化工进展 ›› 2025, Vol. 44 ›› Issue (6): 3154-3162.DOI: 10.16085/j.issn.1000-6613.2024-1984
• 专栏:化工生态环境前沿交叉新技术 • 上一篇
姚如伟1,2(
), 宋乐音1,2, 牛琴琴1,2, 李聪明1,2(
)
收稿日期:2024-12-05
修回日期:2025-01-16
出版日期:2025-06-25
发布日期:2025-07-08
通讯作者:
姚如伟,李聪明
作者简介:姚如伟(1993—),女,讲师,硕士生导师。研究方向为二氧化碳催化利用。E-mail:yaoruwei@tyut.edu.cn。
基金资助:
YAO Ruwei1,2(
), SONG Yueyin1,2, NIU Qinqin1,2, LI Congming1,2(
)
Received:2024-12-05
Revised:2025-01-16
Online:2025-06-25
Published:2025-07-08
Contact:
YAO Ruwei, LI Congming
摘要:
利用CO2加氢合成燃料或高值化学品是控制碳排放、实现能源可持续发展的有效途径。采用沉淀法制备了Na和S共修饰的铁基催化剂,并探究了助剂含量对催化性质及CO2加氢合成C2+醇反应性能的影响。结果表明,Na-S双助剂可通过电子效应调变活性相的组成及其铁位点的电子性质,从而改变催化剂对反应气及CO中间体的活化能力,最终影响反应活性与产物分布。适量的Na和S改性有助于平衡铁基催化剂上CO解离与非解离吸附的能力,促进烷基物种与活性*CO的偶联,进而促进C2+醇的合成。NaS-Fe-3催化剂可在32%的CO2转化率下实现12.8%的C2+醇选择性,改变了传统对于单铁催化剂难以有效催化C2+醇合成的认识。这种通过双助剂改性调控催化性质的策略,为催化剂设计与反应路径调控提供了新的思路。
中图分类号:
姚如伟, 宋乐音, 牛琴琴, 李聪明. Na-S双助剂修饰铁基催化剂催化CO2加氢制C2+醇[J]. 化工进展, 2025, 44(6): 3154-3162.
YAO Ruwei, SONG Yueyin, NIU Qinqin, LI Congming. Na-S co-modified iron catalysts for CO2 hydrogenation to C2+ alcohols[J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3154-3162.
| 催化剂 | Na质量分数/% | S质量分数/% | 比表面积/m2·g-1 | 总孔容/cm3·g-1 | 微孔孔容/cm3·g-1 |
|---|---|---|---|---|---|
| NaS-Fe-1 | 1.0 | 0.04 | 49.7 | 0.21 | 0 |
| NaS-Fe-2 | 1.4 | 0.1 | 50.3 | 0.22 | 0 |
| NaS-Fe-3 | 2.4 | 0.6 | 51.8 | 0.20 | 0 |
| NaS-Fe-4 | 6.0 | 3.0 | 35.0 | 0.15 | 0 |
表1 不同催化剂的物化性质参数
| 催化剂 | Na质量分数/% | S质量分数/% | 比表面积/m2·g-1 | 总孔容/cm3·g-1 | 微孔孔容/cm3·g-1 |
|---|---|---|---|---|---|
| NaS-Fe-1 | 1.0 | 0.04 | 49.7 | 0.21 | 0 |
| NaS-Fe-2 | 1.4 | 0.1 | 50.3 | 0.22 | 0 |
| NaS-Fe-3 | 2.4 | 0.6 | 51.8 | 0.20 | 0 |
| NaS-Fe-4 | 6.0 | 3.0 | 35.0 | 0.15 | 0 |
| 催化剂 | 新鲜催化剂中表面元素摩尔比/% | 反应后催化剂中表面元素摩尔比/% | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Fe | S | Na | O | C | Fe | S | Na | O | C | |
| NaS-Fe-1 | 29.45 | 0.41 | 6.59 | 51.85 | 11.70 | 11.85 | 0.45 | 14.61 | 40.54 | 32.55 |
| NaS-Fe-2 | 28.91 | 0.49 | 6.76 | 51.58 | 12.26 | 11.61 | 0.51 | 14.93 | 41.03 | 31.92 |
| NaS-Fe-3 | 29.55 | 0.44 | 5.92 | 51.86 | 12.23 | 14.49 | 1.05 | 13.37 | 45.13 | 25.96 |
| NaS-Fe-4 | 28.73 | 0.67 | 5.14 | 51.85 | 13.61 | 12.61 | 2.76 | 14.19 | 45.25 | 25.19 |
表2 XPS表面元素分析结果
| 催化剂 | 新鲜催化剂中表面元素摩尔比/% | 反应后催化剂中表面元素摩尔比/% | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Fe | S | Na | O | C | Fe | S | Na | O | C | |
| NaS-Fe-1 | 29.45 | 0.41 | 6.59 | 51.85 | 11.70 | 11.85 | 0.45 | 14.61 | 40.54 | 32.55 |
| NaS-Fe-2 | 28.91 | 0.49 | 6.76 | 51.58 | 12.26 | 11.61 | 0.51 | 14.93 | 41.03 | 31.92 |
| NaS-Fe-3 | 29.55 | 0.44 | 5.92 | 51.86 | 12.23 | 14.49 | 1.05 | 13.37 | 45.13 | 25.96 |
| NaS-Fe-4 | 28.73 | 0.67 | 5.14 | 51.85 | 13.61 | 12.61 | 2.76 | 14.19 | 45.25 | 25.19 |
| 催化剂 | CO2峰面积 | CO峰面积 | 峰面积比CO/CO2 |
|---|---|---|---|
| NaS-Fe-1 | 39.6 | 62.0 | 1.57 |
| NaS-Fe-2 | 33.0 | 45.6 | 1.38 |
| NaS-Fe-3 | 100 | 72.8 | 0.73 |
| NaS-Fe-4 | 132.9 | 94.6 | 0.71 |
表3 CO2-TPD谱图中高温脱附区量化结果
| 催化剂 | CO2峰面积 | CO峰面积 | 峰面积比CO/CO2 |
|---|---|---|---|
| NaS-Fe-1 | 39.6 | 62.0 | 1.57 |
| NaS-Fe-2 | 33.0 | 45.6 | 1.38 |
| NaS-Fe-3 | 100 | 72.8 | 0.73 |
| NaS-Fe-4 | 132.9 | 94.6 | 0.71 |
| [1] | 赵锦波, 卞凤鸣. CO2化学转化基础与应用研究进展[J]. 化工进展, 2022, 41(S1): 524-535. |
| ZHAO Jinbo, BIAN Fengming. Progress on basis and application of CO2 chemical conversion technologies[J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 524-535. | |
| [2] | 闫帅, 杨海平, 陈应泉, 等. CO2光热催化还原研究进展[J]. 化工学报, 2022, 73(10): 4298-4310. |
| YAN Shuai, YANG Haiping, CHEN Yingquan, et al. Recent advances in photothermal catalysis of CO2 reduction[J]. CIESC Journal, 2022, 73(10): 4298-4310. | |
| [3] | WANG Menglin, LUO Lei, WANG Chuanhao, et al. Heterogeneous catalysts toward CO2 hydrogenation for sustainable carbon cycle[J]. Accounts of Materials Research, 2022, 3(6): 565-571. |
| [4] | REN Yingyu, YANG Yusen, WEI Min. Recent advances on heterogeneous non-noble metal catalysts toward selective hydrogenation reactions[J]. ACS Catalysis, 2023, 13(13): 8902-8924. |
| [5] | GAO Jiajian, SHIONG Choo Sze Simon, LIU Yan. Reduction of CO2 to chemicals and fuels: Thermocatalysis versus electrocatalysis[J]. Chemical Engineering Journal, 2023, 472: 145033. |
| [6] | 曾壮, 李柯志, 苑志伟, 等. CO/CO2加氢制低碳醇改性费托合成催化剂研究进展[J]. 化工进展, 2024, 43(6): 3061-3079. |
| ZENG Zhuang, LI Kezhi, YUAN Zhiwei, et al. Advances in modified Fischer-Tropsch synthesis catalysts for CO/CO2 hydrogenation to higher alcohols[J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3061-3079. | |
| [7] | Chi Hung VO, Javier PÉREZ-RAMÍREZ, FAROOQ Shamsuzzaman, et al. Prospects of producing higher alcohols from carbon dioxide: A process system engineering perspective[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(36): 11875-11884. |
| [8] | 孔祥宇, 谢亮, 王延民, 等. CO2的捕集及资源化利用[J]. 化工进展, 2022, 41(3): 1187-1198. |
| KONG Xiangyu, XIE Liang, WANG Yanmin, et al. CO2 capture and resource utilization[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1187-1198. | |
| [9] | SHENG Yao, POLYNSKI Mikhail V, ESWARAN Mathan K, et al. A review of mechanistic insights into CO2 reduction to higher alcohols for rational catalyst design[J]. Applied Catalysis B: Environmental, 2024, 343: 123550. |
| [10] | CHEN Gaofeng, SYZGANTSEVA Olga A, SYZGANTSEVA Maria A, et al. Hydrophobic dual metal silicate nanotubes for higher alcohol synthesis[J]. Applied Catalysis B: Environmental, 2023, 334: 122840. |
| [11] | DU Pengfei, FAKIR Abdellah Ait EL, ZHAO Shirun, et al. Ethanol synthesis via catalytic CO2 hydrogenation over multi-elemental KFeCuZn/ZrO2 catalyst[J]. Chemical Science, 2024, 15(38): 15925-15934. |
| [12] | ZHANG Qian, WANG Sen, SHI Xuerong, et al. Conversion of CO2 to higher alcohols on K-CuZnAl/Zr-CuFe composite[J]. Applied Catalysis B: Environment and Energy, 2024, 346: 123748. |
| [13] | YANG Haiyan, DANG Yaru, CUI Xu, et al. Selective synthesis of olefins via CO2 hydrogenation over transition-metal-doped iron-based catalysts[J]. Applied Catalysis B: Environmental, 2023, 321: 122050. |
| [14] | WANG Yanqiu, ZHOU Ying, ZHANG Xinxin, et al. PdFe alloy-Fe5C2 interfaces for efficient CO2 hydrogenation to higher alcohols[J]. Applied Catalysis B: Environment and Energy, 2024, 345: 123691. |
| [15] | LIU Tangkang, XU Di, SONG Mengyang, et al. K-ZrO2 interfaces boost CO2 hydrogenation to higher alcohols[J]. ACS Catalysis, 2023, 13(7): 4667-4674. |
| [16] | ZHANG Qian, WANG Sen, GENG Rui, et al. Hydrogenation of CO2 to higher alcohols on an efficient Cr-modified CuFe catalyst[J]. Applied Catalysis B: Environmental, 2023, 337: 123013. |
| [17] | 胡文德, 王仰东, 王传明. 合成气直接催化转化制低碳烯烃研究进展[J]. 化工进展, 2022, 41(9): 4754-4766. |
| HU Wende, WANG Yangdong, WANG Chuanming. Research progress on the direct catalytic conversion of syngas to light olefins[J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4754-4766. | |
| [18] | YANG Qingxin, KONDRATENKO Evgenii V. From understanding of catalyst functioning toward controlling selectivity in CO2 hydrogenation to higher hydrocarbons over Fe-based catalysts[J]. Accounts of Materials Research, 2024, 5(11): 1314-1328. |
| [19] | YAO Ruwei, WEI Jian, GE Qingjie, et al. Monometallic iron catalysts with synergistic Na and S for higher alcohols synthesis via CO2 hydrogenation[J]. Applied Catalysis B: Environmental, 2021, 298: 120556. |
| [20] | WEI Jian, GE Qingjie, YAO Ruwei, et al. Directly converting CO2 into a gasoline fuel[J]. Nature Communications, 2017, 8: 15174. |
| [21] | LI Siwei, YANG Jinghe, SONG Chuqiao, et al. Iron carbides: Control synthesis and catalytic applications in CO x hydrogenation and electrochemical HER[J]. Advanced Materials, 2019, 31(50): 1901796. |
| [22] | CHOI Yo Han, JANG Youn Jeong, PARK Hunmin, et al. Carbon dioxide Fischer-Tropsch synthesis: A new path to carbon-neutral fuels[J]. Applied Catalysis B: Environmental, 2017, 202: 605-610. |
| [23] | SUN Yanan, WU Yimin, SHAN Honghong, et al. Studies on the promoting effect of sulfate species in catalytic dehydrogenation of propane over Fe2O3/Al2O3 catalysts[J]. Catalysis Science & Technology, 2015, 5(2): 1290-1298. |
| [24] | MCCUE Alan J, ANDERSON James A. Sulfur as a catalyst promoter or selectivity modifier in heterogeneous catalysis[J]. Catalysis Science & Technology, 2014, 4(2): 272-294. |
| [25] | PAALANEN Pasi P, WECKHUYSEN Bert M. Carbon pathways, sodium-sulphur promotion and identification of iron carbides in iron-based Fischer-Tropsch synthesis[J]. ChemCatChem, 2020, 12(17): 4202-4223. |
| [26] | ZHU Jie, WANG Peng, ZHANG Xiaoben, et al. Dynamic structural evolution of iron catalysts involving competitive oxidation and carburization during CO2 hydrogenation[J]. Science Advances, 2022, 8(5): eabm3629. |
| [27] | AHMED Sheraz, IRSHAD Muhammad, YOON Wonjoong, et al. Evaluation of MgO as a promoter for the hydrogenation of CO2 to long-chain hydrocarbons over Fe-based catalysts[J]. Applied Catalysis B: Environmental, 2023, 338: 123052. |
| [28] | QIN Chuan, DU Yixiong, WU Ke, et al. Facet-Controlled Cu-doped and K-promoted Fe2O3 nanosheets for efficient CO2 hydrogenation to liquid hydrocarbons[J]. Chemical Engineering Journal, 2023, 467: 143403. |
| [29] | WEI Jian, SUN Jian, WEN Zhiyong, et al. New insights into the effect of sodium on Fe3O4-based nanocatalysts for CO2 hydrogenation to light olefins[J]. Catalysis Science & Technology, 2016, 6(13): 4786-4793. |
| [30] | NAJARI Sara, SAEIDI Samrand, András SÁPI, et al. Synergistic enhancement of CO2 hydrogenation to C5+ hydrocarbons using mixed Fe5C2 and Na-Fe3O4 catalysts: Effects of oxide/carbide ratio, proximity, and reduction[J]. Chemical Engineering Journal, 2024, 485: 149787. |
| [31] | LI Tingzhen, YANG Yong, TAO Zhichao, et al. Effect of sulfate on an iron manganese catalyst for Fischer-Tropsch synthesis[J]. Journal of Natural Gas Chemistry, 2007, 16(4): 354-362. |
| [32] | XU Jingdong, CHANG Zeying, ZHU Kongtao, et al. Effect of sulfur on α-Al2O3-supported iron catalyst for Fischer-Tropsch synthesis[J]. Applied Catalysis A: General, 2016, 514: 103-113. |
| [33] | GAO Jie, JIANG Qian, LIU Yuefeng, et al. Probing the enhanced catalytic activity of carbon nanotube supported Ni-LaO x hybrids for the CO2 reduction reaction[J]. Nanoscale, 2018, 10(29): 14207-14219. |
| [34] | YANG Qingxin, KONDRATENKO Vita A, PETROV Sergey A, et al. Identifying performance descriptors in CO2 hydrogenation over iron-based catalysts promoted with alkali metals[J]. Angewandte Chemie International Edition, 2022, 61(22): e202116517. |
| [35] | QI Xingzhen, LIN Tiejun, AN Yunlei, et al. Regulating oxygen vacancies for enhanced higher oxygenate synthesis via syngas[J]. ACS Catalysis, 2023, 13(17): 11566-11579. |
| [36] | IRSHAD Muhammad, CHUN Hee-Joon, KHAN Muhammad Kashif, et al. Synthesis of n-butanol-rich C3+ alcohols by direct CO2 hydrogenation over a stable Cu-Co tandem catalyst[J]. Applied Catalysis B: Environmental, 2024, 340: 123201. |
| [37] | WANG Yang, WANG Wenhang, HE Ruosong, et al. Carbon-based electron buffer layer on ZnO x -Fe5C2-Fe3O4 boosts ethanol synthesis from CO2 hydrogenation[J]. Angewandte Chemie International Edition, 2023, 62(46): e202311786. |
| [38] | JIANG Feng, ZHANG Min, LIU Bing, et al. Insights into the influence of support and potassium or sulfur promoter on iron-based Fischer-Tropsch synthesis: Understanding the control of catalytic activity, selectivity to lower olefins, and catalyst deactivation[J]. Catalysis Science & Technology, 2017, 7(5): 1245-1265. |
| [39] | MILLER Douglass G, MOSKOVITS Martin. A study of the effects of potassium addition to supported iron catalysts in the Fischer-Tropsch reaction[J]. The Journal of Physical Chemistry, 1988, 92(21): 6081-6085. |
| [40] | XU Di, DING Mingyue, HONG Xinlin, et al. Selective C2+ alcohol synthesis from direct CO2 hydrogenation over a Cs-promoted Cu-Fe-Zn catalyst[J]. ACS Catalysis, 2020, 10(9): 5250-5260. |
| [41] | 陈永杰, 邢小芳, 王阳, 等. Fe基CO2加氢制C2+醇催化剂研究进展[J]. 燃料化学学报(中英文), 2024, 52(11): 1580-1593. |
| CHEN Yongjie, XING Xiaofang, WANG Yang, et al. Advances in Fe-based catalysts for the hydrogenation of CO2 to C2+ alcohols[J]. Journal of Fuel Chemistry and Technology, 2024, 52(11): 1580-1593. |
| [1] | 石秀顶, 王永全, 曾静, 苏畅, 洪俊明. 纳米管状Co-N-C活化过碳酸盐降解四环素[J]. 化工进展, 2025, 44(6): 3041-3052. |
| [2] | 谢武强, 张岭, 贺杠, 蒋里锋, 郑晰瑞, 张和鹏. CoTBrPP-PTAB-Cu电催化还原CO2制甲烷[J]. 化工进展, 2025, 44(6): 3093-3100. |
| [3] | 吴孟勤, 王佳瑶, 徐友强, 王钰. 化学-生物级联转化CO2合成单细胞蛋白研究进展[J]. 化工进展, 2025, 44(5): 2429-2440. |
| [4] | 王媛媛, 张翀, 韩双艳, 邢新会. 毕赤酵母利用甲醇生产重组蛋白技术的研究进展[J]. 化工进展, 2025, 44(5): 2441-2450. |
| [5] | 姚陆, 马增新, 张聪, 杨松, 邢新会. 甲基杆菌有效同化工业甲醇和植物甲醇的研究进展[J]. 化工进展, 2025, 44(5): 2451-2462. |
| [6] | 盛华康, 张博, 申晓林, 孙新晓, 王佳, 袁其朋. 微生物合成白藜芦醇及其衍生物[J]. 化工进展, 2025, 44(5): 2463-2474. |
| [7] | 谢静雯, 孟仪方, 叶文杰, 王华磊, 魏东芝. 半理性设计提高短链醇脱氢酶在(S)-1-(4-氟苯基)乙醇合成中的应用[J]. 化工进展, 2025, 44(5): 2515-2523. |
| [8] | 钟家伟, 谭涛, 谢君, 陈勇. 生物质高值能源转换技术[J]. 化工进展, 2025, 44(5): 2524-2528. |
| [9] | 聂红, 习远兵, 葛泮珠, 丁石, 张登前. 可持续航空燃料生产路线与展望——以中石化石科院为例[J]. 化工进展, 2025, 44(5): 2529-2534. |
| [10] | 陈彦君, 戴杰, 单军强, 张思欣, 计磊, 朱晨杰, 应汉杰. 我国纤维素乙醇的研究进展和发展趋势[J]. 化工进展, 2025, 44(5): 2541-2562. |
| [11] | 魏志强, 孙丽丽. 工业富碳气体发酵制备燃料乙醇技术现状与挑战[J]. 化工进展, 2025, 44(5): 2563-2576. |
| [12] | 王嘉, 孙丹卉, 乔一凡, 范秀方, 赵立东, 贺雷, 陆安慧. 乙醇催化转化制高值化学品研究进展[J]. 化工进展, 2025, 44(5): 2587-2597. |
| [13] | 朱俊英, 荣峻峰, 宗保宁. 螺旋藻固碳和作为饲用蛋白原料可行性分析[J]. 化工进展, 2025, 44(5): 2705-2715. |
| [14] | 丁阿静, 周巧巧, 顾学红. 膜反应器中杨木催化气化制清洁合成气[J]. 化工进展, 2025, 44(5): 2716-2723. |
| [15] | 何志勇. 分步脱羟/脱碳催化剂实现高效裂解甲醇制氢[J]. 化工进展, 2025, 44(5): 2724-2732. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |