International Journal of Chemical Kinetics, 2020, 52(7): 415-449. |
| [27] | LOZHKIN A D, ISKHAKOVA L D, MILOVICH F O, et al. Kinetics of hydrogen and toluene production from methylcyclohexane in the presence of a PtSn/Al2O3 catalyst[J]. Kinetics and Catalysis, 2024, 65(3): 280-297. |
| [28] | OSHIMA Kazumasa, ITO Hiroya, YAMAMOTO Tsuyoshi, et al. Kinetics analysis of methylcyclohexane dehydrogenation over Se-modified Pt/TiO2 catalysts[J]. Journal of Chemical Engineering of Japan, 2024, 57(1): 2301533. |
| [29] | SHI Lei, DENG Gaoming, LI Wencui, et al. Al2O3 nanosheets rich in pentacoordinate Al3+ ions stabilize Pt-Sn clusters for propane dehydrogenation[J]. Angewandte Chemie International Edition, 2015, 54(47): 13994-13998. |
| [30] | WANG Yaoxin, WANG Jiandian, ZHENG Ping, et al. Boosting selectivity and stability on Pt/BN catalysts for propane dehydrogenation via calcination & reduction-mediated strong metal-support interaction[J]. Journal of Energy Chemistry, 2022, 67: 451-457. |
| [31] | SHUKLA Anshu A, GOSAVI Priti V, PANDE Jayshri V, et al. Efficient hydrogen supply through catalytic dehydrogenation of methylcyclohexane over Pt/metal oxide catalysts[J]. International Journal of Hydrogen Energy, 2010, 35(9): 4020-4026. |
| [32] | NAGATAKE Satoshi, HIGO Takuma, Shuhei OGO, et al. Dehydrogenation of methylcyclohexane over Pt/TiO2 catalyst[J]. Catalysis Letters, 2016, 146(1): 54-60. |
| [33] | SUGIURA Yukihiro, NAGATSUKA Tomomi, KUBO Kouichi, et al. Dehydrogenation of methylcyclohexane over Pt/TiO2-Al2O3 catalysts[J]. Chemistry Letters, 2017, 46(11): 1601-1604. |
| [34] | YANG Xue, SONG Ye, CAO Tiantian, et al. The double tuning effect of TiO2 on Pt catalyzed dehydrogenation of methylcyclohexane[J]. Molecular Catalysis, 2020, 492: 110971. |
| [35] | XU Ying, XUE Kang, AI Minhua, et al. Tunable Pt δ +/Pt0 sites by highly dispersed defected TiO2 for efficient catalytic methylcyclohexane dehydrogenation[J]. Chemical Engineering Journal, 2024, 496: 154192. |
| [36] | ZHANG Qianlin, ZHANG Zhao, MA Yueer, et al. Morphological regulation of Pt/CeO2 and its catalytic dehydrogenation of methylcyclohexane in fixed bed reactor[J]. International Journal of Hydrogen Energy, 2024, 83: 1338-1348. |
| [37] | JANG Munjeong, CHOI Subin, KIM Yoondo, et al. Effect of CeO2 redox properties on the catalytic activity of Pt-CeO x over irreducible SiO2 support for methylcyclohexane (MCH) dehydrogenation[J]. Applied Surface Science, 2023, 627: 157134. |
| [38] | WU Xu, LU Huaiqian, XIAO Yong, et al. Acid site introduced by Al3+ penta and boron in Pt/Al2O3 catalyst for dehydrogenation of methylcyclohexane[J]. International Journal of Hydrogen Energy, 2022, 47(82): 34955-34962 |
| [39] | WU Kui, CHEN Fengtao, WANG Feng, et al. Preparation of Pt supported on mesoporous Mg-Al oxide catalysts for efficient dehydrogenation of methylcyclohexane[J]. International Journal of Hydrogen Energy, 2021, 46(50): 25513-25519. |
| [40] | WANG Weiyan, MIAO Lei, WU Kui, et al. Hydrogen evolution in the dehydrogenation of methylcyclohexane over Pt/CeMgAlO catalysts derived from their layered double hydroxides[J]. International Journal of Hydrogen Energy, 2019, 44(5): 2918-2925. |
| [41] | MIAO Lei, YAN Jing, WANG Weiyan, et al. Dehydrogenation of methylcyclohexane over Pt supported on Mg-Al mixed oxides catalyst: The effect of promoter Ir[J]. Chinese Journal of Chemical Engineering, 2020, 28(9): 2337-2342. |
| [42] | YAN Jing, WANG Weiyan, MIAO Lei, et al. Dehydrogenation of methylcyclohexane over PtSn supported on MgAl mixed metal oxides derived from layered double hydroxides[J]. International Journal of Hydrogen Energy, 2018, 43(19): 9343-9352. |
| [43] | REN Wenchen, WANG Huanxi, ZHANG Qianlin, et al. Dehydrogenation of methylcyclohexane over layered bimetallic hydroxide-derived Pt/Co-Al-O catalysts[J]. International Journal of Hydrogen Energy, 2024, 88: 771-778. |
| [44] | LI Changxu, YAN Beibei, PAN Dahai, et al. Efficient and stable dehydrogenation of methylcyclohexane over Pt supported on mesoporous alumina with excellent textural properties[J]. International Journal of Hydrogen Energy, 2024, 74: 297-306. |
| [45] | KWAK Yeonsu, LEE Yujin, MOON Seongeun, et al. Scalable atomic-layer tailoring of abundant oxide supports unlocks superior interfaces for low-metal-loading dehydrogenation[J]. Angewandte Chemie International Edition, 2024, 64(9): e202417598. |
| [46] | WANG Yuguo, SHAH Naresh, HUFFMAN Gerald P. Pure hydrogen production by partial dehydrogenation of cyclohexane and methylcyclohexane over nanotube-supported Pt and Pd catalysts[J]. Energy & Fuels, 2004, 18(5): 1429-1433. |
| [47] | LI Xiaoyun, MA Ding, BAO Xinhe. Dispersion of Pt catalysts supported on activated carbon and their catalytic performance in methylcyclohexane dehydrogenation[J]. Chinese Journal of Catalysis, 2008, 29(3): 259-263. |
| [48] | ZHANG Cui, LIANG Xiuqing, LIU Shuangxi. Hydrogen production by catalytic dehydrogenation of methylcyclohexane over Pt catalysts supported on pyrolytic waste tire char[J]. International Journal of Hydrogen Energy, 2011, 36(15): 8902-8907. |
| [49] | YE Hongli, LIU Shuangxi, HUANG Dongmei, et al. Fabrication of carbon nanotubes derived from waste tire pyrolytic carbon and their application in the dehydrogenation of methylcyclohexane to produce hydrogen[J]. C—Journal of Carbon Research, 2023, 9(4): 121. |
| [50] | WANG Jian, FAN Shiguang, XU Xuan, et al. Catalytic dehydrogenation of methylcyclohexane by Pt nanoparticles supported on nitrogen doped carbon[J]. E3S Web of Conferences, 2020, 194: 01030. |
| [51] | YE Hongli, LIU Shuangxi, ZHANG Cui, et al. Dehydrogenation of methylcyclohexane over Pt-based catalysts supported on functional granular activated carbon[J]. RSC Advances, 2021, 11(47): 29287-29297. |
| [52] | YE Hongli, WANG Tianci, LIU Shuangxi, et al. Fabrication of Pt-loaded catalysts supported on the functionalized pyrolytic activated carbon derived from waste tires for the high performance dehydrogenation of methylcyclohexane and hydrogen production[J]. Catalysts, 2022, 12(2): 211. |
| [53] | DAI Xiaomin, ZHAO Xinkai, GUO Huan, et al. Platinum-based hierarchical activated carbon for methylcyclohexane dehydrogenation in a fixed bed reactor[J]. International Journal of Hydrogen Energy, 2025, 97: 1068-1076. |
| [54] | CHEN Wei, ZHANG Zhao, MA Yueer, et al. Pt-based carbon fiber catalytic dehydrogenation of methylcyclohexane in a fixed-bed reactor[J]. Energy & Fuels, 2025, 39(5): 2834-2842. |
| [55] | OUYANG S C, WANG L W, DU X W, et al. In situ synthesis of highly-active Pt nanoclusters via thermal decomposition for high-temperature catalytic reactions[J]. RSC Advances, 2016, 6(55): 49777-49781. |
| [56] | CHEN Aibing, ZHANG Weiping, LI Xiaoyun, et al. One-pot encapsulation of Pt nanoparticles into the mesochannels of SBA-15 and their catalytic dehydrogenation of methylcyclohexane[J]. Catalysis Letters, 2007, 119(1): 159-164. |
| [57] | Chang-Il AHN, KWAK Yeonsu, KIM Ah-Reum, et al. Dehydrogenation of homocyclic liquid organic hydrogen carriers (LOHCs) over Pt supported on an ordered pore structure of 3-D cubic mesoporous KIT-6 silica[J]. Applied Catalysis B: Environment and Energy, 2022, 307: 121169. |
| [58] | WU Yiqing, LI Yuanyuan, YU Xinbin, et al. Insights into size effects of Pt/Al2O3 catalysts on hydrogen production from methylcyclohexane dehydrogenation[J]. Catalysis Science & Technology, 2024, 14(7): 1791-1801. |
| [59] | CHEN Chenxu, CAO Jingpei, JIANG Wei, et al. Effect of Pt particle size on methylcyclohexane dehydrogenation over Pt/Al2O3 catalysts[J]. Fuel, 2024, 360: 130607. |
| [60] | MA Zixuan, YANG Yingjie, SONG Ziyu, et al. Fine-tuning Pt nanoparticle and coordination for enhanced catalytic efficiency in microwave-assisted methylcyclohexane dehydrogenation over Pt/Al2O3 catalysts[J]. Fuel, 2024, 378: 132851. |
| [61] | ZULAEHAH Siti, SAPUTRA Eqwar, JONUARTI Riri, et al. A first principles study on the catalytic performance of methylcyclohexane dehydrogenation on a monoatomic catalyst[J]. Surface and Interface Analysis, 2024, 56(5): 241-248. |
| [62] | CHEN Luning, VERMA Pragya, HOU Kaipeng, et al. Reversible dehydrogenation and rehydrogenation of cyclohexane and methylcyclohexane by single-site platinum catalyst[J]. Nature Communications, 2022, 13(1): 1092. |
| [63] | Akira ODA, ICHIHASHI Kosei, YAMAMOTO Yuta, et al. Pt single atom alloyed sub-1 nm thick Fe overlayer on supported Cu nanoparticles for methylcyclohexane dehydrogenation[J]. Journal of Materials Chemistry A, 2024, 12(34): 22655-22667. |
| [64] | SONG Mingxia, ZHANG Rongrong, ZHANG Bofeng, et al. Dynamic stable Pt13 clusters anchored on isolated ZnO x nanorafts for efficient cycloparaffin dehydrogenation[J]. Applied Catalysis B: Environment and Energy, 2025, 363: 124787. |
| [65] | HE Zhe, LI Kailang, CHEN Tianxiang, et al. High-purity hydrogen production from dehydrogenation of methylcyclohexane catalyzed by zeolite-encapsulated subnanometer platinum-iron clusters[J]. Nature Communications, 2025, 16(1): 92. |
| [66] | OKADA Yoshimi, SASAKI Eiji, WATANABE Eiji, et al. Development of dehydrogenation catalyst for hydrogen generation in organic chemical hydride method[J]. International Journal of Hydrogen Energy, 2006, 31(10): 1348-1356. |
| [67] | HAN Seungmok, Chang-Il AHN, SHIM Byeong Jo, et al. Synergistic structural and electronic influences of Pt bead catalysts on dehydrogenation activity for liquid organic hydrogen carriers[J]. Chemical Engineering Journal, 2024, 487: 150446. |
| [68] | WANG Feng, YANG Yunquan, WANG Weiyan. Efficient hydrogen production by catalytic dehydrogenation of methylcyclohexane over Ni-Pt/nano-film alumina catalyst[J]. Advanced Materials Research, 2014, 881/882/883: 315-323. |
| [69] | BOUFADEN N, AKKARI R, PAWELEC B, et al. Dehydrogenation of methylcyclohexane to toluene over partially reduced silica-supported Pt-Mo catalysts[J]. Journal of Molecular Catalysis A: Chemical, 2016, 420: 96-106. |
| [70] | BOUFADEN N, AKKARI R, PAWELEC B, et al. Dehydrogenation of methylcyclohexane to toluene over partially reduced Mo-SiO2 catalysts[J]. Applied Catalysis A: General, 2015, 502: 329-339. |
| [71] | BOUFADEN N, PAWELEC B, FIERRO J L G, et al. Hydrogen storage in liquid hydrocarbons: Effect of platinum addition to partially reduced Mo-SiO2 catalysts[J]. Materials Chemistry and Physics, 2018, 209: 188-199. |
| [72] | NAKANO Atsushi, MANABE Shota, HIGO Takuma, et al. Effects of Mn addition on dehydrogenation of methylcyclohexane over Pt/Al2O3 catalyst[J]. Applied Catalysis A: General, 2017, 543: 75-81. |
| [73] | KAZUMASA Murata, NATSUKI Kurimoto, YUTA Yamamoto, et al. Structure-property relationships of Pt-Sn nanoparticles supported on Al2O3 for the dehydrogenation of methylcyclohexane[J]. ACS Applied Nano Materials, 2021, 4(5): 4532-4541. |
| [74] | MORI Kousuke, KANDA Yasuharu, UEMICHI Yoshio. Dehydrogenation of methylcyclohexane over zinc-containing platinum/alumina catalysts[J]. Journal of the Japan Petroleum Institute, 2018, 61(6): 350-356. |
| [75] | YUE Yufan, LIU Xiaohui, SHAKOURI Mohsen, et al. Active and stable Pt-Ga2O3/Al2O3 catalyst for dehydrogenation of methylcyclohexane[J]. Catalysis Today, 2024, 433: 114688. |
| [76] | ZHANG Xiaotong, HE Ning, LIN Long, et al. Study of the carbon cycle of a hydrogen supply system over a supported Pt catalyst: Methylcyclohexane-toluene-hydrogen cycle[J]. Catalysis Science & Technology, 2020, 10(4): 1171-1181. |
| [77] | NAKAYA Yuki, MIYAZAKI Masayoshi, YAMAZOE Seiji, et al. Active, selective, and durable catalyst for alkane dehydrogenation based on a well-designed trimetallic alloy[J]. ACS Catalysis, 2020, 10(9): 5163-5172. |
| [78] | ITO Hiroya, OSHIMA Kazumasa, YAMAMOTO Tsuyoshi, et al. Improved catalytic stability of Pt/TiO2 catalysts for methylcyclohexane dehydrogenation via selenium addition[J]. International Journal of Hydrogen Energy, 2022, 47(91): 38635-38643. |
| [79] | AL-SHAIKHALI Anaam H, JEDIDI Abdesslem, CAVALLO Luigi, et al. Non-precious bimetallic catalysts for selective dehydrogenation of an organic chemical hydride system[J]. Chemical Communications, 2015, 51(65): 12931-12934. |
| [80] | PATIL Shubhangi P, PANDE Jayshri V, BINIWALE Rajesh B. Non-noble Ni-Cu/ACC bimetallic catalyst for dehydrogenation of liquid organic hydrides for hydrogen storage[J]. International Journal of Hydrogen Energy, 2013, 38(35): 15233-15241. |
| [81] | Hyungwon HAM, SIMANULLANG Wiyanti F, KANDA Yasuharu, et al. Silica-decoration boosts Ni catalysis for (de)hydrogenation: Step-abundant nanostructures stabilized by silica[J]. ChemCatChem, 2021, 13(5): 1306-1310. |
| [82] | YOLCULAR S. Organic chemical hydride dehydrogenation over nickel catalysts supported with SiO2 for hydrogen recovery[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2016, 38(14): 2031-2034. |
| [83] | GULYAEVA Yuliya, BYKOVA Maria Alekseeva, BULAVCHENKO Olga, et al. Ni-Cu high-loaded sol-gel catalysts for dehydrogenation of liquid organic hydrides: Insights into structural features and relationship with catalytic activity[J]. Nanomaterials, 2021, 11(8): 2017. |
| [84] | GULYAEVA YULIYA K, ALEKSEEVA BYKOVA MARIA V, YU Ermakov Dmitry, et al. High-loaded nickel based sol-gel catalysts for methylcyclohexane dehydrogenation[J]. Catalysts, 2020, 10(10): 1198. |
| [85] | ALEKSEEVA (BYKOVA) Maria V, GULYAEVA Yuliya K, BULAVCHENKO Olga A, et al. Promoting effect of Zn in high-loading Zn/Ni-SiO2 catalysts for selective hydrogen evolution from methylcyclohexane[J]. Dalton Transactions, 2022, 51(15): 6068-6085. |
| [86] | KOSKIN Anton P, STEPANENKO Sergey A, ALEKSEEVA (BYKOVA) Maria V, et al. The origin of extraordinary selectivity in dehydrogenation of methylcyclohexane over Ni-Sn-based catalysts[J]. Chemical Engineering Journal, 2023, 476: 146629. |
| [87] | WANG Dongliang, LEI Qian, LI Hongwei, et al. Preparation of a novel NiAlO composite oxide catalyst for the dehydrogenation of methylcyclohexane[J]. Catalysts, 2022, 12(9): 958. |
| [88] | GAO Jiaojiao, LI Ning, ZHANG Dongqiang, et al. Ni x /TiO2 catalysts for enhancing the selectivity of methylcyclohexane dehydrogenation[J]. Molecular Catalysis, 2024, 560: 114148. |
| [89] | MENG Junchi, YUAN Xingzhou, YAN Yang, et al. Supported metal clusters: Ni x /CuZnAl catalysts effectively improve the performance of hydrogen evolution from methylcyclohexane dehydrogenation[J]. Journal of the Taiwan Institute of Chemical Engineers, 2023, 144: 104719. |
| [90] | BINIWALE Rajesh B, KARIYA N, YAMASHIRO H, et al. Heat transfer and thermographic analysis of catalyst surface during multiphase phenomena under spray-pulsed conditions for dehydrogenation of cyclohexane over Pt catalysts[J]. The Journal of Physical Chemistry B, 2006, 110(7): 3189-3196. |
| [91] | HIROTA Yuichiro, ISHIKADO Akinori, UCHIDA Yoshiaki, et al. Pore size control of microporous carbon membranes by post-synthesis activation and their use in a membrane reactor for dehydrogenation of methylcyclohexane[J]. Journal of Membrane Science, 2013, 440: 134-139. |
| [92] | ACHARYA Durga, Derrick NG, XIE Zongli. Recent advances in catalysts and membranes for MCH dehydrogenation: A mini review[J]. Membranes, 2021, 11(12): 955. |
| [93] | GAO Botao, GUO Shenghui, HOU Ming, et al. Study on a potential hydrogen storage system: Microwave-activated methylcyclohexane dehydrogenation[J]. International Journal of Hydrogen Energy, 2024, 79: 619-629. |
| [94] | WANG Wenhan, CUI Guoqing, YAN Cunji, et al. Boosting methylcyclohexane dehydrogenation over Pt-based structured catalysts by internal electric heating[J]. Nano Research, 2023, 16(10): 12215-12222. |
| [95] | KANG Dong Gyun, KWAK Yeonsu, MOON Seongeun, et al. Thermally manageable and scalable reactor configurations towards efficient hydrogen release from liquid organic hydrogen carriers[J]. Energy Conversion and Management, 2024, 307: 118345. |
| [96] | TAKISE Kent, SATO Ayaka, MURAKAMI Kota, et al. Irreversible catalytic methylcyclohexane dehydrogenation by surface protonics at low temperature[J]. RSC Advances, 2019, 9(11): 5918-5924. |
| [97] | Susana PÉREZ-GIL, Sergio SANTOS-MORENO, GARCÍA Cristina Diñeiro, et al. Process intensification in the continuous dehydrogenation of methylcyclohexane to toluene[J]. Chemical Engineering and Processing—Process Intensification, 2024, 203: 109904. |
| [98] | ARORA Deepali, RICHARDS Matt, ZHU Yutong, et al. A multipass catalytic reactor insert for continuous hydrogen generation from methylcyclohexane[J]. Chemical Engineering and Processing—Process Intensification, 2024, 201: 109822. |
| [99] | HAMAYUN Muhammad Haris, MAAFA Ibrahim M, HUSSAIN Murid, et al. Simulation study to investigate the effects of operational conditions on methylcyclohexane dehydrogenation for hydrogen production[J]. Energies, 2020, 13(1): 206. |
| [100] | HAMAYUN Muhammad Haris, HUSSAIN Murid, MAAFA Ibrahim M, et al. Integration of hydrogenation and dehydrogenation system for hydrogen storage and electricity generation-simulation study[J]. International Journal of Hydrogen Energy, 2019, 44(36): 20213-20222. |
| [101] | MAQBOOL Muhammad Anas, KHAN Javed, HAMAYUN Muhammad Haris, et al. Optimal retrofitting of MCH-toluene dehydrogenation system: Energy and technoeconomic analysis[J]. Energy Conversion and Management, 2023, 286: 117049. |
| [102] | FUKUNAGA Akihiko, KATO Asami, HARA Yuki, et al. Dehydrogenation of methylcyclohexane using solid oxide fuel cell—A smart energy conversion[J]. Applied Energy, 2023, 348: 121469. |
| [103] | LI Longquan, VELLAYANI ARAVIND Purushothaman, WOUDSTRA Theo, et al. Assessing the waste heat recovery potential of liquid organic hydrogen carrier chains[J]. Energy Conversion and Management, 2023, 276: 116555. |
| [104] | TSANG Fanlok, KARIMI Iftekhar A, FAROOQ Shamsuzzaman. Low-emissions hydrogen from MCH dehydrogenation: Integration with LNG regasification[J]. Energy Conversion and Management, 2024, 321: 119012. |
| [1] | 姚如伟, 宋乐音, 牛琴琴, 李聪明. Na-S双助剂修饰铁基催化剂催化CO2加氢制C2+醇[J]. 化工进展, 2025, 44(6): 3154-3162. |
| [2] | 陈少伟, 陈奕, 牛江奇, 刘天奇, 黄建国, 陈焕浩, 范晓雷. 介质阻挡放电等离子体催化反应器研究进展及应用展望[J]. 化工进展, 2025, 44(6): 3175-3189. |
| [3] | 石秀顶, 王永全, 曾静, 苏畅, 洪俊明. 纳米管状Co-N-C活化过碳酸盐降解四环素[J]. 化工进展, 2025, 44(6): 3041-3052. |
| [4] | 谢武强, 张岭, 贺杠, 蒋里锋, 郑晰瑞, 张和鹏. CoTBrPP-PTAB-Cu电催化还原CO2制甲烷[J]. 化工进展, 2025, 44(6): 3093-3100. |
| [5] | 范晓娅, 赵镇, 彭强. 电催化二氧化碳和硝酸根共还原合成尿素研究进展[J]. 化工进展, 2025, 44(5): 2856-2869. |
| [6] | 苏俊杰, 刘苏, 周海波, 刘畅, 张琳, 王仰东, 谢在库. 用于CO2加氢直接制低碳烯烃的InZr/SAPO-34双功能催化剂[J]. 化工进展, 2025, 44(5): 2870-2878. |
| [7] | 汪柯, 胡登, 王星博, 孙楠楠, 魏伟. Fe x Co y Ca3Al双功能材料用于CO2捕集-转化一体化制合成气[J]. 化工进展, 2025, 44(5): 2888-2897. |
| [8] | 马梓轩, 施瑞晨, 刘明杰, 杨莹杰, 宋子瑜, 梅晓鹏, 高晓峰, 洪龙城, 姚思宇, 张治国, 任其龙. 环烷烃催化制氢反应器的设计与性能优化: 前沿进展与挑战[J]. 化工进展, 2025, 44(5): 2919-2937. |
| [9] | 于安峰, 吴倩, 杨哲, 罗云, 王宇辰, 刘欢. 绿氢储输过程安全及材料失效机理研究进展[J]. 化工进展, 2025, 44(5): 2972-2983. |
| [10] | 鲍婕, 余攀结, 马永德, 张宏伟, 蔡镇平, 曹彦宁, 黄宽, 江莉龙. Cu-ZrO2催化材料的制备及其棕榈酸甲酯加氢制脂肪醇性能[J]. 化工进展, 2025, 44(5): 2997-3008. |
| [11] | 朱慧红, 刘璐, 刘鹏, 李贺, 杨涛, 王继锋, 侯栓弟, 彭冲, 赵毅毅, 潘云翔. 劣质渣油加氢催化剂构筑及其催化性能提升机制[J]. 化工进展, 2025, 44(5): 3009-3016. |
| [12] | 谢静雯, 孟仪方, 叶文杰, 王华磊, 魏东芝. 半理性设计提高短链醇脱氢酶在(S)-1-(4-氟苯基)乙醇合成中的应用[J]. 化工进展, 2025, 44(5): 2515-2523. |
| [13] | 王水众, 宋国勇. 木质素选择性氢解制备高功能化单酚及其高值利用[J]. 化工进展, 2025, 44(5): 2535-2540. |
| [14] | 丁阿静, 周巧巧, 顾学红. 膜反应器中杨木催化气化制清洁合成气[J]. 化工进展, 2025, 44(5): 2716-2723. |
| [15] | 何志勇. 分步脱羟/脱碳催化剂实现高效裂解甲醇制氢[J]. 化工进展, 2025, 44(5): 2724-2732. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |