| 1 |
D’ALESSANDRO Deanna M, SMIT Berend, LONG Jeffrey R. Carbon dioxide capture: Prospects for new materials[J]. Angewandte Chemie International Edition, 2010, 49(35): 6058-6082.
|
| 2 |
GAO Wanlin, LIANG Shuyu, WANG Rujie, et al. Industrial carbon dioxide capture and utilization: State of the art and future challenges[J]. Chemical Society Reviews, 2020, 49(23): 8584-8686.
|
| 3 |
胡登, 王星博, 陈新庆, 等. 二氧化碳捕集-转化一体化技术研究进展[J]. 科学通报, 2024, 69(8): 1012-1024.
|
|
HU Deng, WANG Xingbo, CHEN Xinqing, et al. Research status and prospects on integrated carbon capture and conversion[J]. Chinese Science Bulletin, 2024, 69(8): 1012-1024.
|
| 4 |
SHAO Bin, ZHANG Yun, SUN Zheyi, et al. CO2 capture and in situ conversion: Recent progresses and perspectives[J]. Green Chemical Engineering, 2022, 3(3): 189-198.
|
| 5 |
SUN Shuzhuang, SUN Hongman, WILLIAMS Paul T, et al. Recent advances in integrated CO2 capture and utilization: A review[J]. Sustainable Energy & Fuels, 2021, 5(18): 4546-4559.
|
| 6 |
DING Yi, JIAO Feng, PAN Xiulian, et al. Effects of proximity-dependent metal migration on bifunctional composites catalyzed syngas to olefins[J]. ACS Catalysis, 2021, 11(15): 9729-9737.
|
| 7 |
WU Ke, ZHANG Zhenxuan, SHAN Ruoting, et al. Encapsulating Fischer-Tropsch synthesis catalyst with porous graphite-carbon enables ultrahigh activity for syngas to α-olefins[J]. Applied Catalysis B: Environment and Energy, 2024, 353: 124067.
|
| 8 |
ZHAO Bo, ZHAI Peng, WANG Pengfei, et al. Direct transformation of syngas to aromatics over Na-Zn-Fe5C2 and hierarchical HZSM-5 tandem catalysts[J]. Chem, 2017, 3(2): 323-333.
|
| 9 |
YANG Junhao, GONG Ke, MIAO Dengyun, et al. Enhanced aromatic selectivity by the sheet-like ZSM-5 in syngas conversion[J]. Journal of Energy Chemistry, 2019, 35: 44-48.
|
| 10 |
MA Yuchun, GE Qingjie, LI Wenzhao, et al. Methanol synthesis from sulfur-containing syngas over Pd/CeO2 catalyst[J]. Applied Catalysis B: Environmental, 2009, 90(1/2): 99-104.
|
| 11 |
GUO Yongle, FENG Lu, LIU Yuefeng, et al. Cu-embedded porous Al2O3 bifunctional catalyst derived from metal-organic framework for syngas-to-dimethyl ether[J]. Chinese Chemical Letters, 2022, 33(6): 2906-2910.
|
| 12 |
ZHOU Yuqi, MA Xiaoling, YUSANJAN Qogluk, et al. Active metal-free CaO-based dual-function materials for integrated CO2 capture and reverse water-gas shift[J]. Chemical Engineering Journal, 2024, 485: 149937.
|
| 13 |
KHOBRAGADE Murnal, MAJHI Sachchit, PANT K K. Effect of K and CeO2 promoters on the activity of Co/SiO2 catalyst for liquid fuel production from syngas[J]. Applied Energy, 2012, 94: 385-394.
|
| 14 |
NI Youming, WANG Kunyuan, ZHU Wenliang, et al. Realizing high conversion of syngas to gasoline-range liquid hydrocarbons on a dual-bed-mode catalyst[J]. Chem Catalysis, 2021, 1(2): 383-392.
|
| 15 |
GUO Yafei, WANG Guodong, YU Jun, et al. Tailoring the performance of Ni-CaO dual function materials for integrated CO2 capture and conversion by doping transition metal oxides[J]. Separation and Purification Technology, 2023, 305: 122455.
|
| 16 |
HU Yong, XU Qian, SHENG Yao, et al. The effect of alkali metals (Li, Na, and K) on Ni/CaO dual-functional materials for integrated CO2 capture and hydrogenation[J]. Materials, 2023, 16(15): 5430.
|
| 17 |
OMODOLOR Ibeh S, OTOR Hope O, ANDONEGUI Joseph A, et al. Dual-function materials for CO2 capture and conversion: A review[J]. Industrial & Engineering Chemistry Research, 2020, 59(40): 17612-17631.
|
| 18 |
FLORIN Nicholas H, HARRIS Andrew T. Reactivity of CaO derived from nano-sized CaCO3 particles through multiple CO2 capture-and-release cycles[J]. Chemical Engineering Science, 2009, 64(2): 187-191.
|
| 19 |
SUN H, WU C, SHEN B, et al. Progress in the development and application of CaO-based adsorbents for CO2 capture—a review[J]. Materials Today Sustainability, 2018, 1: 1-27.
|
| 20 |
ZHOU Zhiming, QI Yang, XIE Miaomiao, et al. Synthesis of CaO-based sorbents through incorporation of alumina/aluminate and their CO2 capture performance[J]. Chemical Engineering Science, 2012, 74: 172-180.
|
| 21 |
JING Jieying, LI Tingyu, ZHANG Xuewei, et al. Enhanced CO2 sorption performance of CaO/Ca3Al2O6 sorbents and its sintering-resistance mechanism[J]. Applied Energy, 2017, 199: 225-233.
|
| 22 |
BRODA Marcin, KIERZKOWSKA Agnieszka M, MÜLLER Christoph R. Influence of the calcination and carbonation conditions on the CO2 uptake of synthetic Ca-based CO2 sorbents[J]. Environmental Science & Technology, 2012, 46(19): 10849-10856.
|
| 23 |
MA Xingyue, LUO Shuxuan, HUA Yunhui, et al. An alumina phase induced composite transition shuttle to stabilize carbon capture cycles[J]. Nature Communications, 2024, 15(1): 7556.
|
| 24 |
SUN Hongman, WANG Jianqiao, ZHAO Jinhui, et al. Dual functional catalytic materials of Ni over Ce-modified CaO sorbents for integrated CO2 capture and conversion[J]. Applied Catalysis B: Environmental, 2019, 244: 63-75.
|
| 25 |
SHAO Bin, HU Guihua, ALKEBSI Khalil A M, et al. Heterojunction-redox catalysts of Fe x Co y Mg10CaO for high-temperature CO2 capture and in situ conversion in the context of green manufacturing[J]. Energy & Environmental Science, 2021, 14(4): 2291-2301.
|
| 26 |
GAO Zhuxian, YUAN Yongning, YANG Panpan, et al. In situ capture and conversion of CO2 to CO using CaZrO3 promoted Fe-CaO dual-functional material[J]. ACS Sustainable Chemistry & Engineering, 2024, 12(29): 10933-10946.
|
| 27 |
SUN Shuzhuang, ZHANG Chen, CHEN Sining, et al. Integrated CO2 capture and reverse water-gas shift reaction over CeO2-CaO dual functional materials[J]. Royal Society Open Science, 2023, 10(4): 230067.
|
| 28 |
LIU Jiming, ZHANG Jinhong, SUN Haoyang, et al. Ultrastable bifunctional multi-stage active metal catalysts for low concentration CO2 capture and in situ conversion[J]. Fuel, 2024, 357: 129801.
|
| 29 |
ZHAO Peipei, MA Bing, TIAN Jingqing, et al. Highly stable FeNiMnCaO catalyst for integrated CO2 capture and hydrogenation to CO[J]. Chemical Engineering Journal, 2024, 482: 148948.
|
| 30 |
ZHANG Xiao, ZHU Xiaobing, LIN Lili, et al. Highly dispersed copper over β-Mo2C as an efficient and stable catalyst for the reverse water gas shift (RWGS) reaction[J]. ACS Catalysis, 2017, 7(1): 912-918.
|
| 31 |
LEE Yeol-Lim, KIM Beom-Jun, PARK Ho-Ryong, et al. Customized Ni-MgO-Al2O3 catalyst for carbon dioxide reforming of coke oven gas: Optimization of preparation method and co-precipitation pH[J]. Journal of CO2 Utilization, 2020, 42: 101354.
|
| 32 |
CHEN Liwei, ZUO Xu, ZHOU Liang, et al. Efficient heterogeneous activation of peroxymonosulfate by facilely prepared Co/Fe bimetallic oxides: Kinetics and mechanism[J]. Chemical Engineering Journal, 2018, 345: 364-374.
|
| 33 |
LONG Xinxin, YANG Shengjiong, QIU Xiaojie, et al. Heterogeneous activation of peroxymonosulfate for bisphenol A degradation using CoFe2O4 derived by hybrid cobalt-ion hexacyanoferrate nanoparticles[J]. Chemical Engineering Journal, 2021, 404: 127052.
|
| 34 |
TAN Ye, LI Chunquan, SUN Zhiming, et al. Natural diatomite mediated spherically monodispersed CoFe2O4 nanoparticles for efficient catalytic oxidation of bisphenol A through activating peroxymonosulfate[J]. Chemical Engineering Journal, 2020, 388: 124386.
|
| 35 |
LI Meng, LI Yanwen, YU Pengfei, et al. Exploring degradation mechanism of tetracycline via high-effective peroxymonosulfate catalysts of montmorillonite hybridized CoFe composites and safety assessment[J]. Chemical Engineering Journal, 2022, 427: 130930.
|
| 36 |
ZHU Shijun, WANG Zhiwei, YE Cheng, et al. Magnetic Co/Fe nanocomposites derived from ferric sludge as an efficient peroxymonosulfate catalyst for ciprofloxacin degradation[J]. Chemical Engineering Journal, 2022, 432: 134180.
|
| 37 |
ZENG Liangpeng, LI Kongzhai, HUANG Fan, et al. Effects of Co3O4 nanocatalyst morphology on CO oxidation: Synthesis process map and catalytic activity[J]. Chinese Journal of Catalysis, 2016, 37(6): 908-922.
|
| 38 |
HAVE Iris C TEN, KROMWIJK Josepha J G, MONAI Matteo, et al. Uncovering the reaction mechanism behind CoO as active phase for CO2 hydrogenation[J]. Nature Communications, 2022, 13(1): 324.
|