化工进展 ›› 2025, Vol. 44 ›› Issue (6): 3017-3030.DOI: 10.16085/j.issn.1000-6613.2024-1142
• 专栏:化工生态环境前沿交叉新技术 •
徐景东1,2(
), 刘奔3(
), 汪雪琴3, 董鹏4, 席志祥1,2, 徐人威1,2, 岳源源3,4(
)
收稿日期:2024-07-17
修回日期:2024-09-29
出版日期:2025-06-25
发布日期:2025-07-08
通讯作者:
岳源源
作者简介:徐景东(1984—),男,博士,研究方向为炼化催化技术。E-mail:xujingdong01@sinochem.com基金资助:
XU Jingdong1,2(
), LIU Ben3(
), WANG Xueqin3, DONG Peng4, XI Zhixiang1,2, XU Renwei1,2, YUE Yuanyuan3,4(
)
Received:2024-07-17
Revised:2024-09-29
Online:2025-06-25
Published:2025-07-08
Contact:
YUE Yuanyuan
摘要:
FeCu-ZSM-5杂双金属分子筛因在NH3选择催化还原(NH3-SCR)反应中表现出互补优势和协同效应而展现出广阔的应用前景,然而,其制备面临着原料和能源消耗高及污染严重的问题。基于此,开展了以天然矿物为原料无模板剂绿色制备等级孔FeCu-ZSM-5分子筛新工艺的合成研究。在合成过程中以天然矿物为全部硅铝铁源,无外加任何有机模板剂,采用晶种导向合成等级孔FeCu-ZSM-5分子筛。系统考察合成过程关键影响因素,进而确定了最佳的合成条件。考察所制得的等级孔FeCu-ZSM-5分子筛的NH3-SCR性能,并结合一系列表征手段探究等级孔FeCu-ZSM-5分子筛的构效关系。结果表明,Cu的加入可以显著提高FeCu-ZSM-5分子筛的低温脱硝活性,从而拓宽其温窗。Cu的引入不影响FeCu-ZSM-5的拓扑结构,但可对Fe和Cu在分子筛中的位置和分布、分子筛的还原性和酸性进行调控。较高占比的骨架Fe和孤立Cu2+、良好的氧化还原能力和适宜的酸性共同促使FeCu2-ZSM-5分子筛呈现最优异的脱硝性能。
中图分类号:
徐景东, 刘奔, 汪雪琴, 董鹏, 席志祥, 徐人威, 岳源源. FeCu-ZSM-5分子筛的绿色合成及其NH3-SCR性能[J]. 化工进展, 2025, 44(6): 3017-3030.
XU Jingdong, LIU Ben, WANG Xueqin, DONG Peng, XI Zhixiang, XU Renwei, YUE Yuanyuan. Green synthesis and NH3-SCR performance of FeCu-ZSM-5 zeolite[J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3017-3030.
| 组成/% | 累托土/% | 硅藻土/% |
|---|---|---|
| Na2O | 1.03 | 0.40 |
| MgO | 0.23 | 0.34 |
| Al2O3 | 37.2 | 3.22 |
| SiO2 | 43.2 | 92.14 |
| P2O5 | 3.05 | — |
| SO3 | 0.07 | 0.70 |
| K2O | 1.03 | 0.53 |
| CaO | 7.05 | 0.85 |
| TiO2 | 5.94 | 0.16 |
| Fe2O3 | 0.51 | 1.53 |
表1 累托土及硅藻土的化学组成(质量分数)
| 组成/% | 累托土/% | 硅藻土/% |
|---|---|---|
| Na2O | 1.03 | 0.40 |
| MgO | 0.23 | 0.34 |
| Al2O3 | 37.2 | 3.22 |
| SiO2 | 43.2 | 92.14 |
| P2O5 | 3.05 | — |
| SO3 | 0.07 | 0.70 |
| K2O | 1.03 | 0.53 |
| CaO | 7.05 | 0.85 |
| TiO2 | 5.94 | 0.16 |
| Fe2O3 | 0.51 | 1.53 |
| 样品 | SBET/m2·g-1 | Smicro/m2·g-1 | Vtotal/cm3·g-1 | Vmeso/cm3·g-1 |
|---|---|---|---|---|
| Fe-ZSM-5 | 275 | 197 | 0.17 | 0.07 |
| FeCu1-ZSM-5 | 234 | 153 | 0.15 | 0.07 |
| FeCu2-ZSM-5 | 283 | 158 | 0.19 | 0.12 |
| FeCu3-ZSM-5 | 289 | 136 | 0.20 | 0.13 |
表2 FeCux-ZSM-5分子筛的织构参数
| 样品 | SBET/m2·g-1 | Smicro/m2·g-1 | Vtotal/cm3·g-1 | Vmeso/cm3·g-1 |
|---|---|---|---|---|
| Fe-ZSM-5 | 275 | 197 | 0.17 | 0.07 |
| FeCu1-ZSM-5 | 234 | 153 | 0.15 | 0.07 |
| FeCu2-ZSM-5 | 283 | 158 | 0.19 | 0.12 |
| FeCu3-ZSM-5 | 289 | 136 | 0.20 | 0.13 |
| 样品 | Fe2O3/% | CuO/% |
|---|---|---|
| Fe-ZSM-5 | 2.49 | — |
| FeCu1-ZSM-5 | 2.57 | 1.11 |
| FeCu2-ZSM-5 | 2.22 | 2.01 |
| FeCu3-ZSM-5 | 2.39 | 3.74 |
表3 由XRF测得的FeCux-ZSM-5分子筛中的Fe和Cu质量分数
| 样品 | Fe2O3/% | CuO/% |
|---|---|---|
| Fe-ZSM-5 | 2.49 | — |
| FeCu1-ZSM-5 | 2.57 | 1.11 |
| FeCu2-ZSM-5 | 2.22 | 2.01 |
| FeCu3-ZSM-5 | 2.39 | 3.74 |
| 样品 | Fe物种 | Cu物种 | ||
|---|---|---|---|---|
| Fe2+/% | Fe3+/% | CuO/% | Cu2+/% | |
| Fe-ZSM-5 | 41.31 | 58.69 | — | — |
| FeCu1-ZSM-5 | 38.86 | 61.14 | 52.57 | 47.43 |
| FeCu2-ZSM-5 | 28.95 | 71.05 | 45.65 | 54.35 |
| FeCu3-ZSM-5 | 41.81 | 58.19 | 51.45 | 48.55 |
表4 FeCux-ZSM-5分子筛的XPS定量结果
| 样品 | Fe物种 | Cu物种 | ||
|---|---|---|---|---|
| Fe2+/% | Fe3+/% | CuO/% | Cu2+/% | |
| Fe-ZSM-5 | 41.31 | 58.69 | — | — |
| FeCu1-ZSM-5 | 38.86 | 61.14 | 52.57 | 47.43 |
| FeCu2-ZSM-5 | 28.95 | 71.05 | 45.65 | 54.35 |
| FeCu3-ZSM-5 | 41.81 | 58.19 | 51.45 | 48.55 |
| 组成 | SiO2/% | Al2O3/% | Na2O/% | n(SiO2)/n(Al2O3) |
|---|---|---|---|---|
| Fe-ZSM-5 | 88.41 | 7.23 | 0.37 | 20.77 |
| FeCu1-ZSM-5 | 87.57 | 7.15 | 0.41 | 20.83 |
| FeCu2-ZSM-5 | 87.55 | 6.94 | 0.38 | 21.44 |
| FeCu3-ZSM-5 | 85.39 | 6.92 | 0.35 | 20.97 |
表5 由XRF测得的FeCux-ZSM-5分子筛中的Si、Al及Na含量
| 组成 | SiO2/% | Al2O3/% | Na2O/% | n(SiO2)/n(Al2O3) |
|---|---|---|---|---|
| Fe-ZSM-5 | 88.41 | 7.23 | 0.37 | 20.77 |
| FeCu1-ZSM-5 | 87.57 | 7.15 | 0.41 | 20.83 |
| FeCu2-ZSM-5 | 87.55 | 6.94 | 0.38 | 21.44 |
| FeCu3-ZSM-5 | 85.39 | 6.92 | 0.35 | 20.97 |
| [2] | 邹润, 董霄, 矫义来, 等. 等级孔分子筛的可控合成、扩散研究及催化应用[J]. 高等学校化学学报, 2021, 42(1): 74-100. |
| ZOU Run, DONG Xiao, JIAO Yilai, et al. Controllable synthesis, diffusion study and catalysis of hierarchical zeolites[J]. Chemical Journal of Chinese Universities, 2021, 42(1): 74-100. | |
| [3] | HARTMANN Martin, THOMMES Matthias, SCHWIEGER Wilhelm. Hierarchically-ordered zeolites: A critical assessment[J]. Advanced Materials Interfaces, 2021, 8(4): 2001841. |
| [4] | SUN Minghui, ZHOU Jian, HU Zhiyi, et al. Hierarchical zeolite single-crystal reactor for excellent catalytic efficiency[J]. Matter, 2020, 3(4): 1226-1245. |
| [5] | Javier PÉREZ-RAMÍREZ, CHRISTENSEN Claus H, EGEBLAD Kresten, et al. Hierarchical zeolites: Enhanced utilisation of microporous crystals in catalysis by advances in materials design[J]. Chemical Society Reviews, 2008, 37(11): 2530-2542. |
| [6] | CHOI Minkee, NA Kyungsu, KIM Jeongnam, et al. Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts[J]. Nature, 2009, 461(7261): 246-249. |
| [7] | PLANK Charles J, ROSINSKI Edward J, RUBIN Mae K. Crystalline zeolite and method of preparing same: US04016245[P]. 1977-04-05. |
| [8] | LI Junhua, CHANG Huazhen, MA Lei, et al. Low-temperature selective catalytic reduction of NO x with NH3 over metal oxide and zeolite catalysts—A review[J]. Catalysis Today, 2011, 175(1): 147-156. |
| [9] | Feng BIN, SONG Chonglin, Gang LYU, et al. Selective catalytic reduction of nitric oxide with ammonia over zirconium-doped copper/ZSM-5 catalysts[J]. Applied Catalysis B: Environmental, 2014, 150: 532-543. |
| [10] | CHEN Zhen, FAN Chi, PANG Lei, et al. One-pot synthesis of high performance Cu-SAPO-18 catalyst for NO reduction by NH3-SCR: Influence of silicon content on the catalytic properties of Cu-SAPO-18[J]. Chemical Engineering Journal, 2018, 348: 608-617. |
| [11] | ZHANG Tao, CHANG Huazhen, YOU Yanchen, et al. Excellent activity and selectivity of one-pot synthesized Cu-SSZ-13 catalyst in the selective catalytic oxidation of ammonia to nitrogen[J]. Environmental Science & Technology, 2018, 52(8): 4802-4808. |
| [12] | YUE Yuanyuan, LIU Haiyan, YUAN Pei, et al. From natural aluminosilicate minerals to hierarchical ZSM-5 zeolites: A nanoscale depolymerization-reorganization approach[J]. Journal of Catalysis, 2014, 319: 200-210. |
| [13] | LI Tiesen, LIU Haiyan, FAN Yu, et al. Synthesis of zeolite Y from natural aluminosilicate minerals for fluid catalytic cracking application[J]. Green Chemistry, 2012, 14(12): 3255-3259. |
| [14] | YUE Yuanyuan, KANG Ying, BAI Yu, et al. Seed-assisted, template-free synthesis of ZSM-5 zeolite from natural aluminosilicate minerals[J]. Applied Clay Science, 2018, 158: 177-185. |
| [15] | ITABASHI Keiji, KAMIMURA Yoshihiro, IYOKI Kenta, et al. A working hypothesis for broadening framework types of zeolites in seed-assisted synthesis without organic structure-directing agent[J]. Journal of the American Chemical Society, 2012, 134(28): 11542-11549. |
| [16] | KIM Shin Dong, Shi Hyun NOH, SEONG Kyeong Hak, et al. Compositional and kinetic study on the rapid crystallization of ZSM-5 in the absence of organic template under stirring[J]. Microporous and Mesoporous Materials, 2004, 72(1/2/3): 185-192. |
| [17] | PAN Feng, LU Xuchen, WANG Yun, et al. Synthesis and crystallization kinetics of ZSM-5 without organic template from coal-series kaolinite[J]. Microporous and Mesoporous Materials, 2014, 184: 134-140. |
| [18] | Jan PŘECH, STROSSI PEDROLO Debora R, MARCILIO Nilson R, et al. Core-shell metal zeolite composite catalysts for in situ processing of Fischer-Tropsch hydrocarbons to gasoline type fuels[J]. ACS Catalysis, 2020, 10(4): 2544-2555. |
| [19] | YANG Guangpeng, DU Xuesen, RAN Jingyu, et al. Irregular influence of alkali metals on Cu-SAPO-34 catalyst for selective catalytic reduction of NO x with ammonia[J]. Journal of Hazardous Materials, 2020, 387: 122007. |
| [20] | FRITZ A., PITCHON V. The current state of research on automotive lean NO x catalysis[J]. Applied Catalysis B: Environmental, 1997, 13(1): 1-25. |
| [21] | BUSCA Guido, LIETTI Luca, RAMIS Gianguido, et al. Chemical and mechanistic aspects of the selective catalytic reduction of NO x by ammonia over oxide catalysts: A review[J]. Applied Catalysis B: Environmental, 1998, 18(1/2): 1-36. |
| [22] | YUE Yuanyuan, LIU Haiyan, ZHOU Yanni, et al. Pure-phase zeolite beta synthesized from natural aluminosilicate minerals and its catalytic application for esterification[J]. Applied Clay Science, 2016, 126: 1-6. |
| [23] | YUE Yuanyuan, LIU Haiyan, YUAN Pei, et al. One-pot synthesis of hierarchical FeZSM-5 zeolites from natural aluminosilicates for selective catalytic reduction of NO by NH3 [J]. Scientific Reports, 2015, 5: 9270. |
| [24] | MOHAN Sooraj, DINESHA P, KUMAR Shiva. NO x reduction behaviour in copper zeolite catalysts for ammonia SCR systems: A review[J]. Chemical Engineering Journal, 2020, 384: 123253. |
| [25] | BRANDENBERGER Sandro, Oliver KRÖCHER, TISSLER Arno, et al. The state of the art in selective catalytic reduction of NO x by ammonia using metal-exchanged zeolite catalysts[J]. Catalysis Reviews, 2008, 50(4): 492-531. |
| [26] | YUE Yuanyuan, LIU Ben, Nangui LYU, et al. Direct synthesis of hierarchical FeCu-ZSM-5 zeolite with wide temperature window in selective catalytic reduction of NO by NH3 [J]. ChemCatChem, 2019, 11(19): 4744-4754. |
| [27] | SHEN Qun, ZHANG Lingyun, WU Minfang, et al. High-silica nanoflower hierarchical Fe-MFI with excellent catalytic performance for N2O decomposition[J]. Materials Research Bulletin, 2017, 87: 1-5. |
| [28] | ANUNZIATA Oscar A, BELTRAMONE Andrea R, JURIC Zoran, et al. Fe-containing ZSM-11 zeolites as active catalyst for SCR of NO x Part I. Synthesis, characterization by XRD, BET and FTIR and catalytic properties[J]. Applied Catalysis A: General, 2004, 264(1): 93-101. |
| [29] | HAN Lina, ZHAO Xiaoge, YU Huafeng, et al. Preparation of SSZ-13 zeolites and their NH3-selective catalytic reduction activity[J]. Microporous and Mesoporous Materials, 2018, 261: 126-136. |
| [30] | HU Xiaoqian, YANG Ming, FAN Dequan, et al. The role of pore diffusion in determining NH3 SCR active sites over Cu/SAPO-34 catalysts[J]. Journal of Catalysis, 2016, 341: 55-61. |
| [31] | ANDONOVA Stanislava, VOVK Evgeny, Jonas SJÖBLOM, et al. Chemical deactivation by phosphorous under lean hydrothermal conditions over Cu/BEA NH3-SCR catalysts[J]. Applied Catalysis B: Environmental, 2014, 147: 251-263. |
| [32] | WEN Chengyan, WANG Chenguang, CHEN Lungang, et al. Effect of hierarchical ZSM-5 zeolite support on direct transformation from syngas to aromatics over the iron-based catalyst[J]. Fuel, 2019, 244: 492-498. |
| [33] | HAN Zeyu, ZHANG Feng, ZHAO Xinhong. Green energy-efficient synthesis of Fe-ZSM-5 zeolite and its application for hydroxylation of phenol[J]. Microporous and Mesoporous Materials, 2019, 290, 109679. |
| [34] | PORNRATTANAPIMOLCHAI Choompoonut, WORATHANAKUL Patcharin. Physicochemical properties and different sequence of metal loading (CuFe) over nanoporous of SUZ-4 zeolite[J]. Journal of Nanoscience and Nanotechnology, 2013, 13(4): 3110-3114. |
| [35] | YIN Chengyang, CHENG Peifu, LI Xiang, et al. Selective catalytic reduction of nitric oxide with ammonia over high-activity Fe/SSZ-13 and Fe/one-pot-synthesized Cu-SSZ-13 catalysts[J]. Catalysis Science & Technology, 2016, 6(20): 7561-7568. |
| [36] | GURGUL Jacek, Kazimierz ŁĄTKA, HNAT Izabela, et al. Identification of iron species in FeSiBEA by DR UV-vis, XPS and Mössbauer spectroscopy: Influence of Fe content[J]. Microporous and Mesoporous Materials, 2013, 168: 1-6. |
| [37] | XU Li, SHI Chuan, CHEN Bingbing, et al. Improvement of catalytic activity over Cu-Fe modified Al-rich beta catalyst for the selective catalytic reduction of NO x with NH3 [J]. Microporous and Mesoporous Materials, 2016, 236: 211-217. |
| [38] | LIU Xiaojiao, LI Yonghong, ZHANG Ranran. Ammonia selective catalytic reduction of NO over Ce-Fe/Cu-SSZ-13 catalysts[J]. RSC Advances, 2015, 5(104): 85453-85459. |
| [39] | Beñat PEREDA-AYO, DE LA TORRE Unai, Manuel ROMERO-SÁEZ, et al. Influence of the washcoat characteristics on NH3-SCR behavior of Cu-zeolite monoliths[J]. Catalysis Today, 2013, 216: 82-89. |
| [40] | PUTLURU Siva Sankar Reddy, SCHILL Leonhard, JENSEN Anker Degn, et al. Selective catalytic reduction of NO x with NH3 on Cu-, Fe-, and Mn-zeolites prepared by impregnation: Comparison of activity and hydrothermal stability[J]. Journal of Chemistry, 2018, 2018(1): 8614747. |
| [41] | METKAR Pranit S, HAROLD Michael P, BALAKOTAIAH Vemuri. Selective catalytic reduction of NO x on combined Fe- and Cu-zeolite monolithic catalysts: Sequential and dual layer configurations[J]. Applied Catalysis B: Environmental, 2012, 111: 67-80. |
| [42] | SCHWIDDER M, Santhosh KUMAR M, BRÜCKNER A, et al. Active sites for NO reduction over Fe-ZSM-5 catalysts[J]. Chemical Communications, 2005(6): 805-807. |
| [43] | LONG Richard Q, YANG Ralph T. Superior Fe-ZSM-5 catalyst for selective catalytic reduction of nitric oxide by ammonia[J]. Journal of the American Chemical Society, 1999, 121(23): 5595-5596. |
| [44] | ZHANG Yiwei, ZHOU Yuming, HUANG Li, et al. Structure and catalytic properties of the Zn-modified ZSM-5 supported platinum catalyst for propane dehydrogenation[J]. Chemical Engineering Journal, 2015, 270: 352-361. |
| [45] | DOU Baojuan, Gang LYU, WANG Chang, et al. Cerium doped copper/ZSM-5 catalysts used for the selective catalytic reduction of nitrogen oxide with ammonia[J]. Chemical Engineering Journal, 2015, 270: 549-556. |
| [46] | PANG Lei, FAN Chi, SHAO Lina, et al. The Ce doping Cu/ZSM-5 as a new superior catalyst to remove NO from diesel engine exhaust[J]. Chemical Engineering Journal, 2014, 253: 394-401. |
| [47] | TAO Haixiang, YANG Hong, LIU Xiaohui, et al. Highly stable hierarchical ZSM-5 zeolite with intra- and inter-crystalline porous structures[J]. Chemical Engineering Journal, 2013, 225: 686-694. |
| [48] | TEMPELMAN Christiaan H L, DE RODRIGUES Victor O, VAN ECK Ernst R H, et al. Desilication and silylation of Mo/HZSM-5 for methane dehydroaromatization[J]. Microporous and Mesoporous Materials, 2015, 203: 259-273. |
| [49] | BOUKOUSSA Bouhadjar, AOUAD Nafissa, HAMACHA Rachida, et al. Key factor affecting the structural and textural properties of ZSM-5/MCM-41 composite[J]. Journal of Physics and Chemistry of Solids, 2015, 78: 78-83. |
| [50] | YUE Chuanjun, GAN Miaomiao, GU Liping, et al. In situ synthesized nano-copper over ZSM-5 for the catalytic dehydration of glycerol under mild conditions[J]. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45(4): 1443-1448. |
| [51] | LI Rui, LI Zhibin, CHEN Liqiang, et al. Synthesis of MnNi-SAPO-34 by a one-pot hydrothermal method and its excellent performance for the selective catalytic reduction of NO by NH3 [J]. Catalysis Science & Technology, 2017, 7(21): 4984-4995. |
| [52] | SUTTIPAT Duangkamon, YUTTHALEKHA Thittaya, WANNAPAKDEE Wannaruedee, et al. Tunable acid-base bifunction of hierarchical aluminum-rich zeolites for the one-pot tandem deacetalization-henry reaction[J]. ChemPlusChem, 2019, 84(10): 1503-1507. |
| [53] | WANG Qinqin, ZHU Mingyuan, ZHANG Haiyang, et al. Enhanced catalytic performance of Zr-modified ZSM-5-supported Zn for the hydration of acetylene to acetaldehyde[J]. Catalysis Communications, 2019, 120: 33-37. |
| [54] | TIEULI Sebastiano, Päivi MÄKI-ARVELA, PEURLA Markus, et al. Hydrodeoxygenation of isoeugenol over Ni-SBA-15: Kinetics and modelling[J]. Applied Catalysis A: General, 2019, 580: 1-10. |
| [55] | GHANI N N M, JALIL A A, TRIWAHYONO S, et al. Tailored mesoporosity and acidity of shape-selective fibrous silica beta zeolite for enhanced toluene co-reaction with methanol[J]. Chemical Engineering Science, 2019, 193: 217-229. |
| [1] | BONILLA Griselda, Isabel DÍAZ, TSAPATSIS Michael, et al. Zeolite (MFI) crystal morphology control using organic structure-directing agents[J]. Chemistry of Materials, 2004, 16(26): 5697-5705. |
| [1] | 薛立新, 董永平, 陈梦瑶, 高从堦. 十二烷基硫酸钠(SDS)和强碱(NaOH)对聚酰胺复合纳滤膜的协同调控机理[J]. 化工进展, 2025, 44(4): 2225-2237. |
| [2] | 李灏, 孙昱楠, 李健, 陶俊宇, 程占军, 颜蓓蓓, 陈冠益. 陈腐垃圾与原生垃圾共气化特性[J]. 化工进展, 2025, 44(1): 525-537. |
| [3] | 周媚, 曾浩桀, 卢俊宁, 蒲婷, 刘宝玉. 等级孔分子筛构筑及扩散过程强化研究进展[J]. 化工进展, 2024, 43(1): 76-86. |
| [4] | 唐婷, 周文凤, 王志, 朱晨杰, 许敬亮, 庄伟, 应汉杰, 欧阳平凯. 多酶共固定化技术在糖类催化中的研究进展[J]. 化工进展, 2022, 41(5): 2636-2648. |
| [5] | 孙小康, 冯宇, 李国梅, 刘妙青, 卢建军. 盐酸为氯源“一锅法”绿色高效合成α-氯噻吩[J]. 化工进展, 2020, 39(S2): 305-311. |
| [6] | 刘清, 邓真宁, 滑熠龙, 招国栋. 纳米铁的绿色合成及其在环境中的应用研究进展[J]. 化工进展, 2020, 39(5): 1950-1963. |
| [7] | 栗童,仲兆平,张波. 纤维素与多氢原料共热解的协同效应[J]. 化工进展, 2019, 38(9): 4044-4051. |
| [8] | 叶榆,张凯伦,霍地. 绿茶水热还原制备微纳米金属铜[J]. 化工进展, 2019, 38(03): 1487-1493. |
| [9] | 黄传峰, 韩磊, 霍鹏举, 刘树伟, 程秋香. 煤油共炼残渣与榆林煤共热解特性及半焦性质[J]. 化工进展, 2018, 37(S1): 57-62. |
| [10] | 唐思哲, 胡家秀, 赵健, 柯伟, 王维斌. 新型无机复配缓蚀剂对钠基膨润土中Q235钢的缓蚀作用[J]. 化工进展, 2018, 37(12): 4806-4813. |
| [11] | 严平, 占昌朝, 曹小华, 谢宝华, 徐常龙, 张旭. 原位合成H4SiW12O40@C协同UV/H2O2降解罗丹明B模拟废水[J]. 化工进展, 2015, 34(3): 872-878. |
| [12] | 付友思, 吴又多, 陈丽杰. Zn2+、Ca2+和Mn2+对丙酮丁醇发酵的协同影响[J]. 化工进展, 2015, 34(10): 3719-3724. |
| [13] | 冯茹森, 蒲迪, 周洋, 陈俊华, 寇将, 姜雪, 郭拥军. 混合型烷醇酰胺组成对油/水动态界面张力的影响[J]. 化工进展, 2015, 34(08): 2955-2960. |
| [14] | 马缓,齐暑华,张帆,史金玲. 复合填料/聚丙烯酸酯导电压敏胶的制备与性能[J]. 化工进展, 2014, 33(07): 1791-1795. |
| [15] | 薛晓军,贾广信,何俊辉,李婷. 二甲醚与合成气反应制乙醇的热力学计算与分析[J]. 化工进展, 2014, 33(05): 1160-1163. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |